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An adhesive elastomeric supramolecular
polyurethane healable at body temperatures

Antonio Feula,® Xuegang Tang,® loannis Giannakopoulos,® Ann M. Chippindale,®
lan W. Hamley,? Francesca Greco,© C. Paul Buckley,? Clive R. Siviour®
and Wayne Hayes*?

In this paper, we report the synthesis and healing ability of a non-cytotoxic supramolecular polyurethane
network whose mechanical properties can be recovered efficiently (>99%) at the temperature of the
human body (37 °C). Rheological analysis revealed an acceleration in the drop of the storage modulus
above 37 °C, on account of the dissociation of the supramolecular polyurethane network, and this
decrease in viscosity enables the efficient recovery of the mechanical properties. Microscopic and
mechanical characterisation has shown that this material is able to recover mechanical properties across
a damage site with minimal contact required between the interfaces and also demonstrated that the
mechanical properties improved when compared to other low temperature healing elastomers or gel-

. 416th D ber 2015 like materials. The supramolecular polyurethane was found to be non-toxic in a cytotoxicity assay

eceive th December . . L L o N .

Accepted 14th March 2016 carried out in human skin fibroblasts (cell viability > 94% and non-significantly different compared to the
untreated control). This supramolecular network material also exhibited excellent adhesion to pig skin

DOI: 10.1039/c55c04864h and could be healed completely in situ post damage indicating that biomedical applications could be
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Introduction

Materials capable of self-repair offer attractive advantages in
many applications, especially in terms of performance and
longevity.'*® In recent years, polymers have been reported that
can heal when external stimuli (such as heat,”** pressure,***
light'®*®) are applied to damaged sites.”>** Potential applica-
tions for healable materials within modern society include
paints,*?* aerospace composites,* regenerative medicine,* (in
particular artificial skin®*2¥) and plastic surgery.?*>* Successful
approaches to healable polymer networks that have been re-
ported to date include encapsulated-monomer systems,***>-*
reversible covalent bond formation,'?*3¢ utilisation of irre-
versible covalent bond processes®” and more recently supra-
molecular self-assembly.***° In the latter approach, network
formation is facilitated** by a combination of non-covalent
bond association (hydrogen bonds,****** electrostatic
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targeted, such as artificial skin or wound dressings with supramolecular materials of this type.

interactions,” aromatic -1 stacking interactions”**® or
dynamic metal-ligand bonds***’) and phase separation
between the polar end-groups and apolar polymer chains,
which serves to strengthen the end-groups aggregation, result-
ing in enhancement of the supramolecular interactions.'**® The
weak nature of non-covalent interactions permits the materials
to possess thermo-responsive and thermo-reversible properties,
thereby delivering dramatic viscosity changes over well-defined
and tuneable temperature ranges. These addressable and
tuneable characteristics*"* are highly desirable in both bulk
commodity and value-added applications, such as adhesives,*
shape-memory materials,”** healable coatings'® and impact-
resistant structures (e.g. protection for mobile electronics). An
important class of supramolecular polymers, which have been
developed in the last decade, are polyurethanes. Supramolec-
ular polyurethanes (SPUs)**** are synthesised via reaction of
diols or polyols with polyisocyanates and alcohols or amines.**
The physical properties of SPUs have been shown to directly
correlate*! to the nature of the hydrogen bond receptors that are
generated by the reaction of isocyanate end groups and alcohols
or amines.**%>*

The generation of synthetic materials able to mimic human
skin or that are suited for rapid wound isolation is a notable
challenge in the biomedical industry.> Supramolecular poly-
mers have already been employed in biomedicine as biocom-
patible thermoplastic elastomers®®* and acrylic copolymers
utilised in wound dressings in the form of commercially

Chem. Sci,, 2016, 7, 4291-4300 | 4291


http://crossmark.crossref.org/dialog/?doi=10.1039/c5sc04864h&domain=pdf&date_stamp=2016-06-18
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sc04864h
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC007007

Open Access Article. Published on 15 mis Meurth 2016. Downloaded on 01/02/2026 19:34:04.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

available spray plasters (e.g. Elastoplast®, OpSITE™ and
TCP®).*** Whilst elastomeric, these acrylic-based materials
have not been described as healable in nature and thus new
skin coatings whose properties offer the ability to repair phys-
ical damage in situ by taking advantage of the thermal energy
provided by the host but without the requirement of a stimulus
such as electrical current®*® represent a significant practical
advancement. In this paper, we report the synthesis and healing
ability of a SPU whose mechanical properties can be recovered
at the temperature of the human body (37 °C). In order to
demonstrate the potential use of this SPU system in a biomed-
ical setting, we also reveal that films of this material adhere to
pig skin and can be healed in situ post damage.®’

Results and discussion

The supramolecular polyurethane 1 was synthesized*"*>*® using
an established two-step process. Firstly, a hydrophobic and
elastomeric diol, Krasol™ HLBH-P2000, was reacted with
methylene diphenyl diisocyanate (MDI) at 80 °C for three hours
to afford a prepolymer featuring isocyanate end-groups. 4-(2-
Aminoethyl)morpholine was then added to the prepolymer to
install the receptor end-groups via urea bond formation and
afford the desired polyurethane 1 in a yield of 93% (see Fig. 1
plus ESI Fig. S1-S37 for spectroscopic and thermal data). Chain
extension in polyurethane 1 was minimal, '"H NMR spectro-
scopic analysis revealed a ratio of 1 : 1 for the integrals of the
proton resonances of the urethane and urea groups of the end-
capping units, consistent with the feed ratios used in the pre-
polymer and end-capping steps. GPC analysis (THF, room
temperature) revealed a material with M;, and M,, values of 4097
and 4287, respectively.

Dynamic rheological testing was employed to characterise
the viscoelastic properties of the polyurethane 1. Temperature
and frequency sweeps were performed using an Anton-Paar
Physica MCR301 Rheometer, in oscillatory shear. In the low
temperatures regime (from 0 to 35 °C, Fig. 2a), the elastic
rubbery character clearly dominates the properties; there is
a gradual decrease of storage modulus and concomitant
constant loss modulus with increasing temperature. However,
the drop of the storage modulus accelerates above 37 °C, owing
to the dissociation of the supramolecular polyurethane network
formed,' and viscous behaviour governs the properties of
polyurethane 1 at the temperature of 50 °C and above. The
master curve shown in Fig. 2b was constructed by manual
shifting of isothermal frequency sweep data (the raw data are
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available in the ESI, Fig. S4}).°® The overlapping of data ob-
tained at different temperatures indicates that time/tempera-
ture superposition analysis was applied successfully to the
rheological data for polyurethane 1. The resultant master curve
shows the highly rate dependent behaviour of polyurethane 1
with a typical terminal zone, transition zone to flow, plateau
zone (rubbery), and transition zone to glassy behaviour, as
indicated in Fig. 2b, over the full investigated frequency regime.

Fig. 2¢ shows the shift factors, ar, used to produce the master
curve, as a function of temperature. It is observed that ar
changes by over 9 orders of magnitude between —30 and +80 °C.
This large change in ar over a small, readily accessible
temperature range is consistent with dissociation of the
supramolecular network, leading to a large drop in viscosity
that thereby facilitates healing of damage sites. This dramatic
change is attributed to additional relaxation processes, which
do not occur in amorphous covalently bonded polymers, and to
the disengagement of the supramolecular (w-m stacking or
hydrogen-bonding) interactions. For amorphous, covalently
bonded polymers, there is a linear relationship between ar and
normalised temperature, but recent research shows that this
trend is not observed in the case of supramolecular poly-
mers.**”® The behaviour of polyurethane 1, shown in Fig. 2d, is
consistent with other supramolecular polymer systems:***¢7°
two linear zones are evident, with a transition associated with
the dissociation of the network, but with a lower transition
temperature than observed in previously reported materials.
Importantly, although the mechanical response of polyurethane
1 is comparable to other supramolecular polymers and blends,
the temperature at which the intermolecular interactions
disengage is close to body temperature.

In order to understand the morphology of polyurethane 1,
variable temperature (20 to 100 °C) wide angle X-ray scattering
(WAXS) and small angle X-ray scattering (SAXS) analyses were
conducted. The WAXS scattering pattern shows a lattice spacing
of 5.43 A corresponding to the stacking of the urea moieties
(Fig. 3a).”* It is interesting to note that with increasing
temperature the lattice spacing becomes consistently less
sharp, suggesting that the hydrogen bonding interactions
between the urea moieties of polyurethane 1 are being dis-
rupted. In particular, the change of the morphology is evident at
a temperature of 60 °C in accordance with the rheology data.

Two Bragg peaks (61 and 145 A) are evident in the SAXS
profile (Fig. 3b), suggesting a microphase-separated morphology
arising from the immiscibility of the hard hydrogen bonding
end-groups with the soft polymer backbone. In addition, in the

W1, 0708~
P
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Fig. 1 The supramolecular polyurethane 1 featuring urea morpholine end groups and a schematic representation of this polymer.
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Fig. 2 The rheological behaviour of polyurethane 1. (a) Temperature sweep at 5 Hz; (b) master curve at a reference temperature of 30 °C,
different colours corresponding to different temperatures; (c) time—temperature shift factor at of polyurethane 1 as a function of temperature;
(d) plot of ar for polyurethane 1 as a function of temperature normalized to T

SAXS profile a drastic change in the morphology is evident at
a temperature of 60 °C.

Optical microscopy was first used to probe the healing ability
of this supramolecular material. In the light of the rheological
data polyurethane 1 was exposed to a temperature of 37 °C and
the dynamics of the healing process at this temperature was
monitored. A sample was cut along the centre, transverse to its
long axis with a razor, and then positioned with the cut edges in

close contact. Fig. 4 shows two dimensional microscopy images,
which reveal that the material surrounding the cut flows into
the damage site upon heat treatment and after 120 minutes, the
material becomes essentially homogenous with the position of
the cut barely visible. Furthermore, the three dimensional
surface profilometry images (Fig. 4) revealed the same behav-
iour and the surface rough profile shows that the roughness
around the cut area is both qualitatively (ie. visibly) and
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(a) Wide angle X-ray scattering (WAXS) of polyurethane 1, (b) small angle X-ray scattering (SAXS) of polyurethane 1.
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Fig. 4 The dynamics of the healing for polyurethane 1 at the temperature of 37 °C (2D and 3D microscopy). The roughness profile is from the
middle of the whole sample across the crack horizontally as indicated in the figure by the red line. The scale bar in the picture is 200 um. Cartoons
have been added to 0, 60 and 120 minute images to illustrate the healing process.

quantitatively comparable to the other areas in the surface of
the sample, indicating a fully topological recovery of the cut
interface.

The microscopy data reveal that the physical integrity of
polyurethane 1 can be recovered within two hours at a temper-
ature of 37 °C. To examine the recovery of the mechanical
properties after healing, tensile tests were performed on speci-
mens ca. 0.5 mm thick, 40 mm long and 5 mm wide. For the
healed samples, the two cut edges were positioned in contact,
but not overlapped, as described in previous studies.”™®
Experiments were performed on pristine materials and

4294 | Chem. Sci., 2016, 7, 4291-4300

specimens healed for different time periods at 37 °C. Pristine
material heated to 37 °C for 120 minutes was also tested. Mean
stress—strain curves with error bars are shown in Fig. 5, and the
corresponding mechanical properties calculated from the
individual stress-strain curves (see Fig. S51) are shown in Table
1. It should be noted that in these experiments, the strain was
calculated using digital image correlation on images of the
specimen surface. The tensile modulus was calculated from the
slope of the stress—strain curve between 0 and 4% strain. It was
observed that thermal annealing improved the mechanical
properties of polyurethane 1, as revealed by the apparent

This journal is © The Royal Society of Chemistry 2016
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Fig. 5 Mean stress—strain curve for pristine and healed polyurethane
1. Pristine material has no heat treatment. Data from cut and healed
material are presented after healing for 15, 30, 60 and 120 minutes.
Finally, data are presented for pristine material heated to 37 °C for 120
minutes. Data from all specimens are shown in the ESI, see Fig. S5.1
Note that in this figure, the end of the stress—strain curve does not
indicate specimen failure.

modulus of 6.32 MPa, yield strength of 0.68 MPa for pristine
polyurethane 1 and 6.81 MPa and 0.82 MPa, respectively, for
heat treated material after 120 minutes at 37 °C, indicating the
reorganisation of the supramolecular network to attain the
thermodynamic minimum. For the healed samples, it was
observed that the mechanical properties recovered steadily and
after 60 minutes, the mechanical performance was comparable
to uncut pristine samples (apparent modulus: 6.72 MPa vs. 6.81
MPa, yield strength: 0.76 MPa vs. 0.82 MPa, elongation at break:
431% vs. 427%, and energy absorbed: 243 MPa vs. 269 MPa for
sample healed after 60 minutes and heat treated polyurethane 1
after 120 minutes, respectively). Therefore, it can be concluded
that polyurethane 1 can completely recover all the mechanical
performance after healing at a temperature of 37 °C for 60
minutes.

The investigation of the healing properties of polyurethane 1
demonstrates that it can recover its mechanical properties fully
at body temperature after 60 minutes, which suggests that it has
the potential to be used as a biomedical material, such as
artificial skin and as an adhesive within temporary wound
dressings.”” Therefore, the mechanical performance of poly-
urethane 1 under different physiological conditions was
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Fig. 6 Mean stress—strain curve for pristine and polyurethane 1 at
different physiological conditions. (Pristine PU1) pristine polyurethane
1, (RT-DW) at room temperature in distilled water for 48 hours, (RT-
PBS) at room temperature in PBS solution for 48 hours, (37DEG-DW) at
37 °C in distilled water for 12 hours and (37DEG-PBS) at 37 °C in PBS
solution for 12 hours. Samples were wiped dry before testing.

investigated - films of polyurethane 1 were soaked in distilled
water and a phosphate buffered saline (PBS) solution at both
room temperature (19 + 0.5 °C for 48 hours) and body
temperature (37 °C for 12 hours). Mean stress-strain curves are
shown in Fig. 6, and the corresponding mechanical properties
calculated from the individual stress-strain curves (see Fig. S67)
are shown in Table 2. It was observed that both the modulus
and strength decreased up to 30% after soaking in distilled
water or PBS solution, but the elongation to break increased.
This suggests that water diffuses into the polymer network and
acts as a plasticiser, thus decreasing the stiffness and strength
but improving failure resistance. Despite the water absorption,
the chemical integrity of the bulk material is stable under
exposure to these physiological conditions, as indicated by the
mechanical performance of polyurethane 1 (compared to pris-
tine polyurethane 1) at different physiological conditions (see
Table 2).

Polyurethanes are routinely employed as adhesives in
a diverse range of applications including biomedical
devices.”****” Within this context, the adhesive properties of
polyurethane 1 were investigated using pig skin as a model
substrate. A simple manual peel off test was carried out to

Table1 Mechanical properties from tensile testing of polyurethane 1 with different healing times; means and (standard deviations) from at least

four samples. Names correspond to Fig. 5

Tensile modulus®

Yield strength

Elongation at Energy absorbed

Sample (MPa) (MPa) break (%) (MPa)
Pristine 6.32 £ 0.36 0.68 £ 0.05 405 £ 47 207 £ 23
15 minutes 6.38 £ 0.34 0.66 £ 0.08 234 £ 147 124 + 74
30 minutes 6.64 + 0.34 0.72 £ 0.02 222 £ 137 129 + 62
60 minutes 6.72 £ 0.38 0.76 £ 0.02 431 £ 40 243 £ 18
120 minutes 6.93 £ 0.27 0.77 £ 0.01 432 £ 45 248 £ 21
Pristine heated 6.81 £+ 0.20 0.82 £ 0.03 427 £ 217 269 £ 126

% This modulus was calculated using forces measured by the mechanical testing machine and local strains measured using an optical technique
(digital image correlation) between strains of 0 and 3.5%. The value is therefore a linear approximation to the true, non-linear, polymer behaviour.

This journal is © The Royal Society of Chemistry 2016
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Table 2 Mechanical properties from tensile testing of polyurethane 1 at different physiological conditions, means and (standard deviations) from

at least five samples

Tensile modulus® Yield strength Elongation at Energy absorbed
Sample (MPa) (MPa) break (%) (MPa)
Pristine PU1 6.32 + 0.36 0.68 £+ 0.05 405 + 47 207 + 23
RT-DW 5.68 + 0.21 0.58 + 0.04 550 £ 140 194 + 34
RT-PBS 4.61 + 0.30 0.46 £ 0.02 535 + 190 143 £+ 35
37DEG-DW 5.09 + 0.28 0.50 + 0.03 473 £ 150 139 + 40
37DEG-PBS 5.40 + 0.65 0.53 £ 0.03 583 £ 160 182 + 28

“ This modulus was calculated using forces measured by the mechanical testing machine and local strains measured using an optical technique
(digital image correlation) between strains of 0 and 3.5%. The value is therefore a linear approximation to the true, non-linear, polymer behaviour.

investigate the adhesive properties of polyurethane 1 first. The two pieces of washed skin. The obtained sandwich structure
skin was washed with acetone to remove residual fats and with polyurethane 1 film in the middle was placed in an oven at
preservatives; a film of polyurethane 1 was then placed between a temperature of 37 °C for a period of 4 hours. Fig. 7 shows
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Fig. 7 The investigation of the adhesive property of polyurethane 1 with a pig skin substrate.
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Fig. 8 The healing of polyurethane on the surface of pig skin: (a) (overall view), (b) (2D microscopy), (c) (3D microscopy) corresponding to the
sample before healing, and (d) (overall view), (e) (2D microscopy), (f) (surface roughness profile) corresponding to polyurethane 1 healing at the
surface of pig skin after two hours. The surface roughness profile is from the middle of the whole sample across the crack horizontally as

indicated in (e) by the red line. The scale bar in the pictures is 200 pm.

images of polyurethane 1 being removed from the skin manu-
ally. It can be observed that during the peel off, there is a large
deformation of polyurethane 1 film, and that cohesive failure
occurs occasionally (as shown in the pictures of the failure from
the pig skin surface and the large deformation of polyurethane
1 before failure), which indicates that good bonding properties
can be achieved between the pig skin and the film of poly-
urethane 1. To quantify the adhesive strength peel tests were
performed on samples of width 1.25 mm and length 80 mm,
using a commercial tensile test frame. A rig was designed to
hold the sample and apply the loading. The specific arrange-
ment of the test sample and setting of the rig is shown in Fig. S7
in the ESI.T As a result of the difficulties in cutting sufficiently
flat skin samples, it proved impossible to maintain uniform
contact (thus uniform pressure) across the whole sample during
preparation, which leads to significant variation of the peel
force during the test,”® as observed in Fig. 7 (force vs.
displacement curve). However, preliminary results strongly
suggest that stable peel strength can be generated and a peel
force of 2 N can be achieved (the high force region corre-
sponding to the dendritic failure surface due to the large
deformation polyurethane 1 experienced during the peel test).
In all, both the qualitative evidence (large plastic deformation of
polyurethane 1 film and cohesive failure during the peel off)
and quantitative data (peel strength) suggest good adhesive
properties of polyurethane 1 to bind skin substrates.

The healing capability of the adhered polyurethane 1 on the
pig skin surface was also investigated. A sample was cut in the
centre gently, transverse to its long axis, with a razor and
positioned with the cut edges in close contact on the surface of
pig skin. The sample was then placed in the oven at 37 °C for
two hours. The images before healing and after healing for two
hours were captured by high-resolution digital camera and
optical surface profilometry, and the corresponding results are

This journal is © The Royal Society of Chemistry 2016

shown in Fig. 8. It was observed that a clear cut existed before
healing, which disappeared completely after two hours healing
at the temperature of 37 °C, as indicated by the surface rough-
ness profile which shows that the roughness around the cut
area is both qualitatively (i.e. visibly) and quantitatively
comparable to the other areas in the surface of the sample,
indicating a fully topological recovery of the cut interface.
Therefore, the excellent healing capability of polyurethane 1
was maintained even when attached on the surface of pig skin.

Creep recovery experiments were performed in the same
rheometer as described above to further characterise the
viscoelastic response of the materials (see Fig. 9). It is observed
that the creep behaviour of polyurethane 1 shows linear
dependence on the stress level, but is very sensitive to temper-
ature. For example, at 10 °C, 0.17% deformation is observed at
aload of 200 Pa after about 1 hour, and 38% of this deformation
can be recovered after 1 hour. This indicates good elasticity
recovery of polyurethane 1, and is expected to be due to the
strong non-covalent interaction between polymer chains from
the hydrogen bonds. However, at a temperature of 20 °C, the
deformation increases significantly to 1.43%, and only 5% of
this deformation is recovered after 1 hour, which is consistent
with the disruption of the hydrogen bonds at elevated temper-
atures; although this is not observed in the 5 Hz rheometer data
(Fig. 2) until higher temperatures, it does have a significant
effect on the creep and recovery behaviour on these longer
timescales. The behaviour of polyurethane 1 is similar to
another polyurethane we reported recently,” but with a lower
disruption temperature for the secondary interaction, which is
consistent with the lower healing temperature (37 °C) of this
material compared with 45 °C for that reported before, and also
consistent with the observed recovery data for the two materials.
Further creep recovery experiments were performed at 37 °C,
the recovery at larger stresses was minimal, although at 10 Pa it

Chem. Sci,, 2016, 7, 4291-4300 | 4297
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Fig. 9 Creep-recovery behaviour of polyurethane 1: (a) stress dependence at 20 °C, (b) temperature dependence at 200 Pa; (c) stress

dependence at 37 °C, inset shows recovery at 10 Pa in more detail.

was about 20%. It is anticipated that for biological applications
the creep and recovery behaviour would be improved through
the production of composite materials with suitable fillers.
Whenever a new material is suggested for therapeutic
purposes, toxicity assessment is important to ensure that it is
safe for use. Cytotoxicity studies were carried out on the human
skin fibroblasts, 161BR cells by MTT assay. Polyurethane 1 was
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(PU-ZDEC)  (PE)

Fig. 10 Cytotoxicity profile of liquid extracts from polyurethane at
different concentrations (from 100%: PU100 to 25%: PU25). Poly-
ethylene (PE) and polyurethane (PU) containing 0.1% (w/w) zinc
diethyldithiocarbamate (ZDEC) were used as negative and positive
controls, respectively. Data indicate average + SEM, n = 3. Statistical
significance with respect to untreated sample (medium) was deter-
mined by ANOVA followed by Bonferroni post hoc test and is indicated
in the figure (* = P < 0.05; ns = non-significant).
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found to be non-toxic (cell viability after exposure to liquid
extracts from the polymer >94% at all concentrations, and non-
significantly different from the negative control, see Fig. 10).

Conclusions

A well-defined supramolecular polyurethane capable of self-
assembling via hydrogen bonding interactions has been syn-
thesised. The material presents rheological behaviour charac-
teristic of a supramolecular polymer, but with a low dissociation
temperature for the network, which permits healing at 37 °C.
Results show that after 60 minutes at body temperature, the
material can fully recover its mechanical performance. In addi-
tion, the investigation of the mechanical performance under
physiological conditions shows that the material can maintain
its structural integrity. In addition, when adhered to pig skin, the
healable properties of polyurethane 1 were fully conserved sug-
gesting this material could be used for biomedical applications
such as artificial skin or adhesives for plastic surgery.
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