An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management†
Abstract
Flexible cellulose-based conductive films reveal high potential in electromagnetic interference (EMI) shielding and thermal management applications. However, the high contact electrical/thermal resistance in these films is still a challenge to face. In this work, an asymmetric sandwich structural film containing a cellulose nanofiber (CNF) skin-layer and self-supported Ti3C2Tx MXene and silver nanowire (AgNW) core-layers (CNF@MXene@AgNW film) was fabricated through layer-by-layer assembled vacuum-assisted filtration. The unique sandwich structure not only provides a highly conductive network by the highly oriented and self-supported conductive core-layers, but also maintains its structural integrity by ambilateral CNF layers. As a result, the CNF@MXene@AgNW film reveals a strong tensile strength of 118 MPa and a toughness of 4.75 MJ m−3, super-flexibility (minimum bending radius of ∼85 μm), a high electrical conductivity (37 378.2 S m−1), effective EMI shield effectiveness (SE, 55.9 dB), outstanding specific SE (SSE/t, 10 647.6 dB cm2 g−1) and high in-plane thermal conductivity (15.53 W m−1 K−1), simultaneously. More interestingly, the sandwich film also reveals outstanding solar-thermal energy conversion ability, which guarantees its normal function in extremely cold environment. The unique asymmetric sandwich structure provides a new strategy for designing and preparing high-performance EMI shielding and thermal conductive films.
- This article is part of the themed collections: Nanoscale 2022 Lunar New Year Collection, Nanoscale Most Popular 2021 Articles and 2021 Nanoscale HOT Article Collection
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        