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Hypocrellin B-based activatable photosensitizer for specific 
photodynamic effects against high H2O2-expressing cancer cells 
Takashi Kitamura, Hirotaka Nakata, Daisuke Takahashi* and Kazunobu Toshima* 

A novel tumor-related biomarker, H2O2-activatable 
photosensitizer 4 focused on the 1,3-dicarbonyl enol moieties of 
hypocrellin B (3), was designed and synthesized. 4 had a blue-
shifted absorption band compared to 3, and showed negligible 
photosensitizing ability without H2O2. However, release of 3 from 
4 by reaction with H2O2 regenerated the photosensitizing ability. 
Furthermore, 4 exhibited selective and effective photo-
cytotoxicity against high H2O2-expressing cancer cells upon photo-
irradiation with 660 nm light, which is inside the phototherapeutic 
window. 

Photodynamic therapy (PDT), which utilizes photosensitizers 
and light to induce selective destruction of target tissues, is a 
promising therapy for diseases such as cancer due to its 
advantages of minimal invasiveness and high spatiotemporal 
selectivity.1 However, non-specific photodamage caused by 
sunlight exposure to healthy tissues remains a significant 
issue.2 To address this problem, the development of 
activatable photosensitizers, which can turn on their 
photosensitizing abilities by reacting with a specific biomarker 
expressed in the target tissues, has attracted much attention.3 
For instance, H2O2, a reactive oxygen species (ROS), is a 
potential biomarker for several diseases such as cancer,4 since 
excess production of ROS can induce oxidative stress, leading 
to various diseases.5 In this context, we recently reported a 
H2O2-activatable photosensitizer 1 based on the 2-naphthol 
moiety 2 of the enediyne antitumor antibiotic, 
neocarzinostatin chromophore, which can be excited with 
long-wavelength UV light at 365 nm (Fig. 1a).6 The hydroxyl 
group of the 1,3-dicarbonyl enol moiety of 2 is masked in 1 
with a H2O2-reactive arylboronic ester7 through a benzyl ether 
link. Consequently, the photosensitizing ability of 1 is 
suppressed compared to 2, with decreasing absorbance in the 
long-wavelength UV region due to a blue-shift of the 
absorption bands. In this study, we focused on hypocrellin B 

(3) as a photosensitizer since it possesses 1,3-dicarbonyl enol 
moieties and can be excited with longer wavelengths of light, 
e.g., 660 nm (Fig. 1b). Hypocrellin B (3) is a natural 
perylenequinone pigment isolated from the fungus Shiraia 
bambusicola P. Henn.,8 and has advantages of a wide visible 
absorption range extending up to the red region, which is 
inside the phototherapeutic window (600-900 nm),9 a high 
singlet oxygen (1O2) quantum yield, a low dark toxicity, and 
fast clearance in vivo.10 In addition, it is reported that 
methylation of the two hydroxyl groups of the 1,3-dicarbonyl 
enol moieties of 3 causes a blue-shift of the absorption 
bands.11 Although 3 itself can be excited by highly tissue 
penetrating 660 nm light, by masking the two hydroxyl groups 
of the 1,3-dicarbonyl enol moieties of 3 with a H2O2-reactive 
arylboronic ester through a benzyl ether link, 3 could be 

Fig. 1 Design concept of H2O2-activatable photosensitizer 4 and chemical 
structures of H2O2-activatable photosensitizers 1 and 4, 2-naphthol 
derivative 2, and hypocrellin B (3).
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Scheme 1 Chemical synthesis of H2O2-activatable photosensitizer 4. DMF = 
dimethylformamide. 

converted to a H2O2-activatable photosensitizer 4. We here 
present the chemical synthesis and biological evaluation of a 
H2O2-activatable photosensitizer 4 based on 3. 

The synthesis of the designed H2O2-activatable 
photosensitizer 4 was achieved by alkylation of the two 
phenolic hydroxyl groups of 3 with 4-
(bromomethyl)phenylboronic acid pinacol ester (Scheme 1). 
The alkylated positions in 4 were confirmed by 1H-NMR 
chemical shifts of H-5 and H-8, and nOe experiments. The 
reported 1H-NMR chemical shifts of H-5 and H-8 of 3,10-
dimethylated hypocrellin B are  6.13 and 6.12, whereas those 
of 4,9-dimethylated hypocrellin B are  6.83 and 6.82.10b 
Therefore, the 1H-NMR chemical shifts of H-5 and H-8 of 4 ( 
6.16 and 6.16) were in good agreement with those of the 3,10-
dimethylated derivative. In addition, nOe interactions were 
observed in two methoxy groups at the C-2 and C-11 positions 
upon irradiation of both the newly introduced benzylic and 
aromatic protons, indicating that the alkylated positions in 4 
were the C-3 and C-10 positions, and not the C-4 and C-9 
positions. 

After chemical synthesis of 4, UV/Vis spectra of 3 and 4 
were measured. As shown in Fig. 2, 3 had an absorption band 
including the wavelength of 660 nm. On the other hand, 4 had 
a blue-shifted absorption band with a much lower absorbance 
around 660 nm compared to 3, as expected. 

To evaluate the photosensitizing abilities of 3 and 4, photo-
induced protein degradation assays12 against bovine serum 
albumin (BSA) were performed under 660 nm LED irradiation 
(3 W, 33 mW/cm2, and 2 h). The progress of the reaction was 
monitored by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) (Fig. 3). Comparison of lanes 3 and 

Fig. 2 UV/Vis spectra of 3 and 4 (5 µM) in 5% DMSO-PBS (pH 7.4, 10 mM). 
The highlighted wavelength range is the emission wavelength of the LED 
(660 nm) used in this study. 

Fig. 3 Photodegradation of BSA using 3 and 4 under 660 nm light irradiation. 
BSA (1.5 µM) was incubated with (a) 3 and (b) 4 in 1% DMSO-PBS (pH 7.4, 10 
mM) at 37 °C for 2 h under irradiation with a LED (660 nm, 3 W, and 33 
mW/cm2) placed 10 cm from the sample. The products were analyzed by 
tricine-SDS-PAGE. The gels were stained with Sypro Ruby protein gel stain. 
Lane 1: size marker; lane 2: BSA alone; lane 3: BSA upon photo-irradiation; 
lane 4: BSA + each compound (10 µM) without photo-irradiation; lanes 5-8: 
BSA + each compound (concentrations 10, 3, 1 and 0.3 µM, respectively) 
upon photo-irradiation. 

4 with lane 2 in Figs. 3a and 3b showed that neither photo-
irradiation of BSA in the absence of each compound nor 
treatment of BSA with each compound without photo-
irradiation resulted in a change in the SDS-PAGE profile. In 
sharp contrast, remarkable fading of the bands corresponding 
to BSA was observed when BSA was treated with 3 under 
photo-irradiation conditions (lanes 5 and 6 in Fig. 3a), 
indicating that degradation of BSA took place. On the other 
hand, no significant degradation of BSA was observed when 
BSA was treated with 4 under photo-irradiation conditions 
(lanes 5-8 in Fig. 3b). These results showed that the 
photodegradation ability of 4 was significantly decreased 
compared to that of 3, while 3 exhibited effective 
photodegradation ability against BSA upon photo-irradiation 
without any additives at neutral conditions. 

To quantitatively evaluate the photosensitizing abilities of 
3 and 4, their 1O2-generating abilities were measured using 
1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen 
scavenger.13 A significant decrease in the absorption of DPBF 
at 410 nm was observed when DPBF was incubated with 3 
upon 660 nm light irradiation (Fig. 4a). In contrast, no decrease 
was observed upon photo-irradiation when using 4 (Fig. 4b). 
Similar phenomena on the 1O2-generating abilities were 

Fig. 4 Time-dependent changes in UV/Vis spectra of 1,3-
diphenylisobenzofuran (DPBF) with 3 and 4 upon photo-irradiation. DPBF 
(500 μM) was incubated with (a) 3 and (b) 4 (5 μM) in 80% DMSO-PBS (pH 
7.4, 10 mM) at rt for 0-120 s under irradiation with a LED (660 nm, 3 W, and 
10 mW/cm2) placed 20 cm from the sample. 
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Fig. 5 (a) Responses of 4 to H2O2. 4 (20 µM) was incubated with H2O2 (0-1000 
µM) in 5% DMSO-PBS (pH 7.4, 10 mM) at 37 °C for 0-180 min. The products 
were analyzed by HPLC/UV. (b) Responses of 4 to several reactive oxygen 
species (ROS). 4 (20 µM) was incubated with the indicated ROS (300 µM) in 
5% DMSO-PBS (pH 7.4, 10 mM) at 37 °C for 120 min. The products were 
analyzed by HPLC/UV. 

observed in electron paramagnetic resonance (EPR) 
experiments (see the ESI,† Fig. S1). These results indicated that 
the 1O2-generating ability of 4 upon irradiation at 660 nm was 
effectively suppressed in comparison with that of 3, which was 
consistent with the photo-induced BSA degradation results (Fig. 
3). One of the plausible reasons for the differences in the 
photosensitizing abilities of 3 and 4 is the low absorbance of 4 
at 660 nm, indicating that 4 cannot be readily excited to the S1 
state under 660 nm light irradiation. 

Next, the reactivity of 4 against H2O2 was evaluated under 
neutral aqueous conditions. Progress of the reaction of 4 (20 
µM) with H2O2 (0-1000 µM)14 in 5% DMSO-PBS (pH 7.4, 10 
mM) was monitored by HPLC/UV analysis. Compound 4 
reacted with H2O2 and released 3 in H2O2 dose- and time-
dependent manners, while 4 was stable in the absence of H2O2 
(Fig. 5a). Additionally, the selectivity of 4 for H2O2 over other 
biologically relevant ROS species, such as hydroxyl radical 
(•OH), tert-butyl hydroperoxide (TBHP), tert-butoxy radical 
(•OtBu), hypochlorite (OCl), and superoxide anion (O2

•), was 
evaluated. Fig. 5b shows that 4 responded to H2O2 with high 
selectivity. The apparent response to O2

• could be attributed 
to H2O2 produced from dismutation, because 4 showed a 
negligible response to O2

• in the presence of catalase, a H2O2 
scavenger.15 These results indicated that 4 selectively and 

Fig. 6 Time-dependent changes in UV/Vis spectra of DPBF (a) without and 
(b) with 4 in the presence of H2O2 upon photo-irradiation. 4 (25 µM) was 
incubated with H2O2 (1 mM) in 5% DMSO-PBS (pH 7.4, 10 mM) at 37 °C for 2 
h. The product was then incubated with DPBF (500 μM) in 80% DMSO-PBS 
(pH 7.4, 10 mM) at rt for 0-120 s under irradiation with a LED (660 nm, 3 W, 
and 10 mW/cm2) placed 20 cm from the sample. 

effectively reacted with H2O2, and simultaneously released 3 
under neutral aqueous conditions. 

To confirm whether the 1O2-generating ability of 3 was 
regenerated after reaction of 4 with H2O2, the DPBF assay was 
again conducted. A significant decrease in the absorption of 
DPBF was observed upon photo-irradiation when using 4 
incubated with H2O2 (Fig. 6b), while no decrease was observed 
upon photo-irradiation when using the blank incubated with 
H2O2 (Fig. 6a). These results indicated that the 1O2-generating 
ability of 3 was regenerated after reaction of 4 with H2O2.

Finally, to demonstrate selective photo-cytotoxicity against 
high H2O2-expressing cells, the photo-cytotoxic activity of 3 
and 4 against B16F10 cells, a highly metastatic murine 
melanoma cell line that expresses high levels of ROS,16 was 
evaluated. Normal human-lung fibroblast cells (WI-38) were 
used as a negative control in the assay. Cytotoxicity was tested 
with and without photo-irradiation using a LED (660 nm, 3 W, 
and 17 mW/cm2) placed 15 cm from the sample using the MTT 
assay. The results are summarized in Fig. 7. Exposure of 
B16F10 cells and WI-38 cells to 3 or 4 without photo-
irradiation resulted in no cytotoxicity against either type of cell 
(Figs. 7a-d). When B16F10 and WI-38 cells were treated with 3 
with photo-irradiation, 3 exhibited non-selective and 
significant cytotoxicity against both types of cells in a dose-
dependent manner (Figs. 7a and b). In sharp contrast, while 4 
had negligible cytotoxicity against WI-38 cells even upon 
photo-irradiation, 4 showed selective and significant photo- 

Fig. 7 Photo-cytotoxic activity of 3 and 4 against B16F10 and WI-38 cells. (a, 
c) B16F10 and (b, d) WI-38 cells were seeded into 96-well plates (4.0 × 103 
cells). After 24 h, the cells were treated with the indicated concentrations of 
(a, b) 3 and (c, d) 4, and incubated for 3 h at 37 °C, followed by incubation 
with or without photo-irradiation by a LED (660 nm, 3 W, and 17 mW/cm2) 
placed 15 cm from the sample for 30 min. Samples were further incubated 
for 24 h at 37 °C, and then MTT reagent was added to each well and the cells 
were incubated for up to three additional hours. Absorbance at 540 nm was 
read using a plate reader. *p < 0.05, **p < 0.01, ***p < 0.001. 
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cytotoxicity against B16F10 cells (Figs. 7c and d). These results 
clearly indicated that 4 can selectively and effectively induce 
cytotoxicity against high H2O2-expressing B16F10 cells only 
under photo-irradiation conditions. 

In conclusion, the novel H2O2-activatable photosensitizer 4 
based on hypocrellin B (3) was designed and synthesized. The 
photosensitizing ability of 4 was significantly decreased 
compared to that of 3 under 660 nm light irradiation. However, 
release of 3 from 4 by reaction with H2O2 regenerated the 
photosensitizing ability. Cell assays showed that 4 exhibited 
selective and significant cytotoxicity against B16F10 cells, 
which overexpress H2O2, at low micromolar concentrations 
upon photo-irradiation. The results presented here will 
contribute to the molecular design of novel biomarker-
activatable photosensitizers and help realize tumor-specific 
photodynamic therapy to minimize side effects. 
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