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Ferroptosis has recently emerged as a non-apoptotic form of programmed cell death and promising target
for anticancer treatment. However, it is challenging to discover ferroptosis inducers with both highly
selective tumour targeting and low cytotoxicity to normal cells. Here, we report an Ir() complex, Irl,
that contains a novel chiral pyridine RAS-selective lethal ligand (Py-RSL). This complex effectively inhibits
glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) to induce ferroptosis in
human fibrosarcoma (HT-1080) cells. Notably, metal coordination not only endows Irl with fluorescent
properties for convenient cellular real-time tracking but also efficiently reduces the off-target toxicity of

Received 9th November 2022 the Py-RSL ligand. Furthermore, label-free quantitative proteomic profiling revealed that Irl
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simultaneously inhibits the ErbB signalling pathway to enhance tumour suppression. Our work is the first
DOI 10.1039/d2sc06171f to report a ferroptosis-inducing iridium complex with dual mechanisms of inhibition and provides

rsc.li/chemical-science a highly selective and efficient route to develop new ferroptosis-inducing metallodrugs.

Introduction complexes, especially transition metal complexes, have been

widely used in bioimaging and cancer treatment for their good
Ferroptosis was first proposed in 2012 as an iron-dependent optical properties, great diversity of tunable ligands, and
form of regulated cell death caused by unrestricted lipid per-
oxidation (LPO) and increased reactive oxygen species (ROS)."”?
In the past decade, ferroptosis was shown to participate in
neurodegenerative diseases,*® cardiovascular diseases,” and
especially cancer.*® Ferroptosis plays important roles in the
occurrence, development, and metastasis of tumours, suggest-
ing its great potential in the development of antitumor
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excellent targeting ability.***” Specific to the metal coordination
strategy, some significant breakthroughs have been made in the
development of excellent metal complexes to induce ferropto-
sis. For example, Gust et al. pioneered a series of iron(mr)
complexes that generate lipid-based ROS and induce ferroptosis
(Scheme 1b).?”** The significant breakthrough made by Mao
et al. showed that a cyclometalated Ir(m) complex containing
a ferrocene moiety ligand is a highly efficient ferroptosis
inducer, providing a powerful tool for enhancing cancer
immunity (Scheme 1b).*® Chao et al creatively designed
a biodegradable Ir(m) coordination polymer that induces
apoptosis and ferroptosis through photodynamic therapy.*®
Mechanistically, these current design strategies introduce
exogenous iron into cells for its accumulation to perform the
Fenton reaction or produce an overload of lipid peroxides to
induce ferroptosis. Constructing an amide or ester bond or
using existing coordination sites to conjugate natural products
or drugs to metals have become common methods for metal
drug design, which could increase the selectivity and reduce the
side effects of the metal.*®** In addition, redesigning drug
scaffolds as ligands while retaining the targeting group is an
attractive strategy. Notably, reports on these strategies revealed
that metal coordination could reduce toxicity and increase the
pharmaceutical effect of the free drug molecules.** Through
rational design, metal complexes can simultaneously combine
the advantages of both metals and drug molecules to achieve
better therapeutic effects.

It is noteworthy that iridium hydrides have been demon-
strated to be effective scaffolds for metal drugs due to their
adjustable photophysical and chemical properties.**** Herein,
we designed the iridium(m) complex Irl based on iridium
hydrides. To better target the glutathione peroxidase 4 (GPX4)
protein, which is enriched in the mitochondria, we first intro-
duced triphenylphosphine as the mitochondria-targeting
ligand and then Py-RSL as the ferroptosis-inducing ligand
(Scheme 1c). This complex induces ferroptosis in human
fibrosarcoma (HT1080) cells by significantly inhibiting GPX4
and ferroptosis suppressor protein 1 (FSP1). Notably, intracel-
lular localization monitoring can be achieved under visible light
(488 nm) excitation. Moreover, iridium coordination reduces
the toxicity of the Py-RSL ligand to make this complex available
for in vivo applications.

Results and discussion
Synthesis of the Ir(m) complex Ir-Py-RSL

Six-coordinated hydrides of iridium provide an excellent start-
ing point for a variety of modifications. The axial ligand tri-
phenylphosphine gives additional mitochondrial targeting
ability, while leaving coordination space in the plane for mono-
or bidentate ligands. Among small molecule ferroptosis
inducers, RSL3 has an ability to target GPX4,* and chlor-
oacetamide is essential for its activity. Therefore, we preserved
the pharmaceutical scaffold and replaced the phenyl at C1 with
phenylpyridine for metal coordination (Fig. 1a). Four different
chiral ligands (L1-4) and the four corresponding Ir(m)
complexes (Ir-Py-RSL, Ir1-4) were then synthesized. 'H two-
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Fig.1 (a) General synthetic route of Ir-Py-RSL. (b) CD spectra of Ir1-4.

dimensional nuclear Overhauser effect spectroscopy (NOESY)
was performed to determine the identified stereochemistry of
the four ligands. We also verified the chirality by circular
dichroism (CD) spectra (Fig. 1b and S17), and high-performance
liquid chromatography (HPLC) was used to further prove the
difference in ligand chirality (Fig. S2 and S3f). All Ir(m)
complexes maintain stable at 37 °C after 48 hours (Fig. S4-S77).
We also assessed the octanol/water partition coefficients (log Po,
w) of the complexes, which show similar lipophilicities (Ir1: 0.61
+ 0.22; Ir2: 0.64 £ 0.23; Ir3: 0.67 £+ 0.12; Ir4: 0.54 + 0.23). The
details of the synthesis and characterization are fully described
in ESL¥

Cytotoxicity of the iridium complexes

First, a cytotoxicity test in HT1080 cells was carried out by per-
forming a CCK8 assay. As shown in Tables 1 and S1,1 L3 (IC5, =
1.76 pM) and L1 (ICso = 1.71 pM) displayed high cytotoxicity,
whereas the ICs, values of Ir3 and Irl were 11.01 uM and 7.48
uM, respectively. Metal coordination reduces the toxicity of
ligand by three- to fourfold. Notably, the other two chiral ligands
and corresponding Ir(m) complexes did not show significant
antitumor activity. Among them, Irl showed antitumor toxicity
superior to that of cisplatin (IC5o = 9.72 pM). We then chose
human lung fibroblasts (HLFs) and human embryonic kidney
293T (HEK-293T) cells to determine the selectivity of the
compounds against normal cells. As shown in Table 1, in

Table 1 |Csq value (uM) of the ligands and Ir(i) complexes”

ICs (1M)
Cell line L1 Irl Cisplatin
HT1080 1.71 7.48 9.72
PANC-1 1.45 9.19 21.33
HLF 1.44 46.76 10.82
HEK-293T 8.47 24.79 30.52

“ Cell viability was measured by CCK8 assay after 48 h incubation with
different complexes (dose-response curves are shown in Fig. S9).
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comparison to L1 and cisplatin, the Ir(u) complex showed much
lower cytotoxicity towards HLFs, and the cytotoxicity to HEK-
193T cells was comparable to that of cisplatin. The ICs, values
confirmed that Ir coordination not only reduced the toxicity of
the ligand but also provided cancer cell selectivity. We confirmed
these results in human pancreatic cancer (PANC-1) cells. The
cellular uptake of Ir1l was measured during 120 min (Fig. S107).
At the cellular level, compared with cisplatin, Irl possessed
better antitumor activity and fewer side effects in normal cells.

Ferroptosis induced by Ir1

Then, we verified the mode of cell death by concomitantly
incubating the complexes with different inhibitors: ferrostatin-
1 (Fer-1) and deferoxamine (DFO) for ferroptosis,' Z-VAD-FMK
(z-VAD) for apoptosis,* and necrostatin-1 (Nec-1) for nec-
roptosis.”” As displayed in Fig. 2a and S11,1 none of the inhib-
itors showed clear influence on the ligand-mediated reduction
in cell viability. For Ir2-treated cells, Z-VAD strongly restored cell
viability, indicating that the complex caused apoptosis. Ir4
induced ferroptosis as well as necroptosis, as confirmed by the
enhanced cell viability after incubation with Fer-1 and Nec-1. In
addition, the inhibitors showed no effect on Ir3-induced cell
death. Notably, Fer-1 and DFO rescued Irl-induced cell death,
while the other inhibitors displayed no influence, indicating
that ferroptotic cell death was induced by this complex (Fig. 2a).

(b)
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Based on the above results, we further verified that ferrop-
tosis was induced by Irl. Glutathione depletion, GPX4 activity
reduction, and decreased antioxidant capacity of cells resulting
in increased lipid peroxidation reactions and reactive oxygen
species (ROS), are common ferroptosis markers.***’ As shown in
Fig. 2e and S12,1 Irl and the corresponding ligand both
induced extensive ROS production. When compared with
phosphate-buffered saline (PBS)- and Li-treated cells, Irl
caused notably increased lipid peroxidation (Fig. 2d and S127).
Additionally, Fer-1 could restore the cell viability of Li-treated
cells. To analyse the causes of lipid ROS production, we detected
the expression of two key targets, GPX4 and FSP1. GPX4 and
FSP1 were significantly inhibited, which was confirmed by
western blot and reverse transcription-polymerase chain reac-
tion (RT-PCR) experiments (Fig. 2b and c). Above results sug-
gested that L1 acts as the ferroptosis-inducer, the replacement
of C1 phenyl of RSL3 with phenylpyridine has no effect on the
drug function. Another representative hallmark of ferroptosis is
condensed mitochondrial morphology.* The transmission
electron microscopy (TEM) image in Fig. 2f shows distinct,
shrunken mitochondria and collapsed mitochondrial cristae.
Altogether, as evidenced by the biochemical and morphological
characteristics, these results further confirmed that ferroptosis
was induced by Irl. We also verified the death pattern by fer-
roptosis inhibitors, LPO and ROS production in a healthy cell
line (HLF). The results indicate Ir1 does not cause healthy cell to
undergo ferroptosis (Fig. S137).
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Fig.2 Characterization of Irl-induced ferroptosis. (a) Viability of HT1080 cells treated with 10 uM Ir1/0.5 uM L1, 10 uM Ir1/0.5 uM L1 + 20 pM Z-
VAD, 10 uM Ir1/0.5 pM L1 + 2 pM Fer-1, 10 uM Ir1/0.5 pM L1 + 40 uM DFO, and 10 uM 1r1/0.5 uM L1 + 25 pM Nec-1 for 48 h. (b) Fold changes in
GPX4 and FSP1 mRNA transcription in HT1080 cells treated with 10 pM Irl and PBS as the control. (c) Expression of GPX4 and FSP1in Irl-, L1-, and
PBS-treated HT1080 cells by western blot. (d) Lipid peroxidation in HT1080 cells treated with 0.5 pM L1 and 10 uM Irl with PBS as the control,
determined by BODIPY-C11 staining via flow cytometry after 3 h incubation. (e) ROS production was evaluated by DCFH-DA staining after 3 h
incubation in PBS-treated and 0.5 and 10 uM L1- and Irl-treated HT1080 cells. (f) TEM images of control (PBS) and 10 pM Irl-treated HT1080
cells after 24 h incubation; scale bars: 2 um (left), 200 nm (right). Values are expressed as the mean + SD (n = 3). Statistical significance was
evaluated by t test or one-way ANOVA; ns p = 0.05, *p < 0.05, **p < 0.01, and ***p < 0.001.
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Cellular imaging of Ir1

Under physiological conditions, metal complexes have better
chemical and photochemical stability than organic mole-
cules.”*** All Ir(ur) complexes show ligand-based fluorescence at
=575 nm with 488 nm excitation in dimethyl sulfoxide (Fig. 3a).
Ultraviolet-visible spectra were also detected (Fig. S8t). Having
excitation and emission wavelengths in the visible range could
effectively avoid photodamage and photobleaching in cells,
which is suitable for tracking action processes in cells. We made
observations every ten minutes for two and a half hours. As
illustrated in Fig. 3c and S14,} the Ir(m) complex gradually
entered the cells from the extracellular space over 60 min and
then acted on different organelles over time. To further localize
the complex in organelles, we performed a colocalization assay
at two time points with MitoTracker Red (MTR) for mitochon-
drial staining and 4’,6-diamidino-2-phenylindole (DAPI) for
nuclear staining (Fig. 3d). At 90 min, the Ir(m) complex had
aggregated and attached to cytoplasm, not in mitochondria, for
the Pearson's correlation coefficient is only 0.0749. While at
150 min, some of the complexes had entered the nucleus while
the rest remained mainly on the mitochondria (Pearson's
correlation coefficient is 0.4734). The fluorescence images
showed that the Ir(m) complex acted on the mitochondria to
exert subsequent functions. We also quantified the iridium
content in different organelles by inductively coupled plasma-
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Fig. 3 Intracellular localization and organelle colocalization of Irl in
treated HT1080 cells. (a) Fluorescence intensity of the four ligands and
their corresponding Ir(i) complexes (10 puM in dimethyl sulfoxide)
under 488 nm excitation. (b) Cellular distribution of iridium in HT1080
cells measured by quantitative ICP-MS after 12 h of incubation. (c)
Microscopic images of HT1080 cells at different time points after
incubation with 10 uM Irl (Aey/em = 488/575 + 20 nm); scale bar: 20
pm. (d) Microscopic images of HT1080 cells at 90 min and 150 min
after Irl treatment, followed by incubation with 2 uM MTR (Aex/em =
572/632 4+ 10 nm) and 5 pM DAPI (Aex/em = 375/488 + 10 nm); scale
bar: 20 pm.
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mass spectrometry (ICP-MS) after 24 h of treatment and found
67.7%, 13.2%, and 19.1% in the mitochondria, nucleus, and
cytoplasm, respectively (Fig. 3b). The above results confirmed
that Ir1 has good mitochondrial targeting ability. Notably, when
the complex functions in specific organelles, a significant
reduction in the off-target toxicity of the organic ligand can be
achieved.

Proteomic analysis of Irl

To further understand the mechanism of Irl in cells, we per-
formed a label-free quantitative proteomic profiling experi-
ment. This mass spectrometry-based technology provides new
insights into cellular responses after metal complex exposure,
including the interaction and regulation of cellular pathways,
which can identify the altered pathways through extensive
quantification of cellular proteins.**** With advances in pro-
teomic techniques, a deeper mechanistic understanding of
cellular responses can be obtained, such as cellular uptake,
biological distribution, and toxicity.>*® Fig. 4a and b show the
significant differences in protein expression between the Irl
group and PBS control group. It was found that 199 proteins
were significantly downregulated and 280 proteins were upre-
gulated in cells treated with Irl (Fig. 4c). Notably, eukaryotic
translation initiation factor 2A (EIF2A), which plays a vital role
in the integrated stress response of cancer cells, leading to
drug resistance and poor prognosis, was the most inhibited
protein.**®® The proteomics results also showed a large
number of destroyed proteins (Table S2t), including GPX4,
which was confirmed above. In addition, subcellular localiza-
tion, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotation, and group domain enrichment analysis
of the differentially expressed proteins including molecular
function, cellular component, and protein domain are shown
in Fig. S15-S19.F

Notably, Ir1 significantly affected ErbB signalling pathways,
as revealed by bioinformatic analysis (Fig. 4d). The ErbB family
is related to a variety of cancers, and its overexpression leads to
cancer metastasis, drug resistance, poor prognosis, and a lower
survival rate.®®> Targeting the ErbB family has thus become an
effective means of cancer treatment.®*** Notably, ferroptosis is
also considered to be an autophagy-dependent type of cell
death, while ErbB-1 can mediate autophagy.®® Additionally,
autophagy could cause histone deacetylase inhibition, which
promotes high mobility group box 1 (HMGB1) acetylation and
leads to HMGBI1 release in ferroptosis as a damage-associated
molecular pattern molecule.®® ErbB-1 inhibition was shown to
contribute to ferroptosis.®”” Based on our proteomic data, we
further verified the ErbB-targeting ability of Ir1 by qRT-PCR. We
also detected the expression of a series of ErbB signalling
pathway-related proteins. As shown in Fig. 4e, the expression of
a disintegrin and metalloprotease 17 (ADAM17),*® Huntingtin
interacting protein 1 (HIP1),** Casitas B-lineage lymphoma
(CBL),” nucleoporin 62 (NUP62),”* short hairpin kinesin-
binding protein (SHKBP),”> docking protein 1 (DOK1),”* and
recombination signal binding protein (RBPJ)’* was significantly
suppressed. Coiled-coil domain containing 88 (CCD C88)”® and

Chem. Sci., 2023, 14, M4-1122 | M7
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0.001

angiotensin II type 1 receptor-associated protein (ARAP1)”® were
also inhibited to varying degrees. These results verified that Ir1
could inhibit the ErbB signalling pathway, which could further
enhance anticancer activity and contribute to ferroptosis. Such
dual-targeting abilities makes this Ir(ur) complex a promising
agent for future anticancer applications in vivo.

Toxicity of Irl in vivo

To further apply the Irl complex in vivo, we first detected its
toxicity in mice to evaluate its safety. Blood biochemical and
haematological analyses were performed 7 days after injection
of Irl, with L1 and PBS used for comparison. For blood
biochemical tests, the indices of aspartate transaminase (AST),
alanine transaminase (ALT), and blood urea nitrogen (BUN) are
shown in Fig. 5a. Compared with PBS-treated mice, the ALT
values significantly increased in Irl- and L1-treated group, and

M8 | Chem. Sci, 2023, 14, M4-1122

only L1 induced a significant increase in the AST levels. L1-
induced raise in ALT and AST level are extremely significant
compared to Irl treatment. These results indicate L1 causes
more damage to the hepatocyte organelles. Higher level of
UREA caused by L1 also shows that there is a certain kidney
damage. From the haematological analysis, the values of white
blood cells (WBCs), red blood cells (RBCs), haemoglobin (HGB),
and platelets (PLTs) showed no statistical difference between
Irl and control group (Fig. 5b). But the RBC, HGB, and PLT
levels of L1 all have a statistically significant decrease compared
to the control group. Irl is therefore safer than L1 in vivo
according to the above indices. Furthermore, there were no
significant effects on the body weight among each group
(Fig. 5c). These results indicated that Irl does not trigger
hepatic or kidney toxicity, while L1 could cause severe liver
damage, which further illustrates the detoxification ability of
Ir(m) coordination.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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PLT) of the blood from mice 7 days postinjection with Irl (5 mg kg™, L1 (5 mg kg3, and PBS. (c) The body weights of the mice injected with the
respective compounds over 7 days. (d) Schematic diagram of the in vivo experiment. (e) The tumour volume curves and (f) mouse body weight
over 13 days. (g) Haematoxylin and eosin (H&E) staining of the liver, spleen, kidney, heart, and lung tissues of the mice at 7 days postinjection.
Image magnification: 200 x. Values are expressed as the mean + SD (n = 3). Statistical significance was evaluated by t test or one-way ANOVA; ns
p = 0.05, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Antitumor activity of Irl in mice weights were recorded for 15 days. As shown in Fig. 5e,
compared with PBS group, the Irl and the L1 treatment could
both inhibit tumour volume, and the Irl group exhibited
greater tumour suppression. This is probably due to the
tumour-targeting ability of the iridium complex, a property that
the off-targeted ligand molecule lacks. ¢ test results also showed

Finally, we conducted antitumor experiments in mice. HT-1080
cells were first implanted into three groups of mice. After the
tumour-bearing mouse model was constructed, Ir1 (5 mg kg ),
L1 (5 mg kg™ ), and PBS were injected through the tail vein on
Days 1, 4, and 7 (Fig. 5d). Tumour volumes and mouse body
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Fig. 6 Schematic illustration of the biological mechanism of Irl in cancer cells based on the experiment results and proteomic analysis of Irl.
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a significant difference between these two treatments (p <
0.0001). Additionally, there was no clear loss in mouse body
weight in any of the groups (Fig. 5f). All mice were sacrificed
after 15 days for organ slicing. Haematoxylin and eosin (H&E)
staining showed that the Ir(m) complex did not cause toxic
damage to any organ, while the ligand damaged the lung and
kidney (Fig. 5g). Although L1 is more toxic in vitro, Ir1 showed
better antitumor ability in vivo. The iridium complex provided
better targeting capabilities, and the dual-targeting effect makes
Irl a promising anticancer agent for future cancer treatment.

Conclusions

In summary, we synthesized a novel iridium complex, Ir1,
which contains a Py-RSL ligand, and found that this complex
could induce ferroptosis and overcome the disadvantages of
small organic molecules. In detail, Ir1 induced ferroptosis in
cancer cells by inhibiting the critical proteins GPX4 and FSP1
(Fig. 6). In vitro and in vivo experiments demonstrated that
metal coordination could reduce the off-target toxicity of the Py-
RSL ligand in vivo, and visible light-excited fluorescence
enabled real-time imaging to determine compound localization
invitro. Notably, the ErbB signalling pathway was also inhibited
by Ir1, which further contributed to its anticancer activity and
ferroptosis induction, making the complex more suitable for
cancer treatment. Here, we introduced a dual-targeting ferrop-
tosis inducer through rational design, which provides new
insights into the design of multifunctional anticancer
complexes.
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