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Smart light-responsive supramolecular materials have been extensively investigated in the past decade,
but so far the impact of metal coordination on hierarchical supramolecular structures of light-
responsive building blocks has remained nearly unexplored. Herein, we unravel the hierarchical self-
assembly of a small w-conjugated azo-containing pyridyl ligand that is able to respond to UV-light
and metal complexation. The ligand self-assembles in an antiparallel fashion into long twisted fibers,
which are then disassembled upon photoisomerization of the azobenzene groups, resulting in
shorter rigid rods with a different packing motif. Complexation of Pd(i) ions enhances the

. 4 30th A 2018 cooperativity of the aggregation and induces a molecular rearrangement into slipped stacks with
eceive th August . o . .
Accepted 24th October 2018 subsequent formation of long thin fibers. These are then transformed into thinner, shorter rods upon

light irradiation. The observed different light-responsiveness, besides clearing up the influence of

DOI: 10.1039/c85c03875a metal coordination and light irradiation in self-assembly processes, paves the way towards the design
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Introduction

Self-assembly of functional small molecules has become
a promising approach to create smart materials® that can
respond to changes in various external variables such as
temperature, concentration, pH and solvent or stimuli such as
light,” sound,* mechanical forces* or cations/anions.” Light-
responsive supramolecular assemblies are of particular
interest in this regard because of the sensitivity of the
molecular shape, size and polarity upon photoisomerization,
which enables the modulation of the structural and functional
properties associated with the self-assembly pathway.> The
incorporation of photochromic moieties such as azo-
benzenes,® dithienylethenes” and spiropyrans® offers great
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of novel supramolecular photochromic systems.

potential to create light-responsive supramolecular assem-
blies. In particular, azobenzenes have been extensively
exploited as photoswitchable units in light-responsive host-
guest systems,’ liquid crystals,*® vesicles," gels,"”” biomate-
rials®™ and self-assembled structures of 7-conjugated mole-
cules.” ' For the construction of one-dimensional (1D)
photoresponsive supramolecular assemblies, the major
molecular design is the use of photochromic molecules as
single-molecular building blocks.'**® A particularly attractive
approach is the oligomerization of photochromic moieties via
non-covalent interactions, i.e. hydrogen bonds, to form
supramolecular building blocks, as this provides access to
hierarchically organized systems with unique photoresponsive
behaviour not achievable by single-molecule based sys-
tems.**”* In this regard, we envisaged that the introduction of
a metal to link photochromic units would have a strong impact
on the photoresponsive behaviour and hierarchy levels of the
assemblies due to the modification in the molecular confor-
mation and packing modes. For example, we have reported
that coordination of a Pt(u)/Pd(un) dihalogen metal center to
pyridyl-based mw-conjugated moieties can induce new non-
covalent interaction sites different from the ligand thereby
enabling new self-assembly pathways.'”” To date, photo-
responsive metallosupramolecular systems have been limited
to polymeric materials," metallacycles** and metal-organic
frameworks.'»? Despite these advances, understanding the
influence of metal coordination* and light-irradiation on
hierarchical self-assembly processes remains elusive.'*

This journal is © The Royal Society of Chemistry 2019
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Scheme 1 Proposed hierarchical self-assembly and photoresponsive behavior of L;. Structures of monomers and small aggregates were
optimized using DFT and dispersion-corrected PM6 calculations, respectively, while structures with large aggregates (270 monomers) were

obtained from classical molecular dynamics.

Herein, we unravel the impact of metal complexation and
photoisomerization on hierarchical self-assembly processes via
detailed mechanistic studies by means of combining experi-
mental and theoretical techniques. Our molecular design
features a light-responsive azobenzene unit, an amide group for
hydrogen bonding, a metal ion-responsive pyridyl ligand and
dodecyloxy side chains (L,, Scheme 1). The target ligand L, and
its corresponding Pd(u) complex C; (Scheme S11) have been
synthesized by modified literature procedures,* as described in
the (ESIt). Additionally, a related ligand L, bearing ethoxy
groups as well as its corresponding Pd(u) complex C, have been
prepared to facilitate crystal growth (Scheme S17).

Results and discussion
Hierarchical self-assembly of L,

We examined the self-assembly of ligand L, in a poor solvent
(methylcyclohexane; MCH) by cooling a hot solution (¢ = 5 X
10~* M) from 363 K to 283 K with 1 K min~" ramp. The freshly
prepared solution showed negligible absorption spectral
changes in various good solvents (i.e. dichloromethane; DCM),
suggesting the molecularly dissolved state (Fig. S1t) at 298 K.
However, a gradual decrease of the absorption maximum at
363 nm and a concomitant increase of a shoulder at ca. 420 nm
were observed upon keeping the MCH solution at 283 K over
time (Fig. 1a). This, along with the appearance of an isosbestic
point at 407 nm, strongly suggests the formation of self-
assembled species. A plot of absorbance at 360 nm (Aszg) Vs.
time reveals that around 80% of the aggregation process is
complete within 5 h (Fig. 1a, inset). Likewise, a lower concen-
trated solution (2.5 x 10~* M) was also monitored over time at
283 K, but in this case negligible changes were observed, indi-
cating that the critical aggregation concentration is close to 5 x
10" M at 283 K. Variable Temperature (VT)-NMR studies of L,
in MCH-dy, (c = 5 x 107* M) from 363 to 283 K showed

This journal is © The Royal Society of Chemistry 2019

downfield shifts for the amide protons (H.) and aromatic
protons Hy (ca. 1 and 0.15 ppm, respectively, see Fig. 1b),
indicating the proximity of an electron-rich environment (i.e. N
or O atoms from a neighboring molecule) and H-bonding.*?
Comparison of the FT-IR spectra of Ly (c = 5 x 10~* M) in the
monomer (CHCl;) and aggregated state (MCH) allowed us to
assign these hydrogen bonds to N-H:--O=C interactions
between the amide groups (Fig. S21). On the other hand, the
phenyl protons H; underwent a marked upfield shift upon
cooling, strongly suggesting the involvement of the trialkox-
yphenyl unit in m-stacking. Interestingly, the pyridine protons
(Hap) remain almost unaltered during the cooling process,
ruling out the possibility of a face-to-face parallel stacking.”** A
noteworthy observation is the sharpening of the proton signals
upon decreasing temperature, which can be ascribed to the
formation of discrete aggregate species, such as dimers, during
the cooling process.” This is in agreement with the results
obtained from variable-temperature dynamic light scattering
(DLS) (Fig. S3; for details see ESI{). Attempts to further monitor
this process by diffusion-ordered spectroscopy (DOSY) NMR
proved unsuccessful due to unreliable data (Fig. S4T).
Monitoring this discrete aggregate formation by VT-UV-Vis
experiments under identical conditions showed only a slight
hyperchromic effect without a clear isosbestic point upon cool-
ing from 363 K to 283 K (Fig. 1a and S51). Though hyper/
hypochromic effects can be ascribed to a weak intermolecular
interaction of the m-systems on the basis of Kasha's exciton
theory,> the absence of a clear isosbestic point suggests the
existence of more than one type of discrete aggregate species,
most likely dimers, in equilibrium with the monomer. Time-
dependent "H NMR studies were then performed immediately
after the solution used for VI-NMR studies reached 283 K
(Fig. 1b). The observed strong broadening and subsequent
disappearance of the signals indicate a further oligomerization
of the dimers over time, which is in perfect agreement with the

Chem. Sci,, 2019, 10, 752-760 | 753
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Fig. 1 (a) Temperature-dependent absorption changes of Ly (5 x 10™* M, MCH) from 363 K (red line) to 283 K (blue line) followed by time-
dependent studies at 283 K for a period of 400 min. Inset: plot of Asgg vs. time and photographs showing the reversible sol-aggregate formation.
(b) Partial VT-H NMR spectra of Ly (5 x 10~* M, MCH-d,4) between 363 and 283 K followed by time-dependent studies at 283 K over a period of
60 min (initial lag is excluded). (c—e) AFM images of self-assembled L; in MCH upon keeping the solution at 283 K for (c) 15 min, (d) 30 min and (e)
60 min on HOPG (initial lag is excluded) with cross-section analysis along the yellow lines.

depletion of the monomer band and a concomitant emergence
of an aggregate band in time dependent UV-Vis experiments (see
Fig. 1a). Time-dependent DLS studies in MCH (c = 5 x 10 * M)
at 283 K (Fig. S37) revealed a consistent increase in decay time
during the initial 15 min, which supports the formation of
oligomers. Over time, a more pronounced aggregation process is
evident from the decrease in relative counts over 60 min.
Comparison of the 2D COSY and ROESY spectra of an aggregate
solution of L; (11.7 mM, MCH-d, 4, 315 K) strongly suggests an
H-bonded antiparallel molecular arrangement (see ESI for
details, Fig. S61) which is in good agreement with the findings
observed by previous VI-UV and NMR studies. A related anti-
parallel arrangement of aromatic groups via H-bonds has been
previously observed in the solid state for oligomeric zipper
complexes bearing aromatic amides.>

The structure of this H-bonded packing optimized via the
dispersion-corrected PM6 method is shown in Scheme 1. This
conformation is appropriate to grow a stable 1D assembly of
L, (Scheme 1), as revealed by classical Molecular Dynamics
(MD) simulations carried out at 300 K and 1 atm (for more
details on the MD simulations, see the ESI{). These simula-
tions also reveal that the interactions between the alkyl
chains are very important to stabilize the antiparallel stacks,

754 | Chem. Sci,, 2019, 10, 752-760

together with hydrogen bonding. In the MD snapshot shown
in Scheme 1, the structure of the simulated supramolecular
material is somewhat heterogeneous although in average the
monomers tend to stack in an antiparallel fashion driven to
a large extent by H-bonding. Also, interdigitation of the alkyl
chains facilitates the growth into 2D lamellae (see Scheme 1)
and finally long, twisted fibers by shielding the polar pyridine
rings from exposing themselves to the surrounding nonpolar
medium.

The hierarchical self-assembly of L; has also been studied
using atomic force microscopy (AFM) imaging by spin-coating
MCH solutions of L, (c = 5 x 10~* M, 283 K) onto highly
oriented pyrolytic graphite (HOPG) at different time intervals.
After keeping the solution for 15 minutes at 283 K (excluding
the initial lag), short 1D supramolecular fibers with 2-3 nm in
height, 10-15 nm in width (Fig. 1c and S7af) and a strong
tendency to form lamellae were observed, which further grew
into 2D lamellar structures with 2-3 nm in height and
50-100 nm in width over a period of 30 minutes (Fig. 1d and
S7bt). Subsequent rolling and bundling of the tapes (Fig. S7ct)
ultimately results in the formation of thick, long, twisted fibers
after an overall equilibration time of 45-60 minutes (Fig. 1e and
S7dt). The width of the fibers ranges from 50 to 100 nm,

This journal is © The Royal Society of Chemistry 2019
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whereas the length goes up to several microns. The formation of
these thicker fibers led to a yellow gel above 50 mM, as
confirmed by AFM (Fig. S87).

Photoisomerization of L,

Irradiation at 370 nm of the long fibers of L, with the azo groups
in the trans conformation (trans-Ly, ¢ = 5 x 10~* M) at 283 K led
to the disassembly of the fibers, which is attributed to the ¢trans-
to-cis isomerization, as demonstrated by the depletion of the
m-1t* transition (363 nm) along with the increase of the n-w*
transition at 450 nm (Fig. 2a, purple line). Some insight into this
UV-induced disassembly process could be obtained from MD
simulations by inducing an instantaneous trans—cis isomeriza-
tion of L; within a fiber: a substantial reduction in the number
of amide groups involved in short hydrogen-bonding contacts
(do..xr < 2 A) was observed, as depicted as yellow spheres in
the MD snapshots, and the monomer-monomer distances
increased (Scheme 1, top right). These structural changes might
explain the initial driving force for the disassembly of the long
fibers after light irradiation (vide infra). According to UV-Vis
results, approximately 80% of the cis isomer is formed upon
UV irradiation, which reverts progressively to the more stable
trans isomer over the period of 120 min upon keeping the
solution in the dark (blue line in Fig. 2 and S9at). Monitoring
the Azgo vs. time at 283 K upon the entire back isomerization
process allowed us to distinguish an aggregation process that
closely resembles the one shown by non-irradiated L, (Fig. 1a
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and S9aft). Thus, we conclude that the cis isomer is a dormant
species, whereas aggregation only occurs upon activation to the
active trans monomer via back isomerization (Fig. 2a, inset).'®*®
These processes (photoisomerization and self-assembly)
compete partially at higher concentration (1 mM), where the
cis form is likewise dormant to aggregation (Fig. S107).

Closer insight into the influence of cis-to-trans isomerization
on the hierarchical self-assembly of L, was provided by time-
dependent "H-NMR experiments (5 x 10~ * M, MCH-dy,) at
283 K. Due to the impossibility of irradiating the sample inside
the NMR spectrometer and the longer equilibration time
needed compared to UV-Vis, the first recorded "H NMR spec-
trum (denoted as ‘0 min’ in Fig. 2b) was obtained around
15 min after the sample was irradiated for 30 min at 298 K. By
this procedure, we established that 40% of the cis isomer was
present for the first NMR measurement even though back
isomerization took place at 298 K prior to the NMR measure-
ment (Fig. S9b-d¥). Over a period of around 40 min, complete
disappearance of the signals of the cis isomer (marked in green
with black circles) was concomitant with a slight upfield shift of
the N-H proton (H.), whereas all remaining protons showed
insignificant changes. Interestingly, a more significant broad-
ening of the H. signal and further upfield shift was also
observed even after complete cis-trans conversion (Fig. 2c)
around 60 min. This trend was not observed for the trans isomer
without irradiation (Fig. 1b), and indicates the lack of hydrogen
bonding but rather the proximity of a r-surface. We hypothesize
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Fig. 2 (a) Time-dependent absorption changes (0-120 min: purple to blue; 120-400 min blue to orange) of Ly (5 x 10~% M) in MCH after
irradiation for 30 min with a 370 nm LED lamp at 283 K; inset: plot of Azeo vs. time at 283 K, and photographs showing the irradiated clear L, cis +
trans monomer (left) to turbid L, trans aggregates (right). (b) Time-dependent *H-NMR changes at 283 K of Ly (5 x 10~* M) after irradiation for
30 min with a 370 nm LED lamp in MCH-d4. Black encircled green peaks correspond to cis isomer. (c) Scheme showing reversible trans—cis
isomerization. (d) AFM image of Ly (5 x 107* M) on HOPG upon UV-irradiation for 30 min in MCH and ageing at 283 K for 400 min with

corresponding cross-section analysis along the yellow line.
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that the high excess of dormant cis monomers (80% according
to UV-Vis) formed immediately after photoirradiation at 283 K
could sequester the trans-monomers and prevent them to
form antiparallel hydrogen-bonded stacks, leading to a non--
H-bonded arrangement different from the non-irradiated
pathway (Scheme 1, “cis + trans” structure).

The above photoisomerization-regulated stepwise aggrega-
tion process of Ly (5 x 10~* M, MCH) was examined by AFM.
The aggregates formed by L, in the absence of light at 283 K
(Fig. 1e and S11at) were irradiated with 370 nm UV-light for
30 min, kept at 283 K and finally spin-coated onto HOPG at
different time intervals. AFM analysis of the sample kept at
283 K for 140 min upon irradiation (approximately the maximum
value observed in the plot Az vs. time, see inset of Fig. 2a) reveals
the formation of ill-defined amorphous aggregates (Fig. S11b¥)
that are most likely the result of a kinetically-driven off-pathway
aggregation event. Interestingly, further ageing this solution at
283 K for additional 260 min (total time 400 min after irradiation)
showed the transformation of the amorphous short assemblies
into photo-reconstructed rod-like structures (Fig. 2d and Sllic,
dt) that are considerably shorter than those formed without
irradiation (Fig. 1e). These results can be explained in terms of
a frustrated nucleation event of the active ¢trans isomers caused by
the presence of sterically hindered, dormant cis-monomers,
which is supported by a non-H-bonded antiparallel dimerization
predicted by PM6 calculations and MD simulations (Scheme 1).
The formation of these less organized pre-nuclei dramatically
affects the addition of further active trans monomers during the
subsequent elongation process, leading to a less compact non-H-
bonded arrangement that ultimately results in the shortening of
the ensembles. These results can be corroborated by the revers-
ible light-induced gel-sol transition of L, at 50 mM (Fig. S11f}).

Hierarchical self-assembly of Pd(L,),Cl,

We envisioned that the complexation of metal ions such as
Pd(u) by L, to yield Pd(L,),Cl, (C4, Scheme 2) would cause
a significant impact on the photoresponsive and self-assembly
behavior. This metal ion was selected not only based on the
expertise of our group in Pd(II)-based assemblies but also due
to their preorganized coordination geometry and aggregation
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propensity. Unlike trans-L;, trans-C, readily self-assembles at
room temperature in nonpolar solvents such as MCH (see
solvent-dependent UV-Vis studies in Fig. S127). Fig. 3a shows
the spectral changes upon cooling a monomer solution of C; in
MCH from 363 K to 283 K with 1 K min~* ramp. On cooling, the
metal-to-ligand charge transfer (MLCT) transition at 395 nm
broadens progressively and decreases in intensity whereas
a shoulder at 460 nm becomes apparent (Fig. 3a). This spectral
change is suggestive of aggregation. Monitoring the absorbance
at 395 nm vs. temperature (7) at four different concentrations
yielded non-sigmoidal plots, which could be accurately fitted to
the nucleation-elongation cooperative model (Fig. 3a, inset and
Fig. S13, S147).*” According to this model, the formation of
a small aggregate (nucleus) is needed to activate the supramo-
lecular growth into fiber-like structures (for an overview of the
thermodynamic parameters, see Fig. S13, S14 and Table S17).

VT-DOSY and DLS measurements of C; further support the
formation aggregates in solution (Fig. S15 and S16t). ROESY
NMR of an aggregate solution (7.5 mM, 358 K) in MCH-d,
revealed the presence of five new cross-peaks (highlighted in
coloured squares in Fig. 3b) that are absent in COSY studies. For
instance, correlation signals between protons H, and Hy as well
as Hq and H; can be distinguished (Fig. 3b). As these protons are
within the vicinity of 5 A, they should result from an intra-
molecular coupling. On the other hand, cross-peaks between H,
and Hg (green), Hy, and H,. (blue) and H, and Hy (red) can only be
due to intermolecular contacts, as the respective protons are
very far from one another (>5 A). Furthermore, additional
intermolecular interactions between —-O-CH,- protons of the
alkyl chains (H') and aromatic protons H,_q were also identified
(black). This coupling pattern is in agreement with the forma-
tion of slipped stacks stabilized by m-m interactions between
the aromatic rings of the ligands as well as N-H---Cl-Pd
hydrogen bonding interactions (Fig. 3c), as recently proposed
for related m-conjugated Pd(u) complexes.”® The fingerprints
associated with these interactions could be also identified by
FT-IR measurements in MCH (Fig. S177).”

This stacking arrangement in solution is in perfect agree-
ment with the molecular packing extracted from X-ray analysis
of single crystals grown from DCM/acetonitrile of a nearly
identical Pd-azo derivative (C,) with short ethyl groups. The
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Scheme 2 Proposed hierarchical self-assembly and photoresponsive behavior of C;. Structures of monomers and small aggregates were
optimized using DFT (PBE0/6-31G*/LANL2DZ) and dispersion-corrected PM6, respectively.
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Fig. 3 (a) Temperature-dependent UV-Vis spectra of C; at 5 x 10~> M; inset: plot of Oagg VS. T for Cyat 5 x 10> M monitored at 395 nm. (b)
COSY and ROESY of Cy at 7.5 mM in MCH-dy4 at 358 K and photograph of gel (inset). (c) Plausible molecular arrangement. (d) Packing of C, (b-

axis) driven by N—H---Cl and C-H---Cl interactions (inset).

crystal structure analysis showed a marked molecular curvature
of the azo-based pyridyl-ligands on both sides of the metal
center (Fig. S18 and S197). The packing in the crystal structure is
mainly driven by three types of cooperative weak interactions:
C-H---Cl, N-H:--Cl interactions and m-m stacking. In analogy
with the packing deduced by ROESY studies, the monomer
units are arranged in a slipped fashion driven by a combination
of one N-H---Cl and four C-H---Cl intermolecular interactions.
Each Cl is interacting with two aromatic protons (Hq and Hy), an
NH group of the amide moiety and two polarized methylene
groups belonging to the ethoxy chains of a neighboring unit
(Fig. 3d, inset). A further growth of the system into layered
structures is facilitated by lateral interactions of the formed 1D
stacks via 4 C-H---Cl and 4 C-H---O interactions. Further, ©—
interactions are stabilizing the packing along the a-axis
(Fig. S201). These overall results highlight the key impact of
NH---Cl interactions on slipped stacking stabilization.

In contrast to the free ligand L,, C; forms considerably
thinner and shorter well-defined fibers (5-10 nm in width and
60-150 nm in length) in MCH (Fig. S217). This difference in
morphology clearly reflects different molecular packing with
distinct intermolecular interactions (7-m, C-H---Cl and N-H---
Cl, vide supra) compared to the free ligand L,;. As the NMR
signals of C; are nearly unidentifiable in pure MCH-d,, due to
strong aggregation, a solvent mixture with 10% CDCIl; was
chosen for further studies (Fig. S2271). Prior to the NMR exper-
iments, we confirmed by VI-UV-Vis studies under identical
conditions that the addition of 10% CHCI; does not influence
the aggregation behavior of C, (Fig. S231). AFM analysis showed
the formation of a network of thin entangled fibers further
supporting an identical aggregation behavior in pure MCH and

This journal is © The Royal Society of Chemistry 2019

10% CHCI;-MCH at 5 x 10> M (Fig. 4b and S247). The powder
X-ray diffraction pattern of a thin film of C; showed the
formation of a hexagonal columnar structure with the lattice
parameter of @ = 3.5 nm, which is larger than that of L, (@ =
2.45) in a tetragonal columnar structure (Fig. S257). Probably,
the well-defined fibers of C, visualized by AFM (Fig. 4b and
S24t1) are the elementary structure composed of one-
dimensionally stacked Cj.

Photoisomerization of C,

Irradiation at 370 nm of the entangled thin fibers of C,
(MCH : CHCI; (9: 1), c = 5 x 107> M, see Fig. 4b and S247 for
AFM images) at 283 K for 30 min caused a small red shift in the
absorption maximum and significant hyperchromism (Fig. 4a).
Because the UV-Vis spectral changes cannot be explained by
usual trans-to-cis isomerization of azobenzene, we assume this
to be due to a photo-induced disassembly via formation of cis-C,
followed by a rapid back-isomerization to trans-C;, which is
most likely kinetically trapped. After finishing the UV irradia-
tion for 30 min, we monitored the spectral changes over
a period of 800 min while keeping the solution at 283 K (Fig. 4a).
A blue shift in the absorption maximum from 397 nm to 391 nm
with a small absorption change at around 490 nm was observed
with multiple isosbestic points (Fig. 4a). Without any lag, Azes
started decreasing and reached a plateau after several hours
(Fig. 4a, inset), indicating the formation of photo-reconstructed
aggregates. Comparison of this spectrum with that corre-
sponding to the aggregation process of C; without irradiation
(see Fig. S23 and S3at) reveals a shift of the isosbestic point
from 435 nm to 460 nm.
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Fig. 4 (a) Time-dependent UV-Vis spectra (5 x 107> M MCH/CHCls
(90 : 10)) of Cq upon light irradiation and subsequent quenching to
283 K; inset: plot of Asgs vs. time before (blue) and after irradiation
(black) at 283 K and photographs showing opacity changes upon
irradiation for 15 min. AFM images of C; aggregates formed under
equivalent conditions as for UV-Vis: (b) before and (c) after UV irradi-
ation for 30 min at 283 K with corresponding cross-section analysis
along the yellow line.

In order to compare the above photochemically achieved
kinetic state with that obtained by quick temperature drop
(quenching), we rapidly cooled a hot MCH/CHCI; solution of C,
(5 x 107° M) to 283 K and monitored the UV-Vis spectral
changes for 1000 min (Fig. S261). These studies showed
significant differences compared to the UV-irradiated sample,
i.e., a blue shift of the absorption maximum from 398 nm to
394 nm with only one isosbestic point at around 470 nm. A plot
of Az95 vs. time showed a slow decay compared to the irradiated
sample (Fig. 4a, inset). These results indicate that the self-
assembly of C, after the photo-induced disassembly proceeds
through a different nucleation-elongation mechanism
compared to that from the thermally obtained monomeric C;.

We next attempted to identify the possible cis-C, formation
by "H-NMR measurements. The observed rapid transformation
of the initially slightly opaque solution of trans-C, in 1:9
CDCl3-MCH-dy, at 5 x 10~* M into a clear solution upon irra-
diation for 30 min implies a disassembly of ¢rans-C, aggregates
(Fig. 4, inset). However, to our surprise, no resonances corre-
sponding to cis-C, were identified. Dissociation of the N-H---Cl
hydrogen bonds was evident from '"H-NMR where the amide
signal shifts from 9.41 to 9.16 ppm upon irradiation (see
Fig. S271). Although nearly complete dissociation of trans-C,
(c =9 mM) aggregates was observed upon irradiation in CDCl;
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(Fig. S287), no signals corresponding to cis-C; were identified.
To justify the UV-induced disassembly of C; aggregates, we
performed 'H-NMR experiments of a structurally related
OPE-based Pd(u) complex 1 lacking the photo-responsive unit
(Fig. S291), which was previously observed to self-assemble via
N-H:--Cl hydrogen bonds.”® In contrast to C,, irradiation of 1
for 30 min showed negligible NMR shifts (Fig. S29t). Accord-
ingly, the disassembly of trans-C; aggregates upon irradiation is
ascribable to the formation of bulky cis-C;.

A plausible explanation for the absence of cis-C; during the
NMR measurements can be related to the change in the excited
state dynamics of L; upon Pd(u) coordination,'®*** which has
been inspected by Density Functional Theory (DFT) and Time-
Dependent DFT (TD-DFT) calculations. Initially, irradiation of
the trans-state I (Scheme 2), in which the carbonyls of each
complex are antiparallel to each other, populates a molecular
orbital which is antibonding with respect to both azo nitrogens
(inset in Fig. S301). The N=N double bond is then broken and
rotation around this bond generates the cis-C; isomer. The
rather distorted geometry of the latter (Scheme 2 and Fig. S317)
leads to the dissociation of the aggregates. The lowest excited
state of cis-C; is almost resonant with that of trans-C4-11, where
carbonyl groups are now oriented parallel to each other
(Fig. S32t1), suggesting a fast cis-C; — trans-C;-II conversion.
The relative orientation of carbonyl groups inside a fiber,
namely parallel vs. antiparallel, can strongly influence the
energy of excited states, whose differences can be as high as
0.7 eV (Fig. S337). As anticipated from the above calculations,
the photo-reconstructed C; aggregates show appreciable
morphological changes compared to the nanostructures before
UV irradiation. The AFM images show that the initially formed
thin flexible fibers with several um in length (Fig. 4b and 524,
S26t) transform into short rods with maximum length of
20-100 nm (Fig. 4c and S34t). Supramolecular systems in which
all carbonyl groups are pointing in the same direction, like
fibers of trans-C4-11, can form giant dipole moments or macro-
dipoles, influencing the interaction between nearby fibers as
well as the final morphology of the material.*® Because the local
accumulation of macrodipoles in dense regions containing
supramolecular fibers is not thermodynamically favorable,*
further growth of fibers of trans-C4-II becomes frustrated,
explaining why they are shorter. On the other hand, local
accumulation of macrodipoles does not occur in fibers of ¢rans-
C;-I because the carbonyls are oriented antiparallel to each
other, stabilizing the fibers and allowing them to grow much
further (notice that the crystal structure shown in Fig. 3d has
also antiparallel amide groups).

Conclusions

We have reported a new small molecule-based supramolecular
system (azo-based pyridyl ligand L,) that undergoes significant
changes in its hierarchical self-assembly and aggregate
morphology upon response to UV-light irradiation and metal
coordination. Combined experimental and theoretical studies
allowed us to propose a mechanism for its hierarchical
self-assembly behavior. L, self-assembles in the absence of

This journal is © The Royal Society of Chemistry 2019
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UV-light and metal ions into long twisted fibers driven by
hydrogen bonding and m-stacking via the formation of an
antiparallel dimer species. UV irradiation and subsequent
photoisomerization of L, leads to a new non-H-bonded packing
mode that ultimately results in the formation of shorter rigid
rods. Complexation of PdCl, drastically changes the mode of
aggregation from antiparallel to slipped stacks driven by N-H---
Cl interactions with subsequent increase in the degree of
cooperativity of the supramolecular growth. Finally, these long
thin fibers transform into thinner, shorter rods upon UV irra-
diation via a reorganization into a different ¢rans conformation
of the Pd(u) complex. The stability of short vs. long fibers with
Pd(n) was rationalized in terms of the accumulation of macro-
dipoles, which depend on the relative orientation of carbonyl
groups inside the fibers, namely parallel or antiparallel. Our
results have allowed us to unravel for the first time the impact of
metal coordination and light irradiation on hierarchical self-
assembly processes. In our opinion, the present study repre-
sents a starting point towards the development of a new class of
stimuli-responsive self-assembled materials combining the
properties of metal ions and light.
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