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Electrocatalysts are crucial for efficient electrochemical devices that enable sustainable chemical
transformations. Electrocatalyst activity has been correlated to the thermodynamics of reaction inter-
mediates that balance intermediate formation and desorption. However, a lack of detailed experimental
thermodynamic information about reaction energetics limits the design of next-generation electro-
catalysts. Here we show kinetic and electroadsorption studies of precisely terminated first-row transition
metal ruthenium oxide nanocrystals that elucidate how material chemistry influences the oxygen
evolution reaction activity and reaction energetics. We established the energy scaling relations between
the *OH, *O, and *OOH intermediates involved in the oxygen evolution reaction. These energy scaling
relations were leveraged to design an FeMn—RuOy electrocatalyst with an 876% increase in mass activity
compared to RuO,. Our study highlights the potential for precise nanocrystal synthesis and electroad-
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sorption analysis to rationally guide the design of next-generation electrocatalysts with improved activity

rsc.li/ees and further elucidate mechanisms of catalyst activation.

Broader context

The development of highly active electrocatalysts is vital for advancing renewable energy technologies that enable net-zero carbon emission energy and
chemical infrastructures. The activity of electrocatalysts for multi-electron transfer reactions has been hypothesized to be dictated by the energetics of
intermediate formation based on theoretical investigations. However, general methods to experimentally probe reaction energetics have remained elusive,
preventing close integration of experimental and theoretical methods for rational catalyst design. Herein, we report electroadsorption and kinetic studies
that elucidate the reaction energetics of oxygen-evolving electrocatalysts consisting of well-defined ternary first-row transition metal ruthenium oxide
nanocrystals (M-RuO,, M =V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). Analysis of the electroadsorption profiles for M-RuO, enabled the experimental measurement
of intermediate binding energies that revealed energy scaling relations that exhibited linearity consistent with theoretical predictions. Electroadsorption
analysis was utilized to aid the design of a quaternary transition metal ruthenium oxide electrocatalyst, FeMn-RuO,, that exhibited higher activity towards
the acidic oxygen evolution reaction compared to the most active M-RuO, and RuO,. Our study highlights the potential for electroadsorption analysis to
elucidate the reaction energetics of complex multi-electron transfer reactions, which can accelerate the rational design of next-generation electrocatalysts
with superior activity.

Introduction

Electrochemical devices powered by renewable energy enable
the decarbonization of human activities to address ongoing
energy and environmental challenges."™ In electrolyzers,
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cathodic reactions that can generate fuels, commodity chemicals,
and fertilizers are paired with the oxygen evolution reaction (OER),
which oxidizes water molecules to form molecular oxygen via four
electron-transfer steps.”® Ruthenium dioxide (RuO,) has been
identified as one of the most promising binary oxides for the
OER in acidic environments due to improved catalytic activity,
but decreased stability, compared to iridium dioxide (IrO,) and
greater elemental abundance.'®™® Efforts to further enhance the
activity and stability of RuO, have focused on chemical, defect,
and structural modulations, with a substantial body of work
indicating several promising approaches to activate oxygen elec-
trocatalysis.">">>* However, to date, state-of-the-art OER electro-
catalysts still exhibit lower activity than cathodic electrocatalysts
for fuel formation, necessitating high OER catalyst loading in
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devices and decreasing the scalability of electrolyzer technologies
for chemical transformations.”*>°

The slow kinetics of oxygen-evolving electrocatalysts have
been attributed to non-ideal energy scaling relations of
the OER intermediates (*OH, *O, and *OOH).>*>* Seminal
computational studies have explored energy scaling relations
between the OER intermediates with quantum mechanical
(QM) methods.**™*" Additionally, electrochemical studies
of single-crystalline RuO, and IrO, surfaces have revealed
the energy scaling relations of elementary reaction steps
involved in the OER via the analysis of electroadsorption
features.>***™** These approaches have provided important
insights about electrocatalysts. However, understanding the
OER intermediate energy scaling relations of next-generation
electrocatalysts with nanoscale morphologies and complex
chemical compositions remains a challenge. Recent studies
have established synthetic pathways to obtain nanocrystals
with precise crystallographic terminations, which have indi-
cated that particle-to-particle heterogeneity and facet-
dependent properties influence the macroscopic properties
of particle ensembles.”>*® Thus, there is a need to develop
approaches to quantitatively study the energetic pathways of
complex reactions such as the OER to rationally design
electrocatalysts with high activity.

In this study, we report the synthesis of rutile oxide nano-
crystals consisting of a first-row transition metal, ruthenium,
and oxygen (M-RuO,, M =V, Cr, Mn, Fe, Co, Ni, Cu, and Zn)
and the experimental determination of energy scaling relations
between the *OH, *O, and *OOH intermediates for the OER.
The synthesis of M-RuO, nanocrystals with well-defined (110)
and (111)/(112) crystallographic facets and minimal structural
defects enabled the determination of chemical effects on
electrocatalysis. Our experiments for binary systems revealed
that only Mn-RuO, exhibits substantially improved activity
compared to RuO, on an electrochemically-active surface-area
basis. Electroadsorption analysis enabled the determination of
absolute reaction energetics for the *OH, *O, and *OOH inter-
mediates and quantification of intermediate surface coverage
for all M-RuO, nanocrystals. The energetics of the OER on (110)
and (111)/(112) surfaces could be deconvoluted and revealed
distinct facet-dependent energy scaling relations. The observed
variation in catalytic activity for all M-RuO, samples could be
accurately described by a kinetic model that incorporates OER
energetics and intermediate surface coverage determined from
electroadsorption analysis. Importantly, these insights enabled
the design of a ternary FeMn-RuO, electrocatalyst that was
predicted to exhibit improved activity and was experimentally
validated to yield an 876% and 309% improvement in mass
activity compared to RuO, and Mn-RuO,, respectively. The
observed enhancement in activity for FeMn-RuO, was further
validated by density functional theory (DFT) models of the OER
on the (110) M-RuO, surfaces. Overall, our study highlights the
potential for electroadsorption analysis and precise nanocrystal
synthesis to provide key insights that elucidate electrocatalytic
reaction pathways and enable the design of next-generation
electrocatalysts.
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Experimental
Synthesis method of nanocrystals

All samples were prepared using a previously reported molten
salt synthetic method.*® To synthesize ruthenium dioxide
(RuO,) nanocrystals, 4.55 g of NaCl, 600 uL of 80 mM RuCls,
and 500 pL of 400 mM Na,SO, were added to a 10 mL ceramic
crucible (470149-028, VWR International). To synthesize each
ternary first-row transition metal ruthenium oxide nanocrystal
sample (M-RuO,, M =V, Cr, Mn, Fe, Co, Ni, Cu and Zn), 4.55 g
of NaCl, 250 pL of 80 mM RuCl;, 500 uL of 400 mM Na,SO,,
500 pL of deionized water, and 50 pL of 400 mM transition
metal salt precursor dissolved in 2 M HCIl were added to a
ceramic crucible. To synthesize iron manganese ruthenium
oxide (FeMn-RuO,) nanocrystals with different atomic percen-
tage of Fe, 4.55 g of NacCl, 250 pL of 80 mM RuCl;, 500 pL of
400 mM Na,SO,, 500 pL of deionized water, between 15 and
50 uL of 400 mM MnCl, dissolved in 2 M HCI and between 0
and 50 puL of 400 mM of FeCl; dissolved in 2 M HCI were added
to a ceramic crucible.

For RuO, and M-RuO,, all the contents in the crucible were
well-mixed via stirring and then heated at 700 °C for one hour
in a box furnace with a heating rate of 20 °C min~" and with
natural cooling. For FeMn-RuO,, all the contents in the cruci-
ble were well-mixed via stirring and then heated at 500 °C for
one hour in a box furnace with a heating rate of 20 °C min™*
and natural cooling. After cooling down to room temperature,
all samples were purified with a series of washing steps. All the
washing steps were conducted by centrifuging the samples at
6000 rpm and removing the supernatant. Approximately 35 mL
of water was used to transfer the contents in each crucible to a
50 mL centrifuge tube. Each sample was washed for 10 minutes
to ensure total dissolution of the salt matrix. Subsequently,
each sample was re-dispersed in 1 mL of 2 M HCI and trans-
ferred into a 1.5 mL microcentrifuge tube. The microcentrifuge
tubes were immersed in a 90 °C hot water bath for one hour
unless otherwise specified to remove any excess oxides that
were unstable in acid.'”*”*® After cooling down from the water
bath, the acid supernatant was removed via centrifugation.
Each sample was washed twice with 1 mL of water and once
with 1 mL IPA, centrifuging for 5 minutes and removing the
supernatant after each washing step. After all the washing
steps, samples were stored in a vacuum desiccator until
completely dry.

Electrochemical characterization

All electrochemical measurements were conducted using a
rotating disk electrode (MSR Rotator, Pine Research) operated
at 2000 rpm and a three-electrode system at room temperature
(25 °C) using a digital potentiostat (Bio-logic VSP-300). The
counter electrode was a platinum electrode (Pine Research), the
reference electrode was an Ag/AgCl electrode (Pine Research),
the working electrode was a glassy carbon rotating disk elec-
trode (Pine Research, diameter of 5 mm), and the electro-
Iyte was 1.0 M HClO,. Ultrahigh purity oxygen was bubbled
during the experiments to saturate the electrolyte. The Ag/AgCl

This journal is © The Royal Society of Chemistry 2025
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reference electrode was calibrated to 0.1899 V versus the rever-
sible hydrogen electrode (RHE). Electrocatalyst inks were pre-
pared for each sample as follows. For every 1 mg of nano-
powder, 83.5 pL of H,0, 35.5 pL of IPA and 6 uL of Nafion were
added. The mixtures were sonicated for 40 minutes to fully
suspend the particles. The catalyst inks were then drop-cast on
top of a glassy carbon electrode polished to a mirror finish with
3.07 uL of synthesized catalyst ink for a loading of 125 pg cm 2.
The loading was repeated once for all samples, resulting in
a final catalyst loading of 250 pug cm™ 2. To characterize the
electrochemical performance of the catalysts, a series of experi-
ments were conducted. Electrochemical impedance spectro-
scopy (EIS) was conducted to determine the series resistance
with frequency ranging from 1 MHz to 1 Hz. Next, a cyclic
voltammetry (CV) protocol with potential ranges from 0 to
1.45 V versus Ag/AgCl was performed at scan rate (v) descending
from 1000 mV s~ ' to 100 mV s~ . A 10 mV s~ ' scan-rate CV was
performed with potential ranges from 0.95 to 1.45 V versus
Ag/AgCl to measure the OER kinetics at steady-state.

Results and discussion
Nanocrystal synthesis and characterization

Rutile-type nanocrystals (M-RuO,) consisting of a first-row
transition metal (M =V, Cr, Mn, Fe, Co, Ni, Cu, Zn), ruthenium,
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and oxygen were synthesized via a molten salt method to eluci-
date chemical effects on RuO, electrochemical activity (Fig. 1a).
While nanocrystals were synthesized with a loaded 1:1 M:Ru
ratio, transition metal incorporation into the RuO, is expected
to be highly element dependent.”® A 1:1 ratio was chosen to
maximize the amount of transition metal incorporated in the
RuO, lattice to elucidate the maximal effects of transition metal
incorporation on reaction energetics. Acid-stable electrocatalysts
were obtained by treating the as-synthesized M-RuO, nano-
crystals in 2 M HCI at 90 °C for 1 hour as described in the
Experimental section. Additional discussion on the influence of
acid treatment on material and electrochemical properties, as
well as repeated electrochemical cycling, are available in the
ESIf The RuO, nanocrystal exhibited preferential growth along
the [001] direction and surface termination by (110) facets on
the nanocrystal sides, and (111) facets at the nanocrystal tips as
determined by the projected angle and the spacing of the high-
resolution transmission electron microscopy (HR-TEM) pattern
(Fig. 1b). Selected-area electron diffraction (SAED) indicated the
formation of a rutile-type crystal structure for all M—-RuO, and
RuO, samples (Fig. 1c and Fig. S2, ESIt). Scanning electron
microscopy-based energy dispersive spectroscopy (SEM-EDS)
confirmed the incorporation of all first-row transition metals
in the RuO, lattice (Table S1, ESIT). HR-TEM images of M—-RuO,
nanocrystals with first-row transition metal incorporation
showed that they exhibited anisotropic structures and surface
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Fig. 1 Characterization of RuO, and M—-RuO, electrocatalysts synthesized at 700 °C. (a) Model of M—RuO, nanocrystals. (b) HR-TEM image of RuO,
nanocrystal with crystallographic facets and d-spacing labeled. (c) SAED of RuO, single nanocrystal shown in (b) with diffraction spots labeled.
Overpotentials of all M—RuO, compared to RuO, (dash line) at (d) 10 mA cm™2, (e) 0.1 mA cme, 2, and (f) 1 s~ TOF.
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faceting similar to RuO, with minimal structural defects
(Fig. S1, ESIY). The (110) crystallographic facet was present on
all M-RuO, nanocrystal samples. The intersection angle
between the nanocrystal tip and (110) facet was between
113.9 and 143.6 degrees for M-RuO, nanocrystals, corres-
ponding to tip terminations due to (111) and (112) crystal-
lographic facets. X-ray diffraction (XRD) of M-RuO, and RuO,
confirmed the rutile-type structure and indicated that first-row
transition metal incorporation resulted in changes to the rutile
unit cell parameters (Fig. S3 and Table S2, ESIT). In particular,
the ¢ unit cell parameter decreased from 3.11 A for RuO, to
3.08, 3.07, 3.09, and 3.09 A for Cr-RuO,, Mn-RuO,, Fe-RuO,,
and Co-RuO,, respectively. Raman spectroscopy indicated the
presence of Eg, Asg, and B, vibrational modes consistent with a
rutile-type structure for RuO, nanocrystals, and similar modes
with different mode positions for all M—RuO,. except Fe-RuO,,
consistent with previous observations of transition-metal incor-
porated RuO, materials (Fig. S4, ESI{).°>*' Scanning trans-
mission electron microscopy energy dispersive spectroscopy
(STEM-EDS) confirmed the homogenous inclusion of all transi-
tion metals in the M-RuO, lattice (Fig. S5, ESIT).

Oxygen evolution reaction activity

Fig. 1d-f summarizes the electrochemical activity towards the
OER in 1.0 M perchloric acid of M-RuO, and RuO, synthesized
at 700 °C. The resistance corrected overpotential at 10 mA cm >
of geometric area for a catalyst loading of 250 pg cm™> was
315 + 3 mV for RuO, (Fig. 1d, Fig. S6 and Tables S3, S4, ESIT).
The overpotential for Mn-RuO,. was 239 £+ 3 mV, which was the
lowest among all M-RuO, samples. Cr-RuO,, Fe-RuO,, and Ni-
RuO, exhibited overpotentials between 304 + 3 and 313 =+
2 mV, indicating an improvement in activity compared to RuO,.
V-RuO,, Co-RuO,, Cu-RuO,, and Zn-RuO, exhibited a
decrease in activity compared to RuO,. In particular, V-RuO,
exhibited the highest overpotential of 389 + 6 mV. The geo-
metric area-normalized activity of the studied electrocatalysts
could be influenced by two key factors: the surface area of the
nanocrystals, and the density of active sites on a given surface.
The electrochemically-active surface-area (ECSA) normalized
activity is shown in Fig. 1e, Fig. S7 and Table S3 (ESIf). The
overpotential at 0.1 mA per cm,,” is 294 & 2 mV for RuO,. After
ECSA normalization, only Mn-RuO, exhibited higher activity
than RuO,, with an ECSA-normalized overpotential of 267 +
4 mV. These results indicate that the enhanced activity of Cr-
RuO,, Fe-RuO,, and Ni-RuO, could be attributed to surface
area enhancements or differences in active site density, which
was determined via electroadsorption analysis as described in
the Supplementary Methods (ESIt). The active site density of
RuO, was 1.68 + 0.06 sites nm >, corresponding to 33% of the
available Ru coordinately unsaturated sites (CUS) on a RuO,
(110) surface (5.1 sites nm™?) (Table S5, ESI{).*> Cr-RuO,, Cu-
RuO,, and Zn-RuO, exhibited site densities of between 1.61 +
0.07 and 2.361 + 0.003 sites nm 2 (Table S5, ESIt). Mn-RuO,
exhibited a site density of 0.318 £ 0.002 sites nm™?>, corres-
ponding to 6.2% of the CUS sites on a RuO, (110) surface
(Table S5, ESIt). The results indicate that site density must be
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accounted to determine the intrinsic activity of active sites for
different electrocatalysts. The overpotential at a turnover fre-
quency (TOF) of 1 oxygen molecule per active site accounts for
both surface area and site density effects on catalysis. The
overpotential at 1 s~' TOF was 284 + 3 mV for RuO, (Fig. 1f and
Table S5, ESIt). Mn-RuO,, Fe-RuO,, Co-RuO,, and Ni-RuO,
exhibited overpotentials at 1 s~ TOF of 225 + 2, 281 + 2, 260 +
3, and 283 £ 2 mV, indicating that their active sites exhibited
higher intrinsic activity than RuO,. V-RuO,,, Cr-RuO,, Cu-RuO,,
and Zn-RuO;, exhibited decreased activity at 1 s~* TOF compared
to RuO,. In particular, V-RuO, exhibited the highest overpotential
at 346 + 2 mV for 1 s~ TOF. Tafel slope analysis from a limited
current range of 0.1 to 10 mA cm ™2 indicated that RuO,,
Mn-RuO,, and V-RuO, exhibited a Tafel slope of 32.5, 19.1,
and 41.7 mV dec ', and others exhibited Tafel slopes between
23.4 and 29.8 mV dec ' (Fig. S8, ESIt).

Electroadsorption and kinetic analysis

Unless otherwise stated, three cyclic voltammograms were
collected at 1000 mV s~ " and the third cyclic voltammogram
was utilized for electroadsorption analysis. Fig. 2a-d sum-
marizes electroadsorption analysis results of RuO, nanocrystals.
Microkinetic models of the OER for all permutations of unique
reaction energies verified that electroadsorption features would be
observed during fast cyclic voltammetry scans (Fig. S9-S12, ESIt).
In most cases, the number of features observed would be one less
than the rate-determining step. Many energy combinations could
be adequately described by an electroadsorption model of surface-
bound electrochemical reactions (Fig. S13 and S14, ESIY). Fig. S15
(ESIt) and Fig. 2a shows cyclic voltammograms collected for
M-RuO, and RuO, nanocrystals at a scan rate of 1000 mV s L
The capacitive current of the cyclic voltammograms was deter-
mined as described in the Supplementary Methods (ESIt). The
electroadsorption features exhibited peak broadening that
could not be explained by an idealized Nernstian surface-
limited process (Fig. S16a, ESIt). Recent studies have indicated
that the properties of individual RuO, nanocrystals are highly
heterogeneous and that intermediates could exhibit adsorbate-
adsorbate interactions.>**> We developed an analytical model
that could account for electroadsorption peak broadening that
could be used to quantitatively describe the observed capacitive
current of the electrocatalysts as discussed in the Supplementary
Methods (ESIt). Fig. 2b shows the capacitive current obtained
for RuO, nanocrystals. Electroadsorption features are observed
between 0 V vs. RHE and ~1.45 V vs. RHE. The features could be
separated into low-integrated-charge features below 1 V vs. RHE,
and high-integrated-charge features above 1 V vs. RHE. Prior work
on single crystals of RuO, (110) observed electroadsorption
features above 1 V vs. RHE, and the absence of electroadsorption
features below 1 V vs. RHE.** The anisotropic structure of M-RuO,
and RuO, results in the predominant areal exposure of (110)
facets with minor contributions from (111) or other facets. Thus,
we ascribe the observed features above 1 V vs. RHE to (110) facets
and features below 1 V vs. RHE to (111)/(112) facets. The electro-
adsorption features were fit to an electroadsorption model of
*OH, *O, and *OOH intermediate formation.

This journal is © The Royal Society of Chemistry 2025
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three electron-transfer steps involved in the OER. (d) Free energy diagram constructed from electroadsorption analysis. () Comparison between steady-
state current density and kinetic model fit. (f) Surface coverage of *OOH species on (110) site and catalytic current density versus potential.

Analysis of the RuO, capacitive current profile indicates the
formation of *OH, *O, and *OOH intermediates at 1.151 =+
0.007,1.313 £ 0.004, and 1.468 + 0.005 V vs. RHE on RuO, (110)
surfaces, and 0.545 =+ 0.003, 0.797 4 0.003, and 0.962 4 0.003 V
vs. RHE on RuO, (111)/(112) surfaces, respectively (Fig. 2b and
Tables S6, S7, ESIT). Broadening of electroadsorption features
could be described by collections of idealized Nernstian reac-
tions exhibiting normal distributions with standard deviations
in Gibbs free energy between 19 and 117 meV (Fig. 2¢, Fig. S16b
and Tables S8, S9, ESIT). The *OH surface coverage was 0.9 +
0.1 mC cm ™2 and 0.52 + 0.07 mC cm ™2 on (110) and (111)/(112)
surfaces, respectively (Tables S10 and S11, ESIt). The energetics
obtained from electroadsorption analysis enabled the construc-
tion of a reaction coordinate diagram for the OER from the
experimental dataset (Fig. 2d). The determined binding ener-
gies for the OER intermediates on RuO, suggest that (110) and
(111)/(112) surfaces exhibit a thermodynamic barrier of at least
239 + 5 meV and 1380 + 10 meV, respectively (Tables S6
and S7, ESIt). Fig. 2e and f summarizes kinetic analysis for
the OER on RuO, nanocrystals. Substantial overlap between the
formation of *OOH on the (110) surface and activity onset was
observed (Fig. 2f). The overall activity could be adequately
described by an electrochemical reaction with first-order

This journal is © The Royal Society of Chemistry 2025

electrochemical reaction kinetics with respect to *OOH on
(110) crystallographic facets, which exhibit more optimal ener-
getics for the OER compared to (111)/(112) active sites (Fig. 2e).

Fig. 3a and b shows the model analysis of M-RuO,. Capa-
citive current measurements indicate that M—RuO, electrocata-
lysts exhibit differences in electroadsorption compared to RuO,
(Fig. 3a). The resulting binding energies from electroadsorption
analysis enabled the construction of experimental energy scal-
ing relations between *OH, *O, and *OOH for (110) crystal-
lographic facets (Fig. 3c and d). The *OH binding energy ranged
from 1.076 £ 0.002 to 1.209 £ 0.007 eV for (110) facets (Fig. 3c
and d). A linear fit of the *O binding energy versus the *OH
resulted in a slope of 1.66, and an offset of 0.56 eV (Fig. 3c).
A linear fit of the *OOH binding energy versus the *OH resulted
in a slope of 1.98, and an offset of 1.64 eV (Fig. 3d). Similar
analysis was conducted for active sites modeled by (111)/(112)
crystallographic facets (Fig. S17a and b, ESIt). Electroadsorp-
tion analysis of the resulting scaling laws indicates that (111)/
(112) facets for M-RuO, and RuO, exhibit thermodynamics
barriers that are non-ideal for the OER (Table S6, ESIt). The
thermodynamic barrier for Mn-RuO, (110), 185 £+ 1 meV, is
close to the predicted optimum for the OER, 166 meV, based on
the determined scaling law for *O and *OOH (Fig. S17¢, ESIf).
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Electroadsorption analysis indicated that Fe-RuO,, Co-RuO,,
Ni-RuO,, Cu-RuO,, Zn-RuO, destabilized the *OH, *O, and
*OOH intermediates, and Mn-RuO,, V-RuO,, Cr-RuO, stabi-
lized the intermediates (Fig. S17d and e, ESIf). Prior DFT
results indicate that for *OH binding energies between 1.0 eV
and 1.2 eV, corresponding to the binding energies measured
herein for M-RuO,, the binding energies for *O can vary
between 2.4 eV and 4.4 eV.>® In these prior studies, the *OOH
binding energy was found to vary between 3.6 eV and 4.7 eV in
the 1.0 eV to 1.2 eV *OH binding energy range.”® Our electro-
adsorption studies indicate that experimental *O and *OOH
binding energies fall within this range (Fig. 3c and d). The
kinetic profiles of M-RuO, were found to be adequately
described by first-order kinetic rate laws with a rate-deter-
mining step of *OOH oxidation to O, (Fig. 3b). Analysis of
the resulting kinetic parameters indicates that the activation
barrier of the rate-determining step is correlated to the over-
potential at 1 s~ TOF and the charge transfer coefficient («)
(Fig. 3e and f).

Design of quaternary oxide electrocatalyst

Fig. 4 demonstrates the design of a quaternary oxide OER
electrocatalyst based on electroadsorption analysis. Mn-RuO,
was found to exhibit the highest intrinsic activity towards the
oxygen evolution reaction, but also the lowest density of active
sites. The interaction between first-row transition metals in a
RuO, lattice is highly complex, and electroadsorption analysis
was used to understanding potential synergistic effects in the
Fe-Mn-Ru-O chemical space. Our motivation for exploring this
combination came from the observed decrease in Gibbs free

8034 | Energy Environ. Sci., 2025, 18, 8029-8038

energy for the *O to *OOH transition (Table S7, ESIt) for both
Mn-RuO, and Fe-RuO,, and the increase in active site density
for Fe-RuO, compared to Mn-RuO, (Table S5, ESIf). Nano-
crystals consisting of solid solutions between Fe-RuO, and Mn-
RuO,, and RuO,, were synthesized at 500 °C. XPS and SEM-EDS
analysis confirms the inclusion of Mn, Fe, and Ru in the Mn(u),
Fe(u), and Ru(iv) oxidation states, respectively, in the FeMn-
RuO, nanocrystals (Fig. S20 and Table S1, ESI). XPS studies
indicate the Ru, Mn, and Fe remain in the (IV), (II) and (II)
oxidation states after electrochemical operation for 3 cyclic
voltammograms between 0.00 V and 1.45 V vs. Ag/AgCl at
1000 mV s~' (Fig. S20, ESIf). Fig. S21a (ESIf) shows the HR-
TEM image of the FeMn-RuO, nanocrystal. The FeMn-RuO,
nanocrystal exhibited anisotropic structures and surface facet-
ing similar to RuO,, indicated by the (110) crystallographic
facet. SAED and XRD of FeMn-RuO, indicated a rutile-type
crystal structure (Fig. S21b and c, ESI¥).

Three cyclic voltammograms were collected at 1000 mV s~
and three cyclic voltammograms were collected at 500 mV s~ .
The third cyclic voltammogram collected at 500 mV s~ ' was
utilized for electroadsorption analysis. Electroadsorption
analysis indicated that nanocrystals with both Fe and Mn
exhibited cooperative intermediate stabilization as indicated
by a decrease in *OH, *O, and *OOH binding energies that
could not be described as a linear combination of Fe-RuO,
and Mn-RuO, binding energies (Fig. 4a, d and Fig. S22, ESIf).
This cooperative stabilization resulted in a different scaling
relation for OER intermediates on (110) Fe-Mn-Ru rutile
surfaces with a slope of 1.90 and an intercept of 0.28 eV for
*O vs. *OH, and a slope of 2.22 and intercept of 1.32 eV for

1

This journal is © The Royal Society of Chemistry 2025
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*OOH vs. *OH (Fig. 4f and g). Our studies indicate that M-RuO,
nanocrystals exhibit a linear correlation of *O versus *OH with a
slope of 1.66, and that FeMn-RuO, nanocrystals exhibit a
corresponding slope of 1.9 (Fig. 3¢ and 4f). Prior DFT results,
summarizing a decade of atomic scale simulations, indicate
*O versus *OH slopes of 1.6 for all considered samples, closely
matching our observed scaling relation.”® Additionally, heavily
doped samples with more than 1 dopant exhibit a slope of 1.75,
and 2-dopant TiO, exhibits a slope of 1.9.°® Prior studies
comparing measured electroadsorption energies for single-
crystalline RuO,(110) surfaces with DFT results have high-
lighted challenges in reproducing exact energies with DFT
due to approximations in the theoretical technique.** In gen-
eral, our electroadsorption studies on M-RuO,. and FeMn-RuO,
agree well with the observed trends from prior DFT results and
provide key experimental findings for the development of more
accurate atomic scale simulations.

This journal is © The Royal Society of Chemistry 2025

Kinetic analysis indicated that activity could be attributed to
(110) Fe-Mn-Ru rutile surfaces (Fig. S23 and Tables S6, S7, S12,
ESIt). This new scaling relation resulted in more ideal thermo-
dynamics for the OER, and FeMn-RuO, exhibited a thermo-
dynamic barrier of 160 + 9 meV, which is 25 meV lower than
the most active Mn-RuO, binary oxide (Table S7, ESIY). Fig. 4b
shows the electrocatalytic activity of FeMn-RuO, (1:1 Fe:Mn)
compared to Mn-RuO, and RuO, synthesized under the same
conditions. A synthesis ratio of 1:1 Fe:Mn was found to
optimize the activity of FeMn-RuO,-based electrocatalysts,
consistent with the measured intermediate binding energies
(Fig. 4c and Table S7, ESIt). The overpotential at 10 mA cm >
for RuO,, Mn-RuO,, and the optimized FeMn-RuO, synthe-
sized at 500 °C was 250 + 2, 233 + 2 and 210 £+ 6 mV,
respectively (Table S3 and Fig. S19, ESIt). Fig. 4h demonstrates
DFT analysis of rutile (110) surfaces for the Fe-Mn-Ru-O
chemical space. Mn and Fe inclusion in RuO, (110) surfaces

Energy Environ. Sci., 2025, 18, 8029-8038 | 8035
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could occur at CUS, bridge, and subsurface sites as indicated in
Fig. S24 (ESIt). Analysis of the OER reaction energetics with
DFT indicates that the thermodynamic OER overpotentials are
highly sensitive to doping location, and that doping also
influences the relative stability of the (110) surface (Fig. 4h
and Table S14, ESIt). Overall, our DFT results support the
experimental finding of improved OER activity of the FeMn-
RuO, system in the case of subsurface Fe and Mn dopants
(Fesup—Mngyp) (Fig. 4h and i).

The electrochemical degradation of Ru-based electrocatalysts
impedes widescale implementation in electrolyzer technolo-
gies.”>** Proton exchange membrane water electrolysis (PEMWE)
devices constructed with FeMn-RuO, and RuO, to determine
electrocatalyst activity and stability under realistic operation con-
ditions are shown in Fig. S21 (ESI}). Catalyst-coated membranes
were prepared on Nafion N115 to determine FeMn-RuO, and
RuO, electrocatalyst stability. FeMn-RuO, exhibited stable opera-
tion with a potential below 1.65 V for over 200 hours of operation
at 100 mA cm 2. A RuO,-based electrolyzer exhibited a potential
above 1.8 V after 180 hours of operation, indicating operational
instability after long-term electrolysis. Catalytic activity towards
water electrolysis was further verified with electrolyzers optimized
for activity by utilizing a thinner Nafion N212 membrane and
80 °C water feed. Thin membranes can result in membrane-
induced device degradation but can be utilized to evaluate next
generation electrolyzer performance.>® Our results indicate that
the FeMn-RuO, electrocatalyst can achieve 1 A cm™ > at 1.58 V,
and a current density of 6.54 A cm™> at 2.0 V, surpassing the
activity of commercial RuO, (Fig. S21, ESIf). The device-scale
Ru mass activity of the FeMn-RuO, electrolyzer was found to be
143.2% higher than the mass activity of the RuO, electrolyzer at
2 V, consistent with the high mass activity observed in three-
electrode experiments.

Conclusion

The energy scaling relations of intermediates involved in elec-
trochemical reactions with multiple reaction steps limit catalyst
activity and complicate material design. In this work, we
demonstrated that the electroadsorption profile of electro-
catalyst materials could be quantitatively analyzed to obtain
reaction energetics. Systematic changes in RuO, nanocrystal
chemistry enabled the study of chemical effects on the OER
energetics and the experimental determination of energy scal-
ing relations between *OH, *O, and *OOH intermediates. We
expect that the precise determination of reaction energetics
from experiments will accelerate the discovery of electrocata-
lysts and help bridge the gap between experiment and theore-
tical predictions. In particular, our study revealed that Mn
inclusion resulted in a substantial enhancement in catalyst
activity for Ru-based oxygen-evolving electrocatalysts, and that
this enhancement was associated with the stabilization of the
*OOH intermediate to a more favorable energy. The activity
could be further improved via the incorporation of Fe to form
an FeMn-RuO, electrocatalyst, which exhibited cooperative

8036 | Energy Environ. Sci., 2025, 18, 8029-8038
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stabilization of *OOH and an 876% increase in mass activity
compared to RuO,. The principles applied in this study are
universal, and we expect that electroadsorption analysis will be
useful for other multi-electron reactions and to understand
other mechanisms of catalyst activation.
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