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actions” induced CoV2O6–Fe–NF
for efficient oxygen evolution reaction†

Yuchao Guo, Gaojie Yan, Xi Sun, Shuo Wang, Li Chen and Yi Feng*

The investigation of cost-effective, highly efficient, and environmentally friendly non-noble-metal-based

electrocatalysts is imperative for oxygen evolution reactions (OER). Herein, CoV2O6 grown on nickel

foam (NF) was selected as the fundamental material, and Fe2+ is introduced through a simple Fe3+

immersion treatment to synthesize CoV2O6–Fe–NF. Fe2+ is transformed into high oxidation state Fe(2+d)+

due to interactions between the 3d electrons of transition metals. In situ Raman spectroscopy analysis

reveals the specific process of OER in the presence of Fe(2+d)+. Being in a higher oxidation state, Fe(2+d)+

provides more active sites, which is beneficial for the reaction between water molecules and the reactive

sites of the electrocatalyst, ultimately enhancing the accelerated OER process. CoV2O6–Fe–NF exhibited

an overpotential of only 298 mV at 100 mA cm−2 in 1 M KOH electrolyte, which is lower than that of

CoV2O6–NF (348 mV), as well as the comparative samples: Fe–NF (390 mV) and NF (570 mV). The

exploration of high performance, triggered synergistically by the cooperative effect of transition metal 3d

electrons, provides insights into the design of transition metal electrocatalysts for highly efficient OER.
Energy has played a vital role in the progress of human civili-
zation. Today, the urgent environmental issues caused by the
burning of traditional fossil fuels are becoming more evident,
and the foreseeable catastrophic consequences have spurred
humanity to develop clean energy. Hydrogen, as a high energy
density (120 MJ kg−1) and carbon-neutral fuel, aligns with the
new concept of civilization development and presents an ideal
alternative to fossil fuels.1–4 Water splitting into hydrogen and
oxygen (H2O/H2 + 1/2O2), operated by electricity derived from
renewable energy sources, is recognized as a viable approach to
large-scale hydrogen production.5–7 In water splitting, the
hydrogen evolution reaction (HER) occurs at the cathode and
the oxygen evolution reaction (OER) occurs at the anode. The
OER involves a four-electron transfer, whereas the HER involves
only a two-electron transfer. Thus, the efficiency of water-
splitting is determined by the slower OER, which attracts
considerable research attention. Both Pt and RuO2 are excellent
electrocatalysts for OER as they are noble-metal-based
materials,8–10 but their elemental scarcity and prohibitive cost
severely limit their universal applications. A fundamental
challenge that attracts the attention of researchers is to design
low-cost electrocatalysts that are highly active and long-lived for
water oxidation and proton reduction.
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Great attention has been devoted to Transition Metal
Compounds (TMCs) such as oxides, nitrides, dichalcogenides,
and phosphides.11–16 Due to their unsaturated coordination and
high electrical conductivity, these cations can act as active
catalytic centers for adsorption/activation of OER intermedi-
ates. Guided by the Brewer–Engel bond valence theory, the
combination of early transition metals with empty or half-lled
vacant d-orbitals and late transition metals with internally
paired d-electrons will achieve a signicant synergistic effect. As
proof the valence electron conguration of V5+ is 3d0 with
empty 3d orbital occupy, which is in favor of regulating the local
electronic coordination environment.17 Some recent research
discovered that incorporation of V into late transition metals
could effectively enhance the OER activity of the catalysts.18–21 Fe
has a unique advantage in optimizing the electronic structure of
Ni and Co because of the similar ionic radius and 3d orbital
electron congurations.22 At the beginning of 1947, Hickling
et al. found that operating a Ni-alkaline cell in the KOH solution
containing only 1 ppm Fe impurity could greatly contract the
cell voltage and reduce the OER onset potential, indicating that
the introduction of trace Fe would signicantly enhance the
electrocatalytic activity.23 It was reported that Fe acted as a fast
active site in (Ni, Fe)OOH and (Co, Fe)OOH while NiOOH and
CoOOH only contribute as conductive carriers.24 In 2021 Wang
et al. found the interfacial electron transfer from Fe to Co and Ni
optimizes the eg lling of Co and Fe sites, which is benecial for
the surface reconstruction to CoOOH and FeOOH during OER
process.25

In this study, we used a simple preparation route to grow
CoV2O6 on the surface of pre-Fe-treated nickel foam. Through
© 2023 The Author(s). Published by the Royal Society of Chemistry
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a redox reaction (2Fe3+ + 2Ni / 2Fe2+ + Ni2+) introduced Fe2+

into the CoV2O6–NF.
XPS analyses showed the synergistic interaction of Fe, V, and

Co cations in the CoV2O6–Fe–NF catalyst, indicating that Fe2+

via 3d electron interaction turns into a novel electronic struc-
ture of Fe(2+d)+.

Metals with higher oxidation states provide the optimum
bonding strength between cations and water molecules and
intermediates, making Fe(2+d)+ benecial to reacting with the
adsorbed OH− and nally deriving an accelerated OER
process.26 This work had explain for the study of the synergistic
catalytic effect for OER of metal sites in Co–O–Fe–O–V system.

The CoV2O6–Fe–NF was synthesized via convenient Fe-
treatment and subsequent sol–gel reaction (Fig. 1, details in
ESI†). The CoV2O6–NF counterpart was synthesized in almost
identical method except Fe-treatment, while sample just aer
Fe-treatment was also synthesized and designated as Fe–NF.
Aer that, related tests were used to characterize samples. The
X-ray diffraction (XRD) patterns were displayed in Fig. S1† for
Fe–NF. The diffraction peaks at 2q = 19.7°, 31.9°, 36.8° and
57.6° match well with the (020), (111), (201), and (241) planes of
orthorhombi of FeCl2$(H2O)4 (JCPDS No. 97-001-5597) which
conrmed the occurrence of the redox reactions. The XRD
patterns of CoV2O6–NF and CoV2O6–Fe–NF were displayed in
Fig. S2.† For CoV2O6–NF, the diffraction peaks at 2q = 17.6°,
21.9°, 22.4°, 26.1°, 27.6°, 29.1°, 35.7°, 39.7°, and 48.5° match
well with the (101), (102), (022), (031), (122), (112), (202), (203),
(051) and (144) planes of CoV2O6$(H2O)2 (JCPDS No. 00-041-
0420) identied the successful synthesis of CoV2O6 on the
surface of NF. A slight peak shi observed in CoV2O6–Fe–NF
suggest the retained cobalt vanadate crystalline structure with
Fe incorporation, while diminished peaks at 2q = 17.6°, 26.0°

and 42.8° imply differential exposure of crystalline surfaces. The
morphology of CoV2O6–Fe–NF, CoV2O6–NF, Fe–NF and NF
samples were characterized via scanning electron microscopy
(SEM). Contrasted with an approximately smooth NF surface
(Fig. S3b†), Fig. 2a illustrated the nano-array-like structure on
the surface of Fe–NF, which transformed into densely distrib-
uted nanoparticles in CoV2O6–Fe–NF aer the sol–gel reaction.
The size of the nanoparticles on CoV2O6–Fe–NF was estimated
to be 90 nm in diameter (Fig. 2b). The physical photo of
CoV2O6–Fe–NF was shown in Fig. S3a.† The sample was
uniformly deposited on the three-dimensional NF skeleton. The
SEM image of the cross section showed that the thickness of the
deposited layer of the prepared sample was about 4.79 mm.
Transmission electron microscopy (TEM) image of one
Fig. 1 Synthesis scheme of CoV2O6–Fe–NF.

© 2023 The Author(s). Published by the Royal Society of Chemistry
detached piece of stacked nanoparticles on CoV2O6–Fe–NF was
displayed in Fig. 2c, while the high-resolution transmission
electron microscopy (HRTEM) image could be seen in Fig. 2d.
The lattice fringes observed in the HRTEM image with lengths
of 0.379 nm and 0.224 nm coincide with the (112) and (022)
plane of CoV2O6$(H2O)2, which was in accordance with the XRD
result. Elemental mapping (Fig. 2f) demonstrated the uniform
distribution of Co, Fe, V and O on the nanoparticle.

The atomic ratio of Fe, Co, V, and O was estimated using
Energy Dispersive Spectrometry (EDS) and found to be 1 : 5.24 :
11.62 : 36.46. Additionally, the (Co + Fe) : V : O ratio was
approximately 1 : 1.857 : 5.823, exhibiting a similarity to the
stoichiometry of CoV2O6 (Fig. S4†). The atomic ratio of Co : Fe :
V was further conrmed using inductively coupled plasma-
optical emission spectroscopy (ICP-OES), resulting in an esti-
mated ratio of 7.27 : 1 : 17.24. The (Co + Fe) : V ratio was found to
be approximately 1 : 2.08 (Table S1†). The atomic ratio of (Co +
Fe) : V : O, as well as the XRD pattern of CoV2O6–Fe–NF, suggests
that Fe was incorporated into the crystalline structure of
CoV2O6$(H2O)2 in the cationic position, consistent with obser-
vations reported in other studies.27–29

To show the surface chemical environment and electronic
interaction of CoV2O6–Fe–NF and CoV2O6–NF, they were char-
acterized by X-ray photoelectron spectroscopy (XPS). The survey
XPS spectra reveal the presence of Co, V, Fe, O in CoV2O6–Fe–NF
(Fig. 3a) and Co, V, O in CoV2O6–NF (Fig. S5†), respectively. In
high resolution spectra of Co 2p (Fig. 3b), signicant peaks
around 781 and 797 eV could be attributed to the spin–orbit
splitting to Co 2p3/2 and Co 2p1/2 (ref. 30 and 31) for both
CoV2O6–Fe–NF and CoV2O6–NF. As for CoV2O6–NF, peaks
centre at 780.85 and 796.90 eV corresponded with Co3+ while
the 782.70 and 798.55 eV peaks corresponded with Co2+with two
satellite peaks locate at 782.70 and 803.43 eV. Corresponding
peaks exhibited a blue shi in CoV2O6–Fe–NF. Specically, Co

3+

peaks demonstrated ∼0.37 eV shi to lower binding energy at
780.62 and 796.53 eV, while Co2+ peaks display ∼0.86 eV shied
to 782.26 and 797.69 eV.32–35 The blue shi suggested a lower
valence state of Co species in CoV2O6–Fe–NF,25 which was
further conrmed by a lower Co3+/Co2+ ratio of (0.66) compared
with CoV2O6–NF (0.88) calculated via corresponding peak area.

Fig. 3c demonstrates high resolution XPS spectra of V 2p,
with distinct peaks located at 517 and 524 eV respectively
attributed to V 2p3/2 and V 2p1/2. Concerning CoV2O6–NF,
deconvoluted peaks of V 2p1/2 and V 2p3/2 indicate the presence
of high valence V4+ (517.02, 523.78 eV) and V5+ (517.37, 524.76
eV). Although aminor blue shi (∼0.07 eV) could be observed in
CoV2O6–Fe–NF, a lower V5+/V4+ ratio (0.65) versus CoV2O6–NF
(0.82) suggests less oxidated V species aer Fe incorporation36–38

(Table S2†). The typical Fe 2p spectrum of CoV2O6–Fe–NF was
displayed in (Fig. 3d), where peaks centred at (714.27 eV) and
(719.90 eV) are identied to Fe2+ and Fe3+, respectively.39

Meanwhile, the high resolution O 1s spectrum (Fig. 4e and f) of
CoV2O6–NF and CoV2O6–Fe–NF could be deconvoluted into
three peaks in the vicinity of 530, 531.9 and 533.4 eV, which
represent the existence of lattice O (L-O), metal–O (M–O) and
absorbed O, respectively.38
RSC Adv., 2023, 13, 18488–18495 | 18489
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Fig. 2 (a) SEM image of Fe–NF, (b) SEM image of CoV2O6–Fe–NF, (c) TEM image of CoV2O6–Fe–NF, (d) corresponding HRTEM image of
CoV2O6–Fe–NF, (e) and (f) corresponding elemental mapping.
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The effect of Fe incorporation in CoV2O6–NF was further
investigated by evaluating the electrocatalytic OER perfor-
mances in a three-electrode setup with 1 M KOH solution
(details in ESI†). Linear Sweep Voltammetry (LSV) curves with
Fig. 3 (a) XPS survey of CoV2O6–Fe–NF, (b) XPS spectra patterns of Co 2
NF and (f) CoV2O6–Fe–NF.

18490 | RSC Adv., 2023, 13, 18488–18495
the scan rate of 2 mV s−1 were shown in Fig. 4a. CoV2O6–Fe–NF
exhibited considerable electrocatalytic OER activity with the
lowest overpotential at the current density of 100 mA cm−2 (298
mV), which surpassed the CoV2O6–NF (348 mV), Fe–NF (390
p and (c) V 2p, (d) XPS spectra of Fe2p, O 1s XPS spectra of (e) CoV2O6–

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The OER performance of the electrocatalysts in 1.0 M KOH. (a) LSV curves, (b) Tafel slopes, (c) Nyquist curves, (d) double layer capac-
itances, (e) ECSA normalized LSV curves and (f) comparison of CoV2O6–Fe–NFwith other reported similar OER electrocatalysts in alkalinemedia.
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mV), and NF (570 mV) in this work. Compared with the LSV
curves of NF, the evidently promoted OER performance of
CoV2O6–Fe–NF and CoV2O6–NF, especially at high over-
potential, imply that the OER activities dominantly result from
cobalt vanadate or Fe incorporated cobalt vanadate. Moreover,
the OER performance of CoV2O6–Fe–NF was also competitive
among a majority of transition metal catalysts (Fig. 4f).39–48

Compared with the LSV curves of NF, the evidently promoted
OER performance of CoV2O6–Fe–NF and CoV2O6–NF, especially
at high overpotential, imply that the OER activities dominantly
result from cobalt vanadate or Fe incorporated cobalt vanadate.

Next, the OER kinetics of the catalysts were also evaluated by
Tafel plots (Fig. 4b). Among all synthesized catalysts, CoV2O6–

Fe–NF exhibited the smaller Tafel slope (67.1 mV dec−1) than
CoV2O6–NF (126.31 mV dec−1), Fe–NF (127.89 mV dec−1), and
NF (403.17 mV dec−1). It indicates that the kinetics of CoV2O6–

Fe–NF were accelerated, owing that Tafel slopes were closely
related to the rate-determine-steps (RDSs) and electron–transfer
reactions.49,50 Turnover frequencies (TOF, based on total
amount of metals, details in ESI†) of CoV2O6–Fe–NF and
CoV2O6–NF were also assessed to investigate the promotion in
electrocatalytic efficiency (Fig. S6†). At an overpotential of
298 mV, CoV2O6–Fe–NF displayed an almost higher TOF value
(0.059 s−1) than CoV2O6–NF (0.003 s−1). The ascending trend of
TOF value against overpotential reveals that CoV2O6–Fe–NF had
higher TOF values, indicating that it surpasses electrocatalytic
efficiency even at large current density. Electrochemical
impedance spectroscopy (EIS) further elucidated the electro-
catalytic charge transfer of CoV2O6–Fe–NF and its synthesized
counterparts (Fig. 4c). CoV2O6–Fe–NF exhibited a smaller
semicircle in the equivalent Nyquist plot, with a tted charge-
transfer resistance (Rct) 0.99 U, compared to other obtained
© 2023 The Author(s). Published by the Royal Society of Chemistry
catalysts (CoV2O6–NF: 1.26 U; Fe–NF: 10.32 U; NF: 46.49 U) at
the overpotential of 605 mV. It was demonstrated that CoV2O6–

Fe–NF has higher conductivity and accelerated charge transfer
due to Fe incorporation.17

To disclose the origin of promoted electrocatalytic perfor-
mance of CoV2O6–Fe–NF, electrochemical active surface area
(ECSA) was estimated by double-layer capacitance (Cdl) method
(details in ESI†), since ECSA has positive relationship with Cdl

values. The Cdl values were obtained by measuring cyclic vol-
tammetry (CV) at different scan rates in the non-faradaic
regions under the same conditions.51 (Fig. S7†). According to
the Cdl values of the synthesized electrocatalysts (Fig. 4d),
CoV2O6–Fe–NF exhibited the higher ECSA of 69.0 cm2 than
CoV2O6–NF (64.3 cm2), Fe–NF (47.5 cm2) and NF (38.5 cm2),
indicating an increase in active sites due to the introduction of
Fe. To gain a general understanding of the intrinsic activities,
OER polarization curves normalized by ECSA values were
plotted in Fig. 4e. The CoV2O6–Fe–NF still outperformed
CoV2O6–NF, demonstrating an intrinsically promoted OER
electrocatalytic ability, which could be attributed to the induced
Fe. In addition, stability investigated by chronopotentiometry
(CP) method was another essential property to evaluate the
performance of electrocatalysts (Fig. S8†). The CP test showed
that CoV2O6–Fe–NF maintained a current density of 50 mA
cm−2 with no signicant decrease in current observed aer 48
hours of continuous electrochemical OER testing, indicating
the superior long-term stability of the catalyst.

To further probing possible changes in morphology or phase
transformations during OER process, SEM and TEM images of
CoV2O6–Fe–NF were recorded aer a post-OER for 48 h. SEM
images in (Fig. 5a) illustrated the nanosheets reconstructed on
the surface of CoV2O6–Fe–NF. The morphology was further
RSC Adv., 2023, 13, 18488–18495 | 18491
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characterized via TEM (Fig. 5b and c) HRTEM image demon-
strated the lattice fringes of 0.247 nm and 0.236 nm, which
coincided with (130) and (111) plane of FeOOH (JCPDS No.97-
000-1544). TEM image of post-OER CoV2O6–NF was demon-
strated in Fig. S9,† where the HRTEM image also illustrates the
crystalline CoOOH (012) and (101) at the surface. Raman spec-
troscopy of post-OER CoV2O6–Fe–NF (Fig. S10†) demonstrated
the E2g bending (461 cm−1) and A1g stretching (538 cm−1)
vibration of Co–O in CoOOH.52,53 A peak centered at 205 cm−1

could be typically assigned to a-FeOOH, and the other peak of
the doublets (550 cm−1) were likely to be covered by adjacent
CoOOH54 Raman peaks. On the contrary, identical Raman peaks
of vanadate are too weak to be found in the Raman spectra.

The HRTEM and Raman results indicated the structural
change on the surface of CoV2O6–Fe–NF, in which CoOOH and
a-FeOOH act as real OER catalysts.

In the previously reported mechanism for 3d metal-based
catalysts in alkaline media, the OER undergoes through
following four elementary steps:55,56

* + OH− / OH* + e− (1)

OH* + OH− / O* + H2O (l) + e− (2)

O* + OH− / OOH* + e− (3)

OOH* + OH− / O2 + H2O (l)+ e− (4)

Next, to verify the mentioned mechanism of OER activity
enhancement and identify the origin of CoOOH and FeOOH, in
situ Raman spectroscopy was conducted to clarify the structural
change under the OER process (Fig. 5d). Potentials from 1.2 V to
Fig. 5 (a) SEM, (b) TEM, and (c) HRTEM image of post-OER CoV2O6–
Fe–NF, (d) in situ Raman spectra of CoV2O6–Fe–NF at the potentials
of 1.2–1.7 V in 1 M KOH.

18492 | RSC Adv., 2023, 13, 18488–18495
1.7 V (vs. RHE) were applied to CoV2O6–Fe–NF, and the Raman
spectra recorded at open circuit potential demonstrated similar
peaks with as synthesized CoV2O6–Fe–NF. When the potential
of 1.2 V was applied, intensity of peaks(513 cm−1 and 681 cm−1,
corresponding to the A1g stretching vibration mode of Co–O;57

803 cm−1 and 870 cm−1 belong to the A1g stretching vibration
mode of V]O58) exhibited obvious decrease, and disappeared at
1.4 V, indicating the structural change of vanadate in the cata-
lyst. In addition, the Co–O (of CoOOH) Raman peaks appeared
at 1.4 V, which gradually increased with the ascending poten-
tial. Raman peaks of a-FeOOH was generated at 1.55 V
(205 cm−1 and 550 cm−1) with an increasing intensity at higher
overpotential. Notably, peak at 550 cm−1 was not obvious due to
the overlapping A1g stretching vibration mode peak of Co–O in
CoOOH. The in situ Raman spectra claried the structural
change of CoV2O6–Fe–NF under OER process, resulting that the
vanadate were believed to be conducive on generating more
active sites-FeOOH.

Based on the Pauli40 exclusion principle and Hund's rule,59

the synergistically electronic interplay of Co, Fe, and V cations
in CoV2O6–Fe–NF was well explained in light of the analysis of
valence electron structures of metal ions. A Co–O–V unit
(Fig. 6a) was used to analyze the electronic interaction of Co
and V cations in CoV2O6–NF. The valence electron conguration
of Co2+ was at high-spin state 3d7 with full t2g orbital and one-
electron-lled eg orbital; the valence electron conguration of
V5+ was at high-spin state 3d0 with empty t2g orbital and empty
eg orbital, which was in favor of the p-donation from bridging O
to V. Thus, the repulsion between O 2p and Co 3d would be
relieved, leading to a 3d electron form eg orbital of Co2+ delo-
calization on the Co–O–V unit.

The valence electron of Fe2+ was 3d6, consisting of four-
electron-lled t2g orbital and one-electron-lled eg orbital.60

Based on the above description, stronger electron interaction
could make a 3d electron from eg orbital of Fe

2+ delocalizing on
Fig. 6 Schematic representations of the electronic coupling among
(a) Co and V in CoV2O6–NF and (b) Co, Fe and V in CoV2O6–Fe–NF.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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the Co–O–Fe–O–V unit when the Fe2+ being introduced into the
system (Fig. 6b).

Electron delocalization caused the valence state of Fe2+ to
increase (d) and that Co and V to decrease d1 and d2. This could
be supported by the result of the XPS result. Meanwhile, the
electron transfer from Fe to Co and V optimizes the eg lling of
Co, V and Fe sites, which is benecial or the surface recon-
struction to CoOOH and FeOOH during OER process.
Conclusions

We use a simple preparation route to grow CoV2O6 on the
surface of pre-Fe-treated nickel foam. Through a redox reaction
(2Fe3+ + 2Ni/ 2Fe2+ + Ni2+), it introduced Fe2+ into the CoV2O6

system. The 3d electron interaction of Co–O–Fe–O–V turns Fe2+

into a novel electronic structure of Fe(2+d)+. The Fe(2+d)+ is
benecial for reacting with the adsorbed OH− and nally
derives an accelerated OER process. The CoV2O6–Fe–NF
exhibits superior OER activity with an overpotential of 298 mV
to drive a current density of 100 mA cm−2. This work introduces
a new strategy for the development of novel electrocatalysts
towards OER and can be broadly applied to the exploration of
advanced materials in generalized catalysis applications.
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