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Triboluminescent compounds that generate emission of light in response to mechanical stimulus are
promising targets in the development of “smart materials” and damage sensors. Among triboluminescent
metal complexes, rare-earth europium and terbium complexes are most widely used, while there is no
systematic data on more readily available and inexpensive Cu complexes. We report a new family of
photoluminescent Cu-NHC complexes that show bright triboluminescence (TL) in the crystal state
visible in ambient indoor light under air. Moreover, when these complexes are blended into amorphous
polymer films even at small concentrations, TL is easily observed. Observation of TL in polymer films
overcomes the limitation of using crystals and opens up possibilities for the development of
mechanoresponsive coatings and materials based on inexpensive metals such as Cu. Our results may
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Introduction

Triboluminescence (TL), which is also called mechanolumi-
nescence or fractoluminescence when emission occurs by
fracturing a crystal, has been known to generate light emission
from organic or inorganic materials caused upon application of
a mechanical stimulus such as crushing, rubbing, or grinding.
This phenomenon was first recorded in 1605 by Francis Bacon
who reported light emission from scraping hard sugar.'” A
modern triboluminescent observation is the light emission that
occurs upon the peeling of an adhesive tape. Currently, TL
materials are considered as promising targets for the develop-
ment of damage sensors*” or other types of “smart” materials
that can find application in information storage or health care
devices.®* Among known TL coordination compounds,
complexes of rare earth elements, Eu"" and Tb'", are the most
widely known.*™* A limited number of triboluminescent tran-
sition metal (TM) complexes have also been reported, including
Ru",*2 pt",** Mn" 4% and Cu".*’"?? Considering that Cu is one of
the most abundant and inexpensive metals, TL materials based
on Cu present a practical alternative to currently utilized Eu-
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also have implications for the understanding of the TL effect's origin in polymer films.

and Tb-based materials. Until now, only a few scattered exam-
ples of triboluminescent crystalline Cu complexes have been
published, featuring very diverse ligand frameworks.’”>* In all
but one of these reports, however, no systematic experimental
data were collected.* All of these reports are also examples of
fractoluminescence, where a crystal is required to observe the
TL effect.

We previously synthesized a series of photoluminescent (PL)
and air-stable Cu-NHC complexes containing N4 pyr-
idinophane ligands, which can be cross-linked into poly-
butylacrylate films.*® The resulting Cu-containing polymers
enable sensitive detection and visualization of mechanical
stress via reversible changes in PL intensity when the elastic
film is stretched under UV light irradiation (Fig. 1).

In this work, we report a new family of air-stable Cu'
complexes showing TL properties not only in the crystalline
state but also when physically blended into rigid, amorphous
polymer films at low concentrations, when pressure is applied
to the polymer. There is currently no precedent for a large family
of air-stable TL copper complexes, where variation of the ligand
or a counter anion would preserve their TL properties despite
changes in the crystalline structure or the presence or absence
of coordinating anions. For some of the complexes, bright
emission can be seen even in ambient light upon grinding the
crystals under air. These robust properties prompted us to
transfer the TL property from the crystalline to the amorphous
state, which would significantly expand the range of their
possible applications. Indeed, we also observed visible light TL
in an amorphous polymer film when the Cu complex was
incorporated as a non-crystalline additive (Fig. 1). The ability to

This journal is © The Royal Society of Chemistry 2020
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Fig.1 (N4)Cu(NHC)-based mechanophores in photoluminescent and
triboluminescent mechanoresponsive polymers.

utilize amorphous polymer films for the observation of TL
properties is, to the best of our knowledge, the first time TL has
been observed in a non-crystalline bulk material. It shows that
limitations associated with the use of the crystalline phase can
be overcome and offers a convenient method for visualizing the
application of mechanical force on polymers.

Results and discussion

Synthesis, characterization and photophysical properties of
[(*N4)Cu(NHC)]X complexes

During our previous study, grinding a sample when trying to
scrape solid material from a vial, we serendipitously found
that several pyridinophane (N4)Cu N-heterocyclic carbene
(NHC) complexes exhibit bright TL visible under ambient light
and while being exposed to air. To further investigate the TL
properties of these complexes, we synthesized a series of
[(*N4)Cu(NHC)]X complexes where the counter anion X, N4,
and NHC ligands (1, 2, and 3a-d) (Scheme 1) were varied, by
mixing *N4 pyridinophane ligand (R = ‘Bu or Me) and (NHC)
CuCl, followed by a counter anion exchange at ambient
temperature. The complexes were isolated in 49-93% yields
and characterized by single crystal (SC-XRD) and powder
(PXRD) X-ray diffraction, elemental analysis, NMR, UV/vis, and
IR spectroscopy. SC-XRD measurements confirmed the pres-
ence of a distorted tetrahedral geometry around the Cu atoms

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Synthesis of complexes 1, 2, and 3a—d.

(Fig. 2).** NMR spectra of 1, 2, and 3a-d confirmed a tetra-
coordinate structure in solution at room temperature (RT).

All complexes displayed a high photoluminescence quantum
yield (PLQY) in the solid state (0.66-0.83) (Table 1 and Fig. 3).
The polymethylmethacrylate (PMMA) films containing these Cu
complexes also showed good PLQYs (0.51-0.79) and exceptional
air stability: showing no decrease in PLQY after 30 days under
air (Fig. S21, ESIf). Similar PLQYs were also obtained in Cu-
containing polystyrene and polyvinyl chloride films
(Table S3+t). For comparison, the air stability of some previously
reported NHC Cu' complexes in the crystal state has been re-
ported to vary greatly depending on the ligand structure and
sterics-influencing substituents,>>° while air stability in solu-
tion is usually limited to several hours in most cases.>"**

Fig. 2 ORTEP of 1 (a), 2 (b), and 3b (c) at 50% probability level
according to XRD data. Anions, solvent molecules, and hydrogen
atoms are omitted for clarity. In the case of 2, the structure was
inverted for clarity. The structures of 3c and 3d are present in ESI.
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Table 1 Photophysical properties of complexes 1, 2, and 3a—d in the
solid state and in PMMA films (1 wt%) under N, at 298 K.“ The data are
obtained from photoluminescence measurements

Crystal state PMMA film
Complex Amax” (nm) PLQY Amax’ (nm) PLQY
1 527 0.66 547 0.51
2 518 0.83 528 0.74
3a 528 0.76 522 0.79
3b 532 0.79 521 0.78
3¢ 522 0.74 527 0.58
3d 525 0.77 521 0.77

“ Excitation at 380 nm. ® Emission maximum.
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Fig.3 Normalized PL emission spectra of complexes 1, 2, and 3a—d (a)
in the crystal state and (b) in PMMA films. Excitation at 380 nm.

Bulkier Dipp-substituted NHC ligand containing complex 2
shows higher PLQY both in the solid state (Table 1) and in
solution (Table S1f) compared to the less bulky mesityl-
substituted NHC containing complex 1 with otherwise the
same Me-substituted pyridinophane ligand. This could be due
to more efficient suppression of non-radiative decay in the
presence of a bulky Dipp-substituent, consistent with a smaller
non-radiative decay rate constant for complex 1 compared to
complex 2 (Table S27). A similar enhancing effect of bulky alkyl
groups on the photophysical properties of Cu' complexes has
been described previously.** Our group also showed that there is
a correlation between ligand bulk and non-radiative decay in
a series of (N4)Cu' complexes.*

The nature of the counter anion in the series of complexes
3a-d does not significantly affect PLQY in the solid state or
PMMA films. No coordination or specific interactions with the
counter anions could be observed in the crystal structures. In
dichloromethane solutions, no emission is observed in
complexes 3b and 3¢, presumably due to the presence of coor-
dinating anions.

Triboluminescent properties of crystalline samples

Crystals of 1, 2, and 3a-d were found to generate intense
emission upon grinding the crystalline sample with a stainless
steel spatula or glass rod, or when the single crystals are
compressed between glass plates, all under air (Fig. 4a—c). To
obtain TL spectra, crystals of 1, 2, and 3a-d were placed in glass
vials and ground by a glass tube containing a fiber optic probe

10816 | Chem. Sci, 2020, 11, 10814-10820

View Article Online

Edge Article

Fig. 4 Representative images of TL in crystal of 1 (a), 2 (b) and 3a (c)
under air and PMMA film containing 10 wt% of 1 (d), 2 (e), and 3a (f)
under Ar.

(Fig. 5).* The emission maxima of TL spectra shift to longer
wavelength compared to PL spectra, consistent with literature
precedents.>***® Representative images showing emission
generated upon grinding crystals of 1, 2, and 3a are shown in
Fig. 4, and a movie showing TL during grinding a crystalline
sample or compression of a single crystal under air are given in
the ESL.T A high-speed camera recording of single crystal TL of 1
when it's compressed between glass plates, shows that emission
is generated along the cracks in the crystal (see ESIf).

An analysis of the relationship between space group and TL
for the crystalline samples shows that both centrosymmetric
and non-centrosymmetric crystals show TL properties (Table 2).
The absence of polymorphs was confirmed by analyzing bulk
samples by PXRD (Fig. S22-527, ESIT), and purity was confirmed
by elemental analysis and PXRD pattern comparison. The
samples that were recrystallized multiple times also showed the
same spectra and TL properties as the samples obtained after
one recrystallization. The nature of the counter anion in
complexes 3a-d does not have a strong effect on the TL emis-
sion maximum in crystals. PXRD analysis of the ground
samples showed that mechanical grinding has no effect on the
crystal packing, in contrast to some other known organic TL
materials which showed aggregation effects and changes after
grinding .’

Previous studies showed that among some classes of TL
materials, non-centrosymmetric (piezoelectric) crystals are more
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Fig.5 Normalized TL emission spectra of complexes 1, 2, and 3a—d (a)
in the crystal state and (b) in PMMA films (1 wt%) under N,.

This journal is © The Royal Society of Chemistry 2020
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Table 2 TL properties and space group for crystalline and polymer-blended samples of 1, 2 and 3a—d and relationship with TL properties

Complex Counter anion TL (crystal) Apax” (nm) TL in PMMA, Aa™? (nm) Space group in crystal

1 PF, 536 552 P24/n (centrosym.)

2 PF, 527 543 P2,2,2, (non-centrosym.)
3a PF, 544 526 Pca2, (non-centrosym.)
3b OTf 539 530 Pca2, (non-centrosym.)
3c TFA 536 536 Pca2, (non-centrosym.)
3d BPh, 540 527 Pbca (centrosym.)

4 TL properties are measured under N, atmosphere. ” 1 wt% Cu complex loading in PMMA films.

prone to show TL, attributed to the piezoelectric effect. Upon
applying mechanical force that causes material fracture, two
oppositely charged surfaces are produced generating an electric
field; subsequent charge recombination leads to the generation
of an excited state and eventual emission.>**** However, there are
currently many examples of centrosymmetric crystals showing TL
properties, attributed to a number of possible reasons: including
the generation of oppositely charged planes in ionic crystalline
compounds upon fracture, or the presence of defects or disorders
in the crystal structure leading to local non-centrosymmetry.**->*
The complexes 1, 2, and 3a-d are all ionic compounds, and
disordered fragments are clearly present in some of the crystal
structures (1 and 3b-d), so neither of these effects can be ruled
out as the source of the TL effect. However, it is clear that the
centrosymmetry, or lack of it, in the parent space group of
a crystal is not tied to TL emission.

Triboluminescent properties in amorphous polymer films

Due to our interest in exploring mechanoresponsive materials
such as polymer films modified with co-polymerized photo-
luminescent metal complexes,* we decided to see if TL prop-
erties can also be observed when these triboluminescent
Cu(NHC) complexes were blended into amorphous polymer
films. Using polymer films may provide a convenient way to
make bulk mechanoresponsive material or coating via simple
synthetic methods, avoiding the limited repeatability and
fabrication method limitations associated with the use of
a crystalline solid. Would a low amount of metal complex in
a bulk amorphous material be sufficient to create the condi-
tions necessary for TL to be observed? The bigger question that
can be addressed by such study: is the presence of a crystal
necessary for observing visible light TL, or can an amorphous
bulk material also show similar functional properties?

We prepared metal loaded films by dissolving a powder of
polymethylmethacrylate (PMMA), polystyrene or polyvinyl
chloride and 1-10 wt% of a Cu complex in dichloromethane,
then casting on a glass surface followed by slow evaporation
and drying under vacuum to give transparent films. PXRD of
the dried PMMA films showed that at low Cu loading, 1-
10 wt%, the films were amorphous and did not show crystal-
linity, also confirmed by fluorescence microscopy imaging.
Only at the high Cu loading of 80 wt%, some crystallinity could
be observed by PXRD and fluorescence microscopy (Fig. S30
and S56, ESIT).

This journal is © The Royal Society of Chemistry 2020

We found that visible TL was observed in polymer films with
as little as 1 wt% Cu loading, upon rubbing the film surface with
a glass rod or metal spatula, if the film was placed under
a nitrogen gas atmosphere. The TL from polymer films was
clearly visible by eye in the dark or in a dimmed room under
inert atmosphere (Fig. 4d-f), in contrast with the control PMMA
film without a Cu complex. For measurements of polymer TL
spectra, only the films with a 1 wt% Cu loading were used. Their
TL spectra (Table 2 and Fig. 5) displayed a red shift when
compared to the PL spectra in PMMA films (Table 1). Similar to
crystalline samples, the nature of the counter anion does not
significantly affect the TL emission maximum. A representative
movie of a triboluminescent PMMA film with 10 wt% of 3a
where the TL effect is much more pronounced, generating
emission by rubbing with a glass rod is shown in the ESL7

TL was also observed in other rigid polymer films, in poly-
styrene and at a lower intensity, in polyvinyl chloride (Fig. S39
and S407). This is in contrast to previously reported NHC Cu’
complexes cross-linked into elastomeric, stretchable poly-
butylacrylate films, which do not show detectable
triboluminescence.”

Thus, these findings represent the first example of Cu
complexes that display TL properties when simply blended into
amorphous polymer films.*® There are several reports on TL
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Fig. 6 TL spectra of PMMA films containing 1 wt% of complexes (a) 1;
(b) 2; (c) 3a; and (d) PMMA (without Cu complex) recorded under 1 atm
of N, Ar, He, CO,, SFg, and vacuum (0.5 Torr).
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polymers films containing Eu complexes. The detailed study of
such Eu-containing polymers showed that TL was observed
when a microcrystalline Eu complex was impregnated on the
polymer surface, and TL was not observed when the film was
prepared by blending, where there was an absence of a crystal
phase.® In other cases, the details of whether the crystalline
phase was present were not reported.*>*>*¢ A crystal require-
ment by definition imposes a limit on its response properties
and repeatability. For the first time, we definitely show that the
presence of a crystalline phase is unnecessary for TL to be
observed with a transition metal chromophore.

To further investigate the origin of the excited state produced
by mechanical stimuli in polymer films, we recorded TL spectra
under an atmosphere of various gases, including N,, Ar, He,
CO,, and SF; (Fig. 6). TL in PMMA films containing complexes
1, 2, and 3a was not observed under air but was observed in N,
Ar, and He. The absence of TL in PMMA films under air could be
due to quenching of PL by oxygen (PLQY in PMMA films
decrease when measured under air compared to measurements
under N,), or the effect of air humidity. In addition to the broad
emission peak of the Cu complexes observed in TL spectra of
1 wt% Cu PMMA samples, the sharp emission peaks charac-
teristic of an electric discharge through the corresponding inert
gas (Ar, He, or N,) were clearly observed.?”*

Unexpectedly, under CO, gas and under vacuum (0.5 Torr),
the emission spectra showed only the TL peak of the Cu
complexes, without the gas discharge spectrum components
being present (with exception of complex 2, which showed small
N, discharge peaks at 0.5 Torr). TL was not observed under an
SF, atmosphere.

We then examined a control PMMA film without any metal
complex. Notably, weak gas emission spectra were also observed
upon rubbing pure PMMA films without Cu complex under N,
Ar, and He; however, in the absence of a Cu complex, the pure
polymer emission was weak, and did not allow for the obser-
vation of TL with the naked eye even under He, Ar and N,.

Previous studies by Sweeting® and earlier by Long-
chambon®* and other groups identified several possible
mechanisms for TL that involve participation of the
surrounding gas.® First, an electric field generated by mechan-
ical stimulus may lead to dielectric breakdown of the
surrounding gas, leading to the excitation of the gas molecules
by electron bombardment to create emission in the discharged
gas. If the excited gas generates emission lines in the UV/vis
region, absorption of the gas emission may cause photo-
luminescence of the PL material (tribophotoluminescence,
TPL), leading to the observation of an emission spectrum in the
PL compound.** Alternatively, the electrical discharge may also
directly excite a photoluminescent compound by electron
bombardment.*>®

In crystalline materials mechanical stimulation typically
involves crystal fracture, leading to the generation of oppositely
charged planes that create the necessary electric field. By
contrast, in polymers, triboelectrification has been reported to
create a sufficient electric field that is able to stimulate gas
discharge.® The latter is consistent with the observation of the
discharged gas spectrum in PMMA without a Cu complex. It

10818 | Chem. Sci,, 2020, 11, 10814-10820
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also explains how TL can be observed in an amorphous
organometallic complex when it is embedded inside a material
capable of triboelectrification. The absence of TL in SFg is
consistent with its insulating properties and high dielectric
strength, having many vibrational modes, high ionization
potential, high mass, and high electron affinity.* It is important
to note that unlike the parent control PMMA film, we were able
to observe TL in 1 wt% Cu PMMA films with the naked eye,
which is unsurprising due to the complexes' broad emission
peak in the visible region. However, the ability of PMMA to have
sufficient triboelectrification to excite the Cu chromophore at
these low loadings was not something that we could initially
predict. As the TL effect does not depend on the crystallinity of
the Cu complex, the emission effect is not decreased drastically
over time due to the decrease of the amount of possible crystal
that is left to break.

Clear observation of a gas discharge spectra in Cu-
containing PMMA films suggests that TPL due to excitation by
photons emitted by discharged gas contributes to the observed
effect. To confirm the latter mechanism, we prepared PMMA
films containing 1 wt% of 9,10-diphenylanthracene (DPA) as
a simple fluorescent dye. DPA-blended PMMA films also showed
emission in the expected region (432-434 nm) upon rubbing
PMMA film with a glass rod (Fig. S51b¥). This confirms that TPL
is one of the viable mechanisms and we are currently investi-
gating the scope of luminophores suitable for TL observation in
polymer films.

According to the literature, in addition to TPL due to excita-
tion by photons emitted by discharged gas, many PL materials
also undergo direct excitation by electron bombardment.>* TL in
amorphous Cu-blended PMMA films could involve both of these
non-mutually exclusive mechanisms. This is supported by
observation of TL under CO, atmosphere, where no strong
emission bands were observed in the excitation region optimal
for [(N4)Cu(NHC)]" complexes. TL is also observed under
vacuum, where no gas discharge lines were detected (vide supra).

In addition, we also observed TL in PMMA films blended
with EuD4TEA complex (Scheme S6t), known to be tribolumi-
nescent in the solid state."***¢ The TL spectra also showed both
the characteristic Eu complex emission peak at 613 nm, as well
as strong gas discharge lines, with TL observed under N,, Ar, He
and CO, (Fig. S52bt), but not under SF, or air. This shows that
the observed effect in polymers is rather general, further
increasing its possible scope of applications, with the advan-
tages of the current system being its lower cost, bright visible
emission and greater availability of a Cu-based TL material.

By contrast to polymer samples, crystalline samples of the
pure Cu complex did not show discernible gas discharge lines.
Emission of 2 was observed even under SF, (Fig. S41b¥), but at
lower intensity when compared to N,. Brighter emission was seen
under He, but also without the characteristic gas discharge peaks
(see ESI movie and Fig. S411). Among complexes 3a-d, three: 3b,
3¢, and 3d, showed TL emission in SFs (Fig. S421), while complex
3a did not, suggesting that the mechanisms of TL could be
dependent on the crystal packing or the nature of the counter
anion. This comparison also shows that TL emission under SFg is

not correlated with either centrosymmetric or non-

This journal is © The Royal Society of Chemistry 2020
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centrosymmetric crystal structure and different factors could be
involved. Therefore, although some gas-dependent behavior is
observed, leading to variable intensity in different gases, alter-
native mechanisms that do not involve participation of dis-
charged gas are likely to contribute to the observed TL. In
particular, according to a previous study of TL crystalline mate-
rials by Sweeting, discharge that directly excites the PL material
by electron bombardment, without participation of the
surrounding gas, is proposed to be operative in many TL mate-
rials.>* It is worth to note, however, that despite its long history,
the origin of the TL phenomenon is poorly understood even at
the present moment in both polymer and crystalline materials.
Although various theories and multiple possible mechanisms
that may co-exist are proposed in the literature, no universally
agreed theory exists to explain this phenomenon as of yet.?

A natural question to ask is whether the co-polymerized
copper complexes earlier reported by us, that were shown to
be capable of changing their PL properties in response to
stretching of the polymer film, would be considered obsolete
when compared to the new TL technique of blending Cu
complexes into polymer films (Fig. 1)? The Cu complexes in
both applications use the same ligand framework, but the co-
polymerized complexes require specialized ligands that can
polymerize and require more synthetic effort. The measure-
ments of photoluminescence (PL) intensity change need to be
done under UV light irradiation. The advantages of the tribo-
luminescence (TL) process include visible light emission
without the need for external irradiation and a more straight-
forward sample preparation. We would submit that the two
techniques are complementary. The PL co-polymerized
complexes have recently been shown to display PL under air,
and they have been shown to alter their response proportionally
to gradually applied mechanical stress. A stretched film will
have a very different PL intensity compared to its non-stretched
counterpart. This response can only be observed in elastomers
and is not applicable to the currently used PMMA, polystyrene
or PVC samples that are rigid at RT. TL is a direct generation of
emission in response to a mechanical action, and we indeed did
not observe it on stretching the polymer in the previous work.
TL also displays a red-shift with regard to the PL emission
wavelength; thus potentially two types of mechanical stress can
be differentiated by the same co-polymerized complex if the
difference in A.x can be optimized, and the correct stretchable
and malleable polymer matrix can be found. Two different
metal probes in the same polymer could also accomplish this
task; each one would ideally be sensitive to only one type of
stimulus and/or have a sufficiently different A,... We are
currently exploring this research direction.

Conclusions

In summary, we report a new family of six triboluminescent (TL)
Cu(NHC) complexes. These findings also significantly expand
the library of known TL copper complexes, an earth-abundant
and inexpensive metal. We showed that triboluminescence
can be observed both in the crystal state and when the complex
is amorphous and dispersed in polymer films. In the latter case,
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the ability of the polymer to create an electric field upon
mechanical stimulus that excited the Cu complex appears to be
mechanism that allows for the observation of a visual response
to applying fast mechanical force. This finding may provide an
explanation for the TL effect in a number of metal complexes,
and it allows for the active exploration of repeatable TL effect in
polymer films.

The ability to utilize solution cast polymer films diversifies
the range of practical applications of such TL materials for
visualization of applied mechanical force and damage sensing
in polymers. Currently, we are investigating the scope of lumi-
nophores and polymers that can be used to prepare tribolumi-
nescent polymer films. We seek to develop a general approach
to generate visible triboluminescence in polymers under
ambient conditions, as well as to create materials that can show
either a PL or TL selective response to different types of
mechanical stress.
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