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ntion for the synthesis of
E-macrocycles with ruthenium-based olefin
metathesis catalysts†

Tonia S. Ahmed, T. Patrick Montgomery and Robert H. Grubbs *

The synthesis of E-macrocycles is achieved using stereoretentive, Ru-based olefin metathesis catalysts

supported by dithiolate ligands. Kinetic studies elucidate marked differences in activity among the

catalysts tested, with catalyst 4 providing meaningful yields of products in much shorter reaction times

than stereoretentive catalysts 2 and 3. Macrocycles were generated with excellent selectivity (>99% E)

and in moderate to high yields (47–80% yield) from diene starting materials bearing two E-configured

olefins. A variety of rings were constructed, ranging from 12- to 18-membered macrocycles, including

the antibiotic recifeiolide.
Introduction

Ring-closing metathesis (RCM) has gained widespread use in
organic synthesis for the production of macrocyclic frame-
works.1 This transition metal-catalyzed reaction is commonly
used in the synthesis of many biologically active and olfactory
compounds.2 The stereochemistry of the olen oen governs
the properties of these cyclic molecules. Consequently, the
stereochemical purity of olen mixtures is important. The
separation of E- and Z-isomers can be challenging, and thus
methods for stereoselectively generating macrocycles are
desirable.

The synthesis of Z-macrocycles has been reported using an
array of Ru-,3 W-, andMo-based4 olenmetathesis catalysts. The
steric environment of each of these catalysts is tuned such that
the syn metallacyclobutane pathway is favored over the anti
metallacyclobutane pathway (Fig. 1). Cycloreversion of this syn
intermediate gives the macrocycle with Z-conguration.

In 2013, Hoveyda and co-workers reported Ru-based catalysts
bearing dithiolate ligands that were able to perform highly Z-
selective cross metathesis from Z-olen starting materials.5 In
2015, we demonstrated that these catalysts were further capable
of cross metathesis between two E-olens or between an E-olen
and a terminal olen to generate E-products with high selec-
tivity (>98% E).6 This was the rst reported example of highly
E-selective cross metathesis through kinetic control.

The stereoretention exhibited by these complexes is
proposed to arise from the a substituents of the
hemical Synthesis, Division of Chemistry

tute of Technology, Pasadena, California

tion (ESI) available. See DOI:
metallacyclobutane pointing away from the large N-aryl groups
of the N-heterocyclic carbene (NHC) ligand (Fig. 2a). Depending
on the stereochemistry of the starting olen, the b substituent
can either point down or up into the open space between the
two N-aryl groups and in front of the imidazol-2-ylidene ring.
Given that the olen starting material stereochemistry is Z, the
b substituent in the favored intermediate will point down, and
the product formed aer cycloreversion will be Z. Conversely, if
the starting olen has E stereochemistry, the b substituent will
point up, and the product from the favored intermediate will be
E. Soon aer this report, Schrock and Hoveyda described Mo-
based catalysts capable of a similar transformation, by which
E-selectivity in cross metathesis is achieved from E-alkenyl
halide starting materials (Fig. 2b).7

E-selective cross metathesis using stereoretentive Ru-based
catalysts was oen marred by low yields in reactions involving
functionalized substrates or terminal olens. Although the low
yields observed in reactions with terminal olens were attrib-
uted to decomposition of Ru methylidenes,6 studies performed
in our group showed that a large contributing factor to low
activity with functionalized substrates is slow catalyst initiation
Fig. 1 Key metallacyclobutane intermediates for making Z-macro-
cycles using Mo-, W-, and Ru-based olefin metathesis catalysts.

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Models for selectivity in cross metathesis using stereoretentive
olefin metathesis catalysts for (a) Ru catalysts and (b) Mo catalysts.
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in reactions of these catalysts with E-olens.8 A series of fast-
initiating catalysts 1–4 was reported to signicantly improve
activity of stereoretentive catalysts in highly E-selective reac-
tions (Fig. 3).

The rst example of the stereoselective synthesis of macro-
cycles using stereoretention was reported using Mo-based
catalysts to generate E-macrocycles (91–98% E) from diene
substrates containing an E-alkenyl-B(pinacolato) moiety and
a terminal olen.9 We recently reported a highly efficient
synthesis of Z-macrocycles (95–99% Z) using stereoretention
with Ru-based catalysts and substrates bearing a Z-olen and
a terminal olen.10 Hoveyda and co-workers then provided
Fig. 3 Series of fast-initiating, Ru-based catalysts used in achieving
efficient synthesis of E-products in cross metathesis.

This journal is © The Royal Society of Chemistry 2018
further examples of Z-macrocyclizations using other stereo-
retentive Ru catalysts and one example of E-macrocycle
synthesis using 3.11 Additional methods of obtaining E-macro-
cycles include Z-selective ethenolysis of stereochemical
mixtures of macrocycles3 and alkyne metathesis followed by E-
selective semihydrogenation catalyzed by Cp*Ru(COD)Cl/
AgOTf.12
Results and discussion

We anticipated that E-macrocycles could be generated from
diene starting materials containing an E-olen using stereo-
retentive Ru catalysts. The proposed favored metal-
lacyclobutane intermediate avoids steric clashing of the
a substituent with the N-aryl group as proposed in the dis-
favored intermediate (Fig. 4). Catalysts 2–4 were chosen for
studying RCM with these substrates as they had previously
exhibited remarkable activity and selectivity in cross metathesis
of E-olens.8 Based on the aforementioned proposed model for
stereoretention, we expected that reducing the ortho substituent
size of the N-aryl groups would allow for better accommodation
of the b substituent in E-selective RCM. Therefore the reactivity
of 4 with E-olens would be greater than 3, which would
furthermore be greater than that of 2.

Using the approach we established in the synthesis of Z-
macrocycles, we attempted to make E-macrocycle 6 from diene
starting material 5 bearing an E-olen and a terminal olen
(Scheme 1). Using a standard 7.5 mol% catalyst loading typical
of macrocyclization reactions,13 catalysts 2, 3, and 4 reached
a maximum of 4%, 30%, and 39% conversion, respectively, to
the desired product with high E-selectivity (>99% E) at 35 �C.
This low conversion is presumably a result of the instability and
decomposition of unstable Ru methylidenes formed in this
reaction.14 Previous studies have shown that reaction of these
catalysts with E-olens is considerably slower than with Z-
olens.8 Therefore it is proposed that Ru methylidenes persist
longer in solution in reactions with E-olens and are accord-
ingly more prone to decomposition in reactions with E-olens
than in those with Z-olens.

To avoid the formation of Ru methylidenes, diene substrates
containing two E-olens were synthesized. Using substrate 7,
the formation of 12-membered macrocycle 8 was monitored
Fig. 4 Proposed favored and disfavored intermediates in the forma-
tion of macrocycles from dienes containing an E-olefin.

Chem. Sci., 2018, 9, 3580–3583 | 3581
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Scheme 1 Synthesis of E-macrocycle 6 from 5 using 2–4. Conversion
determined by 1H NMR. Selectivity determined using gas
chromatography.

Scheme 2 Synthesis of diene substrates bearing two E-olefins.
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using catalysts 2–4 at 35 �C (Fig. 5a). Catalyst 4 displayed
remarkable activity in this reaction. Aer 30 minutes, the
reaction reached 30% conversion to 8 with 4, while 3 provided
just 5% conversion and 2 reached 2% conversion. Aer just 1 h,
4 achieves 57% conversion. To reach the same conversion, 3
requires 9 h, while 2 never attains this level of conversion. A
maximum of 70% conversion to 8 is achieved using 4, while 3
reaches a maximum of 62% conversion and 2 gives 51%
conversion. With each of these catalysts, high E-selectivity
(>99% E) was maintained throughout the course of the reaction.

Assuming rst-order kinetics with respect to diene 7, rate
constants were measured for catalysts 2, 3, and 4 under these
reaction conditions and were determined to be 3.92 � 10�2 s�1,
Fig. 5 (a) Plot of conversion vs. time for RCM of 7 to 8 using catalysts
2–4. (b) Plot of ln([7]/[7]0) vs. time for this reaction. Conversion
determined by 1H NMR. Selectivity determined using gas
chromatography.

3582 | Chem. Sci., 2018, 9, 3580–3583
3.27 � 10�1 s�1, and 8.64 � 10�1 s�1, respectively (Fig. 5b). The
relative rate constants hence have values of krel4 ¼ kobs4/kobs2 ¼
22.0 and krel3 ¼ kobs3/kobs2 ¼ 8.46. Given the previously observed
low reactivity of E-olens with these catalysts,6,8 these large
disparities in activity highlight the difference in the ability of
each of these catalysts to provide signicant yields of products.

An array of diene substrates bearing two E-olens were
synthesized from internal alkyne starting materials which could
be reduced by Li/NH3 or LiAlH4 (Scheme 2). Subsequent Jones
oxidation was used to generate the carboxylate moiety of the
desired ester product. EDC coupling of this carboxylic acid with
the corresponding alcohol gives the substrate in a scalable
synthesis.

Using these substrates, a variety of macrocyclic lactones were
synthesized, ranging in size from 12- to 18-membered rings
Table 1 Synthesis of macrocyclic lactones using catalysts 2 and 4 a

a Yields shown are isolated yields. Stereoselectivity determined by gas
chromatography.

This journal is © The Royal Society of Chemistry 2018
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(Table 1). Each of these macrocycles was generated with the
concomitant loss of gaseous trans-2-butene, which could be
easily removed from the reaction mixture. Using catalyst 2,
products were obtained in moderate to good yields (47–66%)
and with high E-selectivity (>99% E) in 24 h at 35 �C. Much
shorter reaction times could be achieved using 4, which
provided these macrocycle products in 5 h in good to high yields
(60%–80%) while high E-selectivity was maintained (>99% E).
Using 4, the antibiotic recifeiolide 9 was synthesized in 80%
yield with >99% E-selectivity in 8 h. Longer reaction times were
likely required for this reaction due to steric encumbrance of
the methyl group in the starting material.
Conclusions

We have demonstrated that stereoretentive Ru catalysts sup-
ported by dithiolate ligands can be used in the synthesis of E-
macrocycles with exceptional selectivity (>99% E) from diene
starting materials bearing two E-olens. Catalyst 4 delivers
meaningful yields of macrocyclic products in appreciably
shorter reaction times than other stereoretentive Ru catalysts 2
and 3 as evidenced by kinetic studies. Using this method, 12- to
18-membered macrocycles including recifeiolide were synthe-
sized in moderate to high yield (47–80% yield).
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