
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
m

is
 G

en
ve

r 
20

20
. D

ow
nl

oa
de

d 
on

 1
0/

08
/2

02
5 

17
:4

2:
22

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Integrated micro
aThe First Affiliated Hospital of Xi'an JiaoTon

710061, PR China. E-mail: xiaojing406@163

133-89243815; +86-130-72963739; Tel: +86
bCentral Laboratory, Shanxi Provincial Peop

University, Shanxi Provincial Clinical R

Taiyuan, 030012, PR China
cDepartment of Physiology, Changzhi Medic
dQuwo County People's Hospital, Linfen 043
eInstitutes of Biomedical Sciences, Key Labor

Engineering of Ministry of Education, Sha

Xiaodian District, Taiyuan 030006, Shanxi,

+86-351-7018958; Tel: +86-351-7018958

† Electronic supplementary informa
10.1039/c9ra07799e

‡ These authors contributed equally to th

Cite this: RSC Adv., 2020, 10, 2027

Received 25th September 2019
Accepted 21st December 2019

DOI: 10.1039/c9ra07799e

rsc.li/rsc-advances

This journal is © The Royal Society o
biome–metabolome analysis
reveals novel associations between fecal microbiota
and hyperglycemia-related changes of plasma
metabolome in gestational diabetes mellitus†

Lina Dong,‡ab Lingna Han, ‡c Tao Duan,d Shumei Lin,*a Jianguo Li *e

and Xiaojing Liu*a

Gestational diabetesmellitus (GDM) has been associatedwith circulatingmetabolic disorders and alterations in

gut microbiota, respectively. Although changes in gut microbiota contribute to metabolic diseases, the

connections between gut microbiota and the circulating metabolic state in GDM remain largely

undetermined. To investigate the associations between gut microbiota and the circulating metabolome of

GDM, we enrolled 40 pregnant women (20 with GDM and 20 non-diabetic control), and performed multi-

omics association (MOA) study on 16s rRNA sequencing of fecal microbiota and 1H-NMR profiling of the

plasma metabolome. The results suggested that both fecal microbiota and the plasma metabolome of the

enrolled pregnant women could be separated along the vector of hyperglycemia. A close correlation

between fecal microbiota and the plasma metabolome of GDM was observed by MOA approaches.

Redundancy Analysis identified five plasma metabolites (glycerol, lactic acid, proline, galactitol and

methylmalonic acid) and 98 members of fecal microbiota contributing to the close correlation between

the plasma metabolome and fecal microbiota. Further spearman rank correlation analysis revealed that four

out of five of the identified plasma metabolites (except galactitol) were correlated with hyperglycemia. Co-

occurring network analysis suggested that 15 out of 98 of the members of fecal microbiota were positively

correlated with each other, forming a co-occurring cohort (mainly consisted of the phylum Firmicutes).

The results of this study demonstrated that alterations in fecal microbiota were associated with

hyperglycemia related changes of the plasma metabolome of women with GDM, suggesting novel

therapies against gut microbiota to alleviate GDM.
Introduction

Gestational Diabetes Mellitus (GDM) has attracted worldwide
concern for its increasing prevalence and various adverse
outcomes for the pregnant women and for the fetus.1 Although
diverse risk factors for GDM have been intensively studied, its
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pathogenesis remains incompletely understood,2 underscoring
the importance of novel risk factors exploration on GDM.3

Gut microbiota has been correlated with GDM.4,5 Alterations
of gut microbiota were observed to be discriminative features of
pregnant women with GDM to those non-diabetic control.6 The
ratio of GDM enriched bacteria to the control enriched bacteria
is correlated with maternal hyperglycemia.4 Fecal transplant
was sufficient to confer GDM features to the mouse models.5

Although gut microbiota has emerging as a potential source of
biomarkers for GDM,2 the interactions between gut microbiota
and the host in GDM remains largely unknown.

Metabolites are closely correlated with the hyperglycemia in
GDM.7 Pregnancy presents a unique metabolic stress by meta-
bolic hormones for fetal development and appropriate nutrient
allocation between mother and fetus.8 Metabolomics studies in
the past decade have provided insights into key metabolites
involved in GDM.9 Higher plasma levels of triglycerides10 and b-
hydroxybutyrate11 were observed in the pregnant women with
GDM. Higher urine levels of 3-hydroxyisovalerate and 2-
hydroxyisobutyrate were presented during the second trimester
RSC Adv., 2020, 10, 2027–2036 | 2027
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in women who eventually presented with GDM over those who
had normal pregnancies.12 Perturbations in BCAA metabolism
were also observed in pregnant women with GDM, resulting in
higher levels of metabolites that decrease insulin sensitivity and
impact b-cell functions.13

While the associations between gut microbiota and circu-
lating metabolites in other types of diabetes have been inten-
sively studied,14 whether alterations in gut microbiota mediate
changes in circulating metabolites of GDM requires further
investigations. In the present study, we performed microbiota–
metabolome association studies to reveal the relationship
between changes in gut microbiota and perturbations in
circulating metabolome of GDM women.

Materials and methods
Subjects

A cohort of 40 pregnant women entered the Second Hospital of
Shanxi Medical University (Shanxi Province, PR China) between
May and September of 2018 were enrolled in this study, half of
which were GDMs diagnosed with the criteria below. Women
with known pre-existing diabetes, chronic or serious acute
infections, abnormal liver or kidney function, cardiovascular
hematological diseases were excluded. Fasting plasma was
collected and an oral glucose tolerance test (OGTT) was per-
formed during the 24th to 26th weeks of gestation. GDM was
diagnosed according to the criteria of the International Asso-
ciation of Diabetes and Pregnancy Study Group, with at least
one plasma glucose level being no less than the following
thresholds: fasting, 5.1 mmol L�1, OGTT – 1 hour, 10.0 mmol
L�1, OGTT – 2 hour, 8.5 mmol L�1. All experiments were per-
formed in accordance with the guidelines in the Declaration of
Helsinki. Experiments were approved by the ethics committee
at the Second Hospital of Shanxi Medical University. Informed
consents were obtained from human participants of this study.

Demographic data and sample collection

Demographic data for the enrolled pregnant women was
collected by an interview at the same day with OGTT and sample
collection, including height, age, body weight, blood pressure,
fundal height, and abdominal circumference. Overnight fasting
feces were collected during the fourth trimester of pregnancy
(median: 34 gestational weeks), and immediately aliquoted and
stored in a �86 �C deep freezer. Overnight fasting EDTA anti-
coagulated blood was collected at the same day, and centrifuged
at 1500 g for 15 min at 4 �C. The extracted plasma sample was
immediately aliquoted and stored in a �86 �C deep freezer.

Untargeted metabolic proling
1H-NMR based untargeted metabolic proling of the plasma
sample was performed using the protocol described previ-
ously.15 Briey, 450 mL plasma sample was added into 350 mL
D2O (containing 0.05% TSP [3-trimethylsilyl-[2, 2, 3, 3-D4]-
propionate] as internal standard). The mix was vortexed and
centrifuged at 13 000g for 20 min at 4 �C. Six hundredmicroliter
of the supernatant was transferred into a 5 mm NMR tube for
2028 | RSC Adv., 2020, 10, 2027–2036
spectrometry proling. 1H-NMR spectrometry was performed
using a 600 MHz AVANCE III NMR spectrometer (Bruker, Bio-
Spin, Germany), with the following parameters: pulse sequence
Carr–Purcell–Meiboom–Gill (CPMG), scanning times 64 scans,
spectral size 65 536 points, spectral width 1235.7 Hz, pulse
width 40.5 ms, relaxation delay 1.0 s. Spectra processing was
performed by MestReNova (v8.0.1, Mestrelab Research, San-
tiago de Compostela, Spain). The phase and baseline were
corrected manually and the chemical shi of TSP was calibrated
at 0.00 ppm. The spectra region of d 0.81 to d 8.50 were
segmented at 0.01 ppm width aer exclusion of the region
corresponding to residual water (d 4.75 to d 5.16). The obtained
data was normalized to the total sum of spectra before further
analysis.

Multivariate pattern recognition analysis

Multivariate pattern recognition analysis was performed with
SIMCA-P (v14.1, Umetrics AB, Umea, Sweden). Principle
Component Analysis (PCA) was applied for assessment of the
natural separation of the NMR data. Orthogonal projection to
latent structures discriminant analysis (OPLS-DA) was per-
formed to investigate the between-group difference by incor-
porating known classication information. The best-tted
OPLS-DA model was selected by a cross-validation of all
models using a 200-cycle permutation test. The tting validity
and predictive ability of the selected OPLS-DA model were
assessed by the parameters R2Y and Q2Y, respectively. The
model performance of OPLS-DA was evaluated by sensitivity,
specicity and accuracy through the SIMCA misclassication
tool. Metabolite assignment was performed by searching the
Human Metabolome Database (HMDB, http://www.hmdb.ca)
and the Chenomx NMR suite (Chenomx Inc, Edmonton, Can-
ada) with the chemical shi, coupling constant and peak type of
the 1H-NMR features. Differential metabolites were dened as
metabolites with differential between-group abundances, and
simultaneously meet all of the following criteria: Importance for
the Projection (VIP) > 1 in the selected OPLS-DA model,15

correlation coefficient (p(corr)) in S-plot analysis > 0.48 (through
correlation coefficient table look-up), false discovery rate (fdr)-
adjusted P < 0.05 in an independent-sample t-test. Metabolic
pathway enrichment was performed by the MetaboAnalyst web
portal (http://www.metaboanalyst.ca).

16s rDNA V3–V4 amplicon sequencing

Bacterial total DNA was extracted from the collected fecal
sample using the HiPure Stool DNA Kit (Magen, Guangzhou,
China) according to the manufacturer's instructions. The
concentration and purity of the extracted DNA were determined
by NanoDrop (Thermo Fisher, UD, USA) and agarose gel elec-
trophoresis, respectively. V3–V4 region of 16s rDNA was selected
and PCR amplied with the primer pairs: 341F:
CCTACGGGNGGCWGCAG; 806R: GGACTACHVGGGTATCTAAT.
The PCR cycling conditions was as follows, rst round: initial
denaturation at 94 �C for 2 minutes, 35 cycles of 98 �C for 10
seconds, 62 �C for 30 seconds and 68 �C for 30 seconds, fol-
lowed by a nal extension at 68 �C for 5 minutes. The PCR
This journal is © The Royal Society of Chemistry 2020
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amplicons were puried with AmpureXp beads (Beckman
Coulter, Life Sciences, CA, USA) and applied for the second
round PCR amplication. Second round: initial denaturation at
94 �C for 2 minutes, 15 cycles of 98 �C for 10 seconds, 65 �C for
30 seconds and 68 �C for 30 seconds, followed by a nal
Fig. 1 1H-NMR based plasma metabolomic analysis of the pregnant wo
metabolome of the enrolled pregnant women in this study. PC1 and PC2
Red solid cycle, GDM group; blue solid cycle, non-diabetic control g
Discriminant Analysis (OPLS-DA) on plasma metabolome of the enrolled
(T scores [1]) and the first orthogonal component (orthogonal T scores [1])
0.488 (R2X ¼ 0.48). Total sum of variations in Y explained by the model is
0.638). (c) Permutation test of the OPLS-DA models. Plot of R2Y and Q2

the X axis shows the correlation of observed and permuted data. The tw
data set. Other points on the bottom-left correspond to R2Ys and Q2 of p
well guarded against overfitting. (d) A representative OPLS-DA S-plot sho
group and the NDM control. This plot corresponds to Fig. 2b. Each poin
magnitude of the 1H-NMR spectral features. (e) Relative abundances o
diabetic control group. The relative abundance of each metabolite wa
a sample. **P < 0.01; ***P < 0.0001; ****P < 0.00001.

This journal is © The Royal Society of Chemistry 2020
extension at 68 �C for 5 minutes. The amplicons of the second
round PCR were puried with AmpureXp beads and quantied
with Bioanalyzer DNA 1000 chip (Agilent Technologies, CA,
USA). The DNA libraries were pair-end sequenced with the
men. (a) Score plot of Principle Component Analysis (PCA) on plasma
explain 57.97% of the total variances (48.50% and 9.47%, respectively).
roup. (b) Score plot of Orthogonal Projection to Latent Structures
pregnant women in this study, based on the first predictive component
. The predictive and orthogonal variations in X explained by themodel is
0.768 (R2Y ¼ 0.768). Prediction goodness of the model is 0.638 (Q2 ¼

from 200 permutation tests in OPLS-DA. The Y axis shows R2Y and Q2,
o points on the upper-right correspond to R2Y and Q2 of the observed
ermuted data sets. The two plots suggested that the two models were
wing relative contribution of the 1H-NMR features to clustering of GDM
t in the plot represents a 1H-NMR feature. The p[1] axis represents the
f the differential metabolites between the GDM group and the non-
s calculated by the original peak area against the total peak area of

RSC Adv., 2020, 10, 2027–2036 | 2029
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sequencing strategy PE300 by the MiSeq system (Illumina, San
Diego, CA, USA).

Metagenome analysis

The raw reads of 16s rDNA sequencing data was ltered with the
following parameters: maximum number of consecutive N 0,
minimum sequence length 150 bp, minimum Q-score 20,
maximum number of consecutive low-quality base calls allowed
before truncating 3. The number of sequences per sample aer
ltration ranged from 93 720 to 204 203 (mean: 137 596,
median: 133 597). Assembly of the pair-end sequencing reads
was performed with FLASH v1.2.7. Operational taxonomic units
(OTUs) were picked using UCLUST implemented in QIIME
pipeline (v1.8.0) against the GreenGenes database (the May
2013 version, http://greengenes.secondgenome.com) at 97%
identity. OTUs with relative abundance lower than 0.001% of
the total OTUs were removed, leaving OTUs per sample ranged
from 186 to 433 (mean: 305, median: 304). OTUs were normal-
ized by the R package ALDEx version 2 (ALDEx2) before further
multivariate and differential analysis.16 PCA and PCoA (by the R
package ade4) were applied to evaluate the compositional
changes of fecal microbiota in GDM. OTUs with signicant
between-group variations (adjusted P < 0.05) were selected by
LEfSe. The metabolic potential of the altered microbiota was
assessed by PICRUSt.

Co-inertia analysis (CIA)

CIA is a multivariate statistical technique, exploring the
maximum co-variability between two datasets. CIA was per-
formed by R soware (v3.5.0, package vegan) to assess the co-
variability between plasma metabolome and gut microbiota.
The global similarity between the two datasets were evaluated
by the parameter RV coefficient. The greater (scale 0–1) of the
RV coefficient, the similar between the two datasets.

Procrustes analysis (PA)

PA was performed to assess the structural similarity between
plasma metabolome and gut microbiota, based on superimpo-
sition of principal coordinates constructed from the distance
matrices calculated from the square root of the Jensen–Shan-
non divergence.

Redundancy analysis (RDA)

To investigate the contributions of gut microbiota to the sepa-
ration of plasma metabolome and vice versa, RDA was
Table 1 Differential plasma metabolites between women with GDM and

Metabolites Chemical shi V

Methylmalonic acid 1.22d, 3.14q 1.
Proline 2.34m, 3.33dt, 3.41dt, 4.12dd 1.
L-Lactic acid 1.35d, 4.13q 1.
Glycerol 3.55m, 3.64m 1.
Galactitol 3.97t 3.

a VIP: variable importance in the projection, p(corr): correlation coefficien

2030 | RSC Adv., 2020, 10, 2027–2036
performed by R soware (v3.5.0, package vegan) with default
parameters. The tness of each metabolite/OTU to an ordina-
tion of RDA was evaluated by envt test.

Statistical analysis

Between-group statistical analyses were performed with two-
tailed Student's t-test in SPSS 22.0. P values were adjusted
with false discovery rate (fdr) correction in R (v3.5.0, package
stats), and adjusted P < 0.05 were dened as statistically
signicant.

Data and codes availability

The raw 16s rDNA sequencing data have been deposited in the
GenBank Sequence Read Archive with the BioProject ID
PRJNA561655. The raw data of plasma metabolome are avail-
able upon request. Codes for CIA, PA and RDA are available
upon request. Default parameters were used unless otherwise
mentioned.

Results
Hyperglycemia in the pregnant women is a discriminating
factor of the plasma metabolome

GDM is a complicated metabolic syndrome with hyperglycemia
as one of the key features.1 Plasma metabolome reects the
outcome of hyperglycemia in the circulating system.17 To
investigate the extent to which hyperglycemia could separate
the plasma metabolome between women with GDM and the
non-diabetic mellitus (NDM) control, we performed 1H-NMR
based untargeted metabolomics analysis on plasma samples
(Fig. 1). PCA was applied to investigate the clustering trends of
metabolome between GDM and the NDM control, and to
exclude possible outlier. A separation trend between GDM and
the NDM control was observed in PCA score plot (Fig. 1a). OPLS-
DA was further applied to discriminate women with GDM and
the NDM control (Fig. 1b). The best-tted OPLS-DA model was
selected and validated by a cross-validation of all candidate
models using a 200-cycle permutation test (Fig. 1d). The t
goodness (R2) and prediction ability (Q2) of the best-tted model
were 0.768 and 0.638, respectively. A clear separation between
GDM and the NDM control was observed in the OPLS-DA model
(Fig. 1b). The OPLS-DA model discriminated women with GDM
from the NDM control with high sensitivity (0.95), specicity
(0.95), accuracy (95%) and AUROC (0.95). These results sug-
gested that changes occurred in the plasma metabolome of
GDM.
the non-diabetic controla

IP p(corr) P-Value Adjusted P-value

10 �0.64 4.53 � 10�3 8.84 � 10�3

03 0.59 2.65 � 10�4 5.42 � 10�4

71 0.69 2.78 � 10�3 5.13 � 10�3

14 �0.61 8.79 � 10�5 2.39 � 10�3

27 0.72 5.80 � 10�4 4.85 � 10�2

t.

This journal is © The Royal Society of Chemistry 2020
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To further select the differential metabolites between GDM
and the NDM control, 1H-NMR features from the plasma
metabolomic proling were screened according to the criteria
of differential metabolites dened in this study. A total of 15
features simultaneously met the three criteria, among which 5
metabolites were structurally identied (Table 1, Fig. 1 and S1†),
including glycerol, glucose, lactic acid, proline, and methyl-
malonic acid. The relative abundances of the differential
metabolites (Fig. 1e) suggested that methylmalonic acid and
Fig. 2 16s rRNA sequencing based fecal microbiota analysis of the pregn
the natural separation of the fecal microbiota from the enrolled pregnan
total variations (10.34% and 6.01%, respectively). Orange solid cycle, GD
Coordination Analysis (PCoA) of the fecal microbiota based on unweight
total variations (10.47% and 6.13%, respectively). Orange solid cycle, GD
index for measurement of alpha diversity of the fecal microbiota. (d)
microbiota. (e) Bacteria genera with differential between-group abundan
significantly altered between-group abundances (Wilcoxon test, adjust P
number of OTU belonging to a genus. (f) Metabolic pathways predic
abundances in the fecal microbiota of the pregnant women. Number o
pathway calculated by the hit number of a pathway against the total hits

This journal is © The Royal Society of Chemistry 2020
glycerol were decreased, while galactitol, lactic acid, and proline
were elevated in the plasma metabolome of GDM.
Hyperglycemia discriminates the fecal microbiota of GDM
from the non-diabetic control

Gut microbiota has been proved to be a key contributor to
metabolic disorders of the host.18 To investigate the potential
contributions of gut microbiota to GDM, we evaluated the
compositional changes of fecal microbiota along the vector of
ant women with GDM. (a) Principle Component Analysis (PCA) to study
t women. The first two principle components explained 16.35% of the
M group; Green solid cycle, non-diabetic control group. (b) Principle
ed UniFrac distance. The first two coordinates explained 16.60% of the
M group; green solid cycle, non-diabetic control group. (c) Shannon
Unweighted UniFrac for measurement of beta diversity of the fecal
ces in the fecal microbiota of the pregnant women. Only genera with
< 0.05) were exhibited. Number on the coordinate axis indicates the

ted by Tax4Fun on bacteria genera with differential between-group
n the coordinate axis indicates the relative abundance of a metabolic
. m, 10 � 10�6; p, 10 � 10�12.

RSC Adv., 2020, 10, 2027–2036 | 2031
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hyperglycemia. By PCA (Fig. 2a) and PCoA (Fig. 2b), fecal
microbiota of GDM was discriminated from that of the NDM
control, suggesting compositional changes occurred along the
vector of hyperglycemia. We also observed signicant alter-
ations in the alpha diversity (Fig. 2c, P ¼ 0.039) and beta
diversity (Fig. 2d, P ¼ 3.41 � 10�6) of fecal microbiota between
GDM and the NDM control. These results demonstrated that
the fecal microbiota of GDM was altered with signicant
reduced alpha and beta diversity.

Among the genera with signicant altered abundances in the
fecal microbiota, Blautia was decreased in GDM, while a panel
of bacterial genera were increased in GDM, including Phasco-
larctobacterium, Alistipes, Parabacteroides, Eubacterium copro-
stanoligenes_group, Oscillibacter, Paraprevotella and
Ruminococcaceae NK4A214_group (Fig. 2e). Pathway analysis of
the signicant altered bacterial genera (Fig. 2f) revealed that
Fig. 3 Multi-omics association studies on the fecal microbiota and the
analysis (CIA) on the fecal microbiota and the plasma metabolome. The
metabolome datasets. Black solid cycle represents the fecal microbiota
fecal microbiota and the plasma metabolome from the same pregnant w
the data from a same pregnant woman. The shorter the edge, the high
microbiota and the plasma metabolome. (c) Redundancy analysis (RDA)
GDM. (d) Heatmap of the spearman rank correlations between the differ
the results of statistical test: *0.05; **0.01; ***0.001; ****0.0001.

2032 | RSC Adv., 2020, 10, 2027–2036
porphyrin and chlorophyll metabolism was signicantly
decreased in GDM and a panel of metabolic pathways was
elevated in GDM including lysine biosynthesis, pancreatic
secretion, endocrine and other factor regulated calcium reab-
sorption, bile secretion, fat digestion and absorption and cyto-
kine–cytokine receptor interaction. These results suggested that
the fecal microbiota of GDMwas featured with reduced diversity
in overall composition and signicantly elevated abundances of
several bacteria genera.

Fecal microbiota correlated with the plasma metabolome in
GDM

Because both of the fecal microbiota and the plasma metab-
olome of the enrolled pregnant women could be discriminated
by hyperglycemia, we speculated that potential correlations
occurred between these two proling. We then applied multi-
plasma metabolome of the pregnant women with GDM. (a) Co-inertia
first two axes of CIA represent the fecal microbiota and the plasma

, red solid triangle represents the plasma metabolome. Edges link the
omen. The length of the line is proportional to the divergence between
er the level of concordance. (b) Procrustes analysis (PA) of the fecal
on the differential plasma metabolites against the fecal microbiota of
ential plasma metabolites and the clinical indices of GDM. * represents

This journal is © The Royal Society of Chemistry 2020
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omics association approaches to evaluate the relationship
between the fecal microbiota and the plasma metabolome
(Fig. 3a and b). CIA is a multivariate statistical analysis that
could assess relationships and trends in multiple high-
dimensional omics data.19 Fig. 3a shows the projections of
datasets from the enrolled pregnant women onto the rst two
Fig. 4 Co-occurring network of the bacteria genera contributing to the
was built based on spearman rank correlations among members of fecal
The nodes were colored by bacteria genera. The size of each node is prop
direction of correlation, red lines represent positive correlations, black line
the strength of correlation. The color panel in the upper right represe
correlated nodes (correlation coefficient (r) > 0.6, and adjusted P < 0.05) w

This journal is © The Royal Society of Chemistry 2020
principal components of CIA. The datasets of fecal microbiota
and plasma metabolome are transformed into the same
projection. The coordinates of the two datasets for each preg-
nant woman are connected by lines, the length of which indi-
cates the divergence between the fecal microbiota and the
plasmametabolome. The shorter the line, the higher the level of
alterations in plasma metabolome of GDM. The co-occurring network
microbiota that contributed to the alterations of plasma metabolome.
ortional to the number of connections. The edges were colored by the
s represent negative correlations. The edge thickness is proportional to
nts the proportion of each phylum in the network. The significantly
ere numbered, the assignment of which were listed in the table below.
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concordance. The CIA plot of the rst two principal components
(Fig. 3a) shows partially projected of the fecal microbiota and
the plasma metabolome along the rst axis (PC1, horizontal),
and entirely projected of the two datasets along the second axis
(PC2, vertical). The result of CIA suggested similar trends in
fecal microbiota and plasma metabolome of the enrolled
pregnant women (RV coefficient ¼ 0.82, scale 0–1), indicating
that some of the variant sources of biological information were
similar. PA is a statistical shape analysis to analyze the distri-
bution of a set of shapes and has been successfully applied to
evaluate the relationships among multi-omics datasets.20 The
result of PA indicated that the shape of the fecal microbiota
partially tted with that of the plasma metabolome (Fig. 3b).
These results suggested that the fecal microbiota of GDM was
correlated with the plasma metabolome.

Correlation between fecal microbiota and plasma metab-
olome indicate potential mutual contributions.18 To investigate
the contributions of plasma metabolites to the alterations of
fecal microbiota, we performed RDA on the differential plasma
metabolites against fecal microbiota (Fig. 3c). Four out of ve of
the differential plasma metabolites signicantly contributed to
the alterations in the fecal microbiota of GDM, including lactic
acid, proline, methylmalonic acid, and glycerol (signicant test
of the correlation in the envt test of RDA: Pr < 0.05, Table S1†).
To further evaluate the correlations of GDM related clinical
indices with the four metabolites contributing to the alterations
of fecal microbiota, we performed spearman rank correlation
(Fig. 3d). All of the four metabolites were signicantly correlated
with fasting glucose (Table S2†), while lactic acid was negatively
correlated with abdominal circumference of the enrolled preg-
nant women (P ¼ 0.03, r ¼ �0.67). Refer to the relationship
among the four differential metabolites, proline was positively
correlated with lactic acid, and negatively correlated with glyc-
erol andmethylmalonic acid. Methylmalonic acid was positively
correlated with glycerol, and negatively correlated with lactic
acid and proline. These results suggested that hyperglycemia
associated plasma metabolites were correlated with the alter-
ations in GDM fecal microbiota.
Closely correlated members of fecal microbiota contributed to
the alterations in plasma metabolome of GDM

To evaluate the potential contributions of fecal microbiota to the
alterations of plasmametabolome of GDM, we performed RDA on
all of the bacterial genera against the plasmametabolome. A total
of 98 bacterial genera were observed to signicantly contributed
to the alterations of the plasmametabolome (Table S3†), of which
63.27% were Firmicutes, 16.33% were Bacteroidetes, 8.16% were
Actinobacteria, 8.16% were Proteobacteria. To further investigate
the correlations within the 98 bacterial genera, spearman rank
correlation was performed and visualized with correlation
network (Fig. 4). A total of 15 bacteria genera were observed to be
signicantly correlated with each other (Table S4†), of which 80%
(12/15) were Firmicutes, 13.3% (2/15) were Bacteroidetes, 6.7%
were Proteobacteria. These results suggested that connections
among members of Firmicutes contributed to the alterations of
the plasma metabolome of GDM.
2034 | RSC Adv., 2020, 10, 2027–2036
Discussion

Although plasma metabolome and gut microbiota have been
respectively correlated with GDM, the associations between
these two proling remain largely undetermined. In the present
study, we performed 1H-NMR based plasma metabolomics, 16s
rDNA sequencing of fecal microbiota, and multi-omics associ-
ation approaches, to reveal a close correlation between fecal
microbiota and plasma metabolome of GDM. Four hypergly-
cemia correlated plasma metabolites were observed to
contribute to the alterations of fecal microbiota. While a total of
98 bacteria genera signicantly contributed to the changes of
the plasma metabolome in GDM, among which 15 genera were
positively correlated with each other. The results of this study
suggested that a population of Firmicutes of the fecal micro-
biota contributed to the GDM associated changes of the plasma
metabolome.

Alterations in levels of plasma metabolites have been corre-
lated with GDM.21 As a biomarker of vitamin B12 deciency,22

high blood level of methylmalonic acid is observed in the third
trimester than during the other trimesters of pregnancy.23

Nevertheless, the non-pregnant adult possessed a higher level
of methylmalonic acid.22 This study for the rst time reported
that pregnant women with GDM possessed lower level of
methylmalonic acid than the NDM control. The fetal growth
correlated maternal circulating glycerol was reported to be
signicantly higher in the plasma of women with GDM
comparing to the NDM control,24 which is consistent with the
nding of this study. Maternal blood lactate (the salt form of
lactic acid) level has a signicant role in determining the
metabolic milieu of both mother and the fetus, which was re-
ported to be signicantly higher in GDM mothers than in the
NDM control.25 The level of proline in the umbilical vein and
artery of GDM was associated with hyperglycemia26 and was
reported to be signicantly increased in women with GDM,27

which is similar to the observation of this study. In accordance
with the nding of this study, the level of galactitol was elevated
in maternal serum, amniotic uid and the fetal cord serum,28

suggesting that galactitol could cross the placental barrier and
exert effects on the fetus. Although the abundance variations of
the ve differential metabolites observed in this study have
been documented in women with GDM, further studies are
required to reveal the sources of the metabolites and their
action pathway to GDM.

Changes in gut microbiota have been correlated with GDM.
Phascolarctobacterium is a butyrate-producing bacteria,29 higher
level of which was reported to be positively correlated with
insulin sensitivity.30 Despite this, a higher level of Phasco-
larctobacterium was observed in women with GDM,31 which is in
accordance with the nding of the present study. Alistipes was
positively correlated with fat intakes in pregnant women,6

which was reported to be enriched in the non-diabetic pregnant
women,32 contrary to the observation of this study. Para-
bacteroides, as a potential next-generation probiotics in reverse
obesity and insulin resistance, was reported to be enriched in
women with GDM,31 similar to the nding of this study.
This journal is © The Royal Society of Chemistry 2020
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Eubacterium coprostanoligenes is a cholesterol-reducing
anaerobe,33 the enrichment of which in GDM was reported for
the rst time in the present study. Blautia was reported to be
inversely correlated with the levels of insulin and hemoglobin
A1C. In accordance with the observation of this study, the level
of Blautia was reported to be increased in women with GDM.6

Ruminococcaceae is a dominant family in energy metabolism,
and was strongly correlated with levels of adipokine and
insulin. High abundance of family Ruminococcaceae in early
pregnancy may be related to adverse metabolic health. In
accordance with this, Ruminococcaceae NK4A214 was observed
to be enriched in women with GDM in the present study,
indicating a potential adverse effect to pregnancy. Oscillibacter
is positively correlated with gut permeability and metabolic
dysfunction in diet-induced obese mice.34 Contrary to the
nding of this study, Oscillibacter was reported to be depleted in
GDM women.32 Paraprevotella was reported to be strongly
correlated with cardiovascular disease risk,35 which was
enriched in the fecal microbiota of rats exposure to prenatal
androgen, similar to the ndings of the present study. Besides
the associations of changes in microbiota with GDM, further
studies are recommended to investigate the underlying
biomedical signicance of the alterations in the members of gut
microbiota.

The associations between plasma metabolites and members
of gut microbiota in GDM were rarely investigated. By far, only
one study reported that the increased diversity and concentra-
tions of benecial gut microbes were associated with the
metabolism of pregnant sows, suggesting that manipulating gut
microbiota may potentially inuence metabolism and healthy
during pregnancy in sows.36 Nevertheless, the effects of gut
microbiota on the plasma metabolites observed in this study
(proline, lactic acid, galactitol and methylmalonic acid) have
been reported previously in other cases except GDM. By
comparing the conventionally raised and germ-free mice, Mar-
dinoglu et al.37 reported that gut microbiota affected the host
metabolism of proline. Lactic acid is a common metabolite of
the gut microbiota, while microbiota-derived lactic acid acti-
vates production of reactive oxygen species by the intestinal
NADPH oxidase Nox and shortens drosophila lifespan.38

Galactitol is a product of hepatic galactose metabolism, which
has an inhibitory effect on the E. coli growing in minimal
medium with glycerol.39 Galactitol is enriched in the gut of
breast-fed infants, and substantially reduced in the plasma due
to fasting intervention.40 Gut microbiota contribute a signi-
cant proportion of the substrate of the circulating methyl-
malonic acid, and is a potential target in management of
methylmalonic acidemia (a rare inborn error of metabolism).41

In addition to the above associations between gut microbiota
and plasma metabolites, the results of the present study sug-
gested novel contributions of gut microbiota to variations of the
plasma metabolites in women with GDM.

To avoid false positive rate commonly found in high-
dimensional data,42 we applied adjusted P < 0.05 in selection
of 1H-NMR features with signicantly altered abundances.
Although correlations between members of gut microbiota and
metabolites of plasmametabolome in GDM have been observed
This journal is © The Royal Society of Chemistry 2020
in this study, these correlations are also inuenced by diet and
changes in metabolic health. Further biological validation
studies are recommended to evaluate the contribution of gut
microbiota to plasma metabolome in GDM excluding the
inuence of diet and metabolic status.

Conclusions

In conclusion, multi-omics association analysis in this study
suggested that fecal microbiota was closely correlated with
plasma metabolome in women with GDM. Changes in gut
microbiota contributed to the altered abundance of
hyperglycemia-related plasma metabolites, including proline,
lactic acid, galactitol and methylmalonic acid. Among the
bacteria genera contributing to the altered plasma metabolome
in GDM, a cohort of 15 genera (mainly consisted of Firmicutes)
was positively correlated with each other, suggesting synergistic
effects of gut bacteria on the alterations in plasma metabolome
of GDM.
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