Effects of perfluoropyridine incorporation into poly(hydroxyethyl methacrylate)†
Abstract
Perfluoropyridine (PFP) is a heavily fluorinated heterocycle which readily undergoes nucleophilic aromatic substitution (SNAr) reactions at low temperatures. Herein, we report a facile synthesis of 2-hydroxyethyl methacrylate derivatives of PFP through solvothermal and mechanochemical means. The resulting monomers were polymerized to form hard, insoluble materials which offer an improvement in thermal stability compared to the starting alcohol. Most unusually the 4-substituted PFP-methacrylate derivative displays superior thermal properties in air compared to nitrogen and generally superior thermal properties compared to the starting alcohol. Additionally, di-substitution of the PFP to form the di-methacrylate appears to initiate decomposition of the monomer into ethylene glycol dimethacrylate through an acyl fluoride-mediated transesterification.