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Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a
promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an
approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity
and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric
scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can
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also favorably impact mechanical and degradation properties. A variety of fabrication methods are
utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be
DOI: 10.1039/d3tb02674d evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods.

Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity,
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1. Introduction

1.1. Current methods to treat bone defects

Bone tissue is critical for mechanical functionality, protection,
and hematopoiesis."” These traits stem from its unique combi-
nation of carbonated hydroxyapatite (HAp) [Ca;o(PO4)s(OH),]
embedded in an extracellular matrix (ECM) comprised of
collagen (primarily type I), proteoglycans, and glycoproteins.
While capable of regeneration, bone tissue healing is limited
for defects beyond a critical size that stem from traumatic
injury, surgical excision, or congenital anomalies.® Bone tissue
healing is also hindered by advanced age, osteoarthritis, and
radiological treatment. Numerous products have been devel-
oped to treat and heal critical-sized bone defects, and are
exemplified in Table 1.

Biological grafting approaches are frequently employed,
wherein the living tissue graft becomes incorporated into the
surrounding tissue. Autografting remains the ‘gold standard’
with over two million bone autografts performed annually.*
However, autografting is associated with complex surgical
harvesting (e.g, from tibia or iliac crest), donor site morbidity,
and limited availability, as well as premature resorption stem-
ming from poor contact with adjacent tissue. Cadaveric
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allografts are also associated with limited availability and
premature resorption, as well as immune rejection.” Xeno-
grafts, particular bovine grafts, have been explored but pose a
risk for disease transmission, a greater chance of host immune
response, highly variable resorption rates, and reduction in
osteoinductive properties due to strict manufacturing and
processing requirements.>® Alloplastic bone substitutes have
been leveraged as an alternative to biological grafts. For exam-
ple, demineralized bone matrix (DBM) is prepared via decalci-
fication (i.e., removal of HAp) of cortical bone allografts with an
acidic solution that leaves behind a composite of collagens,
non-collagenous proteins, growth factors, residual calcium
phosphate mineral (1-6%), and trace cellular debris.” Alloplas-
tic grafts have also been prepared based on one or more
synthetic bioactive ‘“‘bioceramics”, including: bioactive glasses
(BGs),*® HAp'*™ P-tricalcium phosphate [B-Cas(POy),; B-
TCP],">'* and calcium sulfate."® Silicate BGs are widely used
for their capacity to bond to bone, and represent certain
compositions of Si0,-Na,0-CaO-P,0; (e.g., 4555-BG). In the
granular form, DBM and bioceramics provide advantageous
microporosity and complete resorption. Still, these are also
often combined with a polymer coating or matrix to afford
injectability or moldability within irregular shapes, as well as
to circumvent brittleness in certain cases.'® The use of
poly(methyl methacrylate) (PMMA) is associated with exother-
mic cures, post-cure shrinkage, lack of porosity, and non-
degradability, as well as brittle mechanical properties.’”'® To
mitigate brittleness and afford replacement by neotissue,
numerous degradable synthetic and natural polymers have
been employed.”**> Synthetic polyesters and copolymers

This journal is © The Royal Society of Chemistry 2024
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Table 1 Examples of commercial biological and alloplastic materials to treat bone defects

Product name

Bioactive component

Matrix/carrier component

AlloFuse®™ (AlloSource) DBM
Calcigen® S (Zimmer Biomet)
Cerament®™ (BONESUPPORT)
CranioSculpt™ (KLS Martin)
Cortoss™ (Stryker)

Grafton™ DBM (Medtronic) DBM
Kinex®™ (Globus Medical) BG
MinerOss® (BioHorizons)
NanoFUSE" (Amend Surgical)

Optium™® (LifeNet Health) DBM
OSferion (Arthrex) B-TCP
Osteosponge™ (XTANT Medical) DBM
Puros®™ (Zimvie) DBM

Vestakeep®™ Fusion (Evonik)

thereof have been widely utilized given the tunability of
properties.>® More recently, polyether ether ketone (PEEK)
3D printed alloplastic devices have been created in complex,
patient-specific geometries,”® including as composites with
bioactive fillers.>*>*

1.2. Regenerative engineering approaches with bioactive
scaffolds

Owing to the limitations of biological and alloplastic grafts,
regenerative engineering approaches have emerged to heal
bone defects.”® The scaffold compositions play an instrumental
role, and must fulfill a demanding set of criteria to maximize
bone tissue healing.?”"*® Bioactivity is of significant importance
as it leads to the formation of HAp that promotes osteogenic
differentiation (i.e., osteoinductivity), as well as osseointegra-
tion with surrounding bone tissue (Fig. 1).>°7!

While bioactive HAp is innately present in biological grafts,
for alloplastic grafts, bioactivity is traditionally afforded by the
inclusion of DBM or bioceramics. Scaffolds that are potently
bioactive may reduce or even eliminate the necessity of exoge-
neous growth factors (e.g., bone morphogenic protein 2, BMP-
2), which risk off-target responses.>” Beyond bioactivity, the
scaffold must also be osteoconductive (i.e., permitting cell
migration and neotissue infiltration).**** This is achieved
through porosity that may be afforded through a variety of
fabrication methods (e.g., 3D printing, solvent cast particulate
leaching [SCPL], gas foaming, freeze drying, and electrospin-
ning) with polymers forming the regenerative bone scaffold.*

Bone defect
implanted

Calcium sulfate

HAp & calcium sulfate
Calcium phosphate
Bioactive glass ceramic

Cortical & cancellous bone chips
DBM & BG-45S5 coated with gelatin

Biphasic calcium phosphate

Bioactive scaffold

Reverse phase medium gel
Not reported

Not reported

Not reported

Acrylate copolymer
Glycerol

Collagen, hyaluronic acid
None

None

Glycerol

None

None

Reverse phase medium gel
PEEK

Degradation of the scaffold also facilitates osteoconductivity, mak-
ing the rate of scaffold resorption important to healing. To enable
osseointegration, the scaffold must form close contact with adja-
cent bone tissue.”® This has been particularly addressed with
injectable scaffolds,*® 3D-printed scaffolds,*”*® and shape memory
polymer (SMP) scaffolds.*

2. Imparting bioactivity to scaffolds

Given the importance of bioactivity to bone regeneration,
bioactive polymeric scaffolds continue to be developed
(Fig. 2). Approaches include bioactive composite scaffolds
based on combining polymers with bioactive fillers (e.g., DBM
and bioceramics), bioactive coatings and surface treatments, as
well as surface modification of scaffolds. Recent reports are
exemplified herein.

2.1. Bioactive composite scaffolds

Bioactive composite scaffolds, comprised of one or more bio-
ceramics embedded in a polymer matrix,***> remain prolific in
regenerative bone engineering. Versus bioceramic-only scaf-
folds, these composites can improve processibility, increase
rigidity and strength, and mitigate brittleness that contribute to
post-surgical fracture. Furthermore, owing to the hydrophilicity
and susceptibility to hydrolysis, bioceramic-polymer compo-
sites also degrade at favorably faster rates compared to
polymer-only scaffolds. A variety of bioactive composite scaf-
folds have recently been reported (Table 2). Both biodegradable

HAp facilitates
bone growth

Osteoblasts

MSCs

HAp

Fig. 1 Bioactive scaffolds lead to HAp mineralization, and subsequently promote osteogenesis and osseointegration.
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Fig. 2 Methods to prepare bioactive polymeric scaffolds for bone regeneration.

synthetic and natural polymers have been utilized. A variety of
bioceramics and glasses have been leveraged, ranging from
historically used types (e.g., BG, HAp, and B-TCP), to newer
types (e.g., nanosilicates, and eggshell particles). Their miner-
alization activity and mechanism vary, with some capable of
acellular mineralization in physiological environments includ-
ing simulated body fluid (SBF) (Fig. 3). For instance, 45S5-BG
[45 wt% SiO,, 24.5 wt% Na,0, 24.5 wt% CaO, and 6 wt% P,0s]
is known to promote rapid HAp formation on its surface within
hours.”® The mechanism involves a series of sequential steps:
(1) exchange of Na" ions with solution H", (2) hydrolysis of Si-
O-Si bonds to form SiOH bonds, and the release of Si(OH),, (3)
polycondensation to form a hydrated silica gel, (4) formation of
an amorphous calcium phosphate phase via absorption of Ca*",
PO,*", and CO;>" ions, and (5) crystallization to carbonated
HAp. Synthetic HAp is also capable of inducing the formation
of a HAp layer in SBF, and at greater levels versus BG-4555.**
HAp forms through several steps: (1) adsorption of Ca>" ions to
the surface, (2) formation of Ca-rich amorphous calcium phos-
phate at surface, (3) transition to a Ca-poor surface due to
adsorption of solution PO,*> as well as CO;>~ ions, and (4)
crystallization into carbonated HAp.*> In addition to bone
bonding, the formed HAp layer facilitates bone formation via
the stimulation of mesenchymal stem cell (MSC) osteogenesis,

2722 | J Mater. Chem. B, 2024, 12, 2720-2736

especially via increased expression of growth factors (e.g., BMP) and
enhanced alkaline phosphatase (ALP) activity. In contrast, 3-TCP
does not mineralize with SBF exposure, but rather is osteoconduc-
tive and osteoinductive."® B-TCP leads to osteoclast-mediated
resorption and osteoconduction that is associated with rapid bone
formation and high bone bonding strengths.

For bioactive composite scaffolds, the level of incorporated
bioactive bioceramics is highly variable, ranging from less than
1 wt% to over 50 wt%. Composites prepared with two or more
distinct types of bioceramics have also been reported. A num-
ber of fabrication methods have been employed (e.g., SCPL,
electrospinning). Notably, various forms of 3D printing have
been leveraged extensively to impart finer control of micro-
architecture as well as to produce patient-specific scaffolds.*®
For instance, selective laser sintering (SLS) 3D printing employs
a laser to sinter a powder (e.g., a mixture of polymer and
bioceramic) and fuse particles together, while unfused particles
support the structure. Comparison of composite scaffold bioac-
tivity efficacy is difficult, as in vitro and in vivo evaluations of
such scaffolds are highly variable in the literature. For example,
time-points selected to confirm HAp mineralization following
exposure to SBF vary appreciably (from 1 day to several weeks).
Still, some studies directly compare scaffolds prepared with two
different bioceramics.

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Simplified mechanisms of mineralization for common bioceramics: (a) BG-45S5, (b) synthetic HAp, and

Both HAp and B-TCP continue to be utilized to prepare
bioactive composite scaffolds, either alone or in combinations.
Shuai et al. utilized SLS 3D printing to fabricate composite
scaffolds based on HAp (10 wt%) with poly(i-lactic acid) (PLLA)
and poly(glycolic acid) (PGA).*” Versus HAp/PLLA composite
scaffolds, the faster degradation of HAp/PLLA/PGA composites
(50:50 wt% PLLA: PGA) enhanced the exposure of HAp, leading
to superior mineralization and regeneration in a rabbit seg-
mental defect model. Xu et al. reported both HAp- and B-TCP-
containing poly(lactic-co-glycolic acid) (PLGA) composite scaf-
folds via SCPL.*® Compressive tests revealed that HAp-scaffolds
had higher strengths and rates of in vitro degradation com-
pared to B-TCP-scaffolds. In a rabbit calvarial defect, while
early-stage bone growth was faster for HAp-scaffolds, B-TCP-
scaffolds exhibited greater bone mineral densities and higher
compressive strengths of repaired bone at 20 weeks. Cheng
et al. introduced cucurbitacin B, a plant-derived terpene, to -
TCP/PLGA scaffolds leading to enhanced osteogenesis and
In an example by Nyberg et al, a series
of 3D printed composite poly(e-caprolactone) (PCL) scaffolds
were prepared by altering the bioactive filler: a bioceramic (HAp
or B-TCP) or a biologic (decellularized bone matrix [DBM] or
Bio-Oss™ [BO], a clinically available form of DBM).>° BO/PCL
and DBM/PCL scaffolds exhibited enhanced osteoinduction
versus HAp/PCL and TCP/PCL scaffolds, while the compressive
modulus was highest for HAp/PCL scaffolds. Shuai et al
reported poly(p,i-lactic acid) (PDLLA) grafted onto HAp (g-
HAp), combined with PLLA to prepare composite scaffolds via
SLS 3D printing.”" As a result of improved interfacial bonding
via stereo-complexation, g-HAp/PLLA composite scaffolds dis-
played significant enhancements in stiffness and strength.

BGs continue to be utilized to prepare bioactive composite
scaffolds. Sultan et al. prepared composite scaffolds based on
4585-BG (5 wt%) and poly(lactic) acid (PLA).>> Thermally
induced phase separation (TIPS) was used to create a homo-
genous distribution of BG, and the resulting composite spheres
were subsequently formed into scaffolds via extrusion 3D
printing. Due to the homogeneous distribution of BG, scaffold
compressive strength increased for printed scaffolds.

neovascularization.*®

2724 | J Mater. Chem. B, 2024,12, 2720-2736
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We have previously reported ‘self-fitting’ SMP scaffolds
based on PCL,* including PCL/PLLA semi-interpenetrating
networks (semi-IPNs).®* Recently, Nitschke et al. reported ana-
logous composite scaffolds that included 4555-BG.”> A mod-
ified SCPL protocol was utilized wherein the fused template was
formed from a mixture of BG and salt, resulting in localization
of BG on the scaffold pore walls. At just 5 and 10 wt% BG, 45S5-
BG/PCL scaffolds induced HAp mineralization after 1 day in
SBF (1X), and degraded faster versus corresponding polymer-
only scaffolds, all while maintaining shape memory behavior.
Distler et al. described 45S5-BG/PLA scaffolds with 1-10 wt%
BG formed by fused deposition modeling (FDM) of 45S5-BG/
PLA filaments.>* Monfared et al. combined 45S5-BG with B-TCP
(50:50 wt% ratio; 35-45 wt% total) to prepare composite
scaffolds based on gelatin, poly(vinyl alcohol) (PVA), and
Tween®™ 60 using extrusion-based 3D printing.”® The printed
scaffolds achieved higher moduli versus analogous scaffolds
prepared by foam casting.

Newer types of bioceramics have also been developed and
used to prepare bioactive composite scaffolds. For example,
borate-containing BGs (BBGs), wherein borate (B,O3) is par-
tially or completely substituted for silica (SiO,), are associated
with faster rates of HAp formation compared to silicate bioac-
tive glasses (e.g., 45S5).°° Thus, BBG composite scaffolds have
been formed, as in Han et al. wherein BBG/PCL scaffolds were
prepared by SLS 3D printing.’® Furthermore, ICIE16-BG, a
potassium-containing BG (48.0 SiO,, 6.6 Na,O, 32.9 CaO, 2.5
P,0s, 10.0 K,O [wt%]), was developed as an alternative to 45S5-
BG.”” For instance, Hatton et al. combined ICIE16-BG with
alginate to form composite scaffolds via freeze-drying.®® Still,
different types of bioactive silicate bioceramics have been
leveraged to form bioactive composite scaffolds. Mesoporous
bioactive glasses (MBG) based on silicates have well-defined
pores with diameters around 5 to 20 nm, presenting a large
surface area.®” Du et al. 3D printed composite scaffolds from
MBG (80 wt%) combined with silk fibroin (SF) and PCL, with
MBG/SF scaffolds exhibiting superior strength and bioactivity
versus MBG/PCL scaffolds.”® While relatively low cost, calcium
sulfate exhibits particularly rapid resorption as well as limited

This journal is © The Royal Society of Chemistry 2024
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bioactivity.® Thus, Qi et al. prepared 3D printed scaffolds
wherein MBG and calcium sulfate were combined with PCL.>®
In addition to MBG, other nanosized bioactive fillers have also
been utilized to form bioactive scaffolds,®® including HAp
nanoparticles,”® and nanosilicates (e.g., LAPONITE™).”"”? Car-
row et al. reported 3D printed scaffolds using LAPONITE® in
combination with a poly(ethylene oxide terephthalate) (PEOT)/
poly(butylene terephthalate) (PBT) (PEOT/PBT) copolymer.®
Wau et al. reported the use of chicken eggshell microparticles
(ESP), possessing high levels of calcium and representing a
sustainable alternative to BGs, to form bioactive composite
scaffolds in combination with gelatin methacrylate (Gel-
MA).** To achieve biomimetic scaffolds in terms of not only
bioactivity but structure, Huang et al. prepared PCL scaffolds
with multi-walled carbon nanotubes (MWCNTSs) and nano-HAp
(nHAp), using screw-assisted extrusion based 3D printing to
align the MWCNTs.®* Piezoelectric perovskites such as barium
titanate (BTO) have also shown to be capable of HAp
mineralization.”® In the case of BTO, when exposed to an
electric field or mechanical stress, the titanium and oxygen
ions switch locations, leading to a concentration of negatively
charged O®>~ on the material surface. In turn, positively charged
Ca”" ions from the physiologic fluid are attracted to the surface,
leading to the formation of an apatite layer.”*

2.2. Bioactive coatings and surface treatments

Various bioactive coatings have historically been applied to
metal implants.”” To achieve bioactivity of polymeric scaffolds,
coatings have been likewise applied.”®’” Such coatings can
enhance the bioactivity of composite scaffolds, or be used in
lieu of fillers to avoid brittleness. Bioceramic coatings may also
be directly applied to scaffolds. Recently, several bioactive
coatings and surface treatments have been applied to scaffolds
to promote bioactivity (Table 3). For instance, Fazeli et al
reported the deposition of HAp and BG onto 3D printed PCL
scaffolds via an immersion method with a HAp/BG solution.”®
Zhang et al. reported PCL scaffolds coated with HAp via pulsed
laser deposition (PLD).”® Li et al. described HAp deposition
onto PVA/PLA scaffolds via electrodeposition.*® Coatings based
on a combination of bioceramics and polymers have also been
reported. For instance, based on the bioactivity of chitosan,®!
Shaltooki et al. applied a chitosan/BG coating to PCL/BG
composite scaffolds by exposing scaffolds to homogenized
solutions.®” Alternatively, a bioactive polymeric coating may
be applied to scaffolds. Collagen type I, a natural component of
bone tissue, is a frequently used material for bone
regeneration.®® Thus, Tabatabaei et al reported PCL/B-TCP
scaffolds coated by collagen using an immersion method that
included homogenization.** While developed for the purpose
of assessment of biomaterial bioactivity, SBF exposure has been
used to deposit bioactive mineral coatings onto polymeric
scaffolds.”®®> Polydopamine (PDA) was established to readily
form adherent coatings onto substrates via base-catalyzed
autooxidation of dopamine.**®” PDA was confirmed to induce
HAp mineralization in SBF,*® leading to its use as a coating to
create bioactive scaffolds for bone regeneration. Numerous
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studies have been noted in a recent review by Tolabi et al., with
the scaffold polymer component frequently being a biodegrad-
able polyester.®® We likewise applied a PDA coating to polyester
SMP scaffolds, which resulted in enhanced osteogenic differ-
entiation of hMSCs as well as HAp mineralization after SBF
exposure.”®

Direct surface treatment of polymeric scaffolds has also
been utilized to invoke bioactivity.”*" Plasma treatment,
wherein an electric current passes through a gas (e.g., oxygen,
argon, and ammonia), is a popular method.’” This process can
be used to produce surface functionalization, etching, or film
deposition, while maintaining scaffold bulk properties.”® Oxy-
gen plasma treatment has been extensively utilized, including
for PCL-based scaffolds, to enhance surface hydrophilicity and
surface energy for improved cellular adhesion.’* Depending on
plasma parameters and polymer type, oxygen plasma treatment
can result in both surface functionalization and etching.”® For
instance, Kim et al. reported oxygen plasma treatment of PCL
scaffolds resulting in enhanced hydrophilicity and surface
roughening.’® These scaffolds exhibited in vitro mineralization
by cultured cells. To confirm that such surfaces also give rise to
acellular mineralization, Murab et al. used oxygen plasma
treated PCL/TCP scaffolds exposed to SBF to demonstrate that
resulting -COOH groups act as nucleation sites for amorphous
calcium phosphate to form HAp crystals.’® A significant chal-
lenge of plasma generated polymeric surfaces is their age-
instability, as surfaces hydrophobically recover to the untreated
state within as little as hours.'® However, some examples
display improved stability. For instance, Yamada et al. reported
oxygen plasma treated PLA-co-trimethylene carbonate (PLA-co-
TMC) scaffolds whose surfaces were stable for over 2 weeks.?”
Plasma-enhanced chemical vapor deposition (PECVD) may be
utilized to apply thin films, including inorganic-organic com-
posite films."'® However, recent reports on its use to enhance
polymeric bioactivity appear scarce. Terriza et al. used deposi-
tion by PECVD of SiO, onto the surfaces of PLGA membranes,
resulting in morphological changes to osteoblasts.’® Another
form of CVD, initiated CVD (iCVD), employs a combination of a
volatile initiator as well as monomer(s) to produce thin
films."'® This process avoids fragmentation of organic precur-
sors as with PECVD. Song et al. reported formation of a
polyelectrolyte coating via iCVD onto HAp scaffolds that was
then exposed to supersaturated HAp, resulting in mineralized
scaffolds that promoted osteogenesis.’”

2.3. Bioactive polymers as additives

As previously noted, a variety of synthetic and natural polymers
are utilized to form bone tissue scaffolds. Most of these are
considered ‘“nearly inert”, or lacking in bioactivity to promote
bone regeneration.""" Yet, several natural polymers (e.g.,
collagen,'*? gelatin,™*® chitosan,®" alginate,"** and hyaluronic
acid"") display bioactivity, and have thus been formed into
regenerative bone scaffolds (Table 3). In addition to being used
as coatings, these bioactive polymers may be used as an
additive in combination with a nearly inert polymer to form
the scaffold bulk or a discrete structure within the inert
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polymer. In some cases, bioactivity is demonstrated in the
absence of bioactive fillers. For instance, collagen has been
blended with polyesters to form electrospun scaffolds,"*®
including for bone regeneration per Jose et al.'’® Wang et al.
combined gelatin with PCL to produce scaffolds with hierarchal
morphological structures using melt electrospinning writing
(MEW) and solution electrospinning (SE).'®" Amiryaghoubi
et al. introduced chitosan to PCL/polyurethane (PU) to form
scaffolds via freeze-drying."®> Ren et al. prepared PCL scaffolds
via MEW and was subsequently impregnated with fibrin/algi-
nate (FA).'” Jang et al. reported PCL/hyaluronic acid micro-
spheres that were embedding into a tissue defect using an
in situ gelling alginate hydrogel.'**

Inspired by bioactive silicates, we have utilized silicon-based
synthetic polymers as bioactive additives to form bone tissue
scaffolds. While poly(ethylene glycol) (PEG) hydrogels have
been evaluated for bone regeneration, they lack innate
bioactivity."’” Thus, star-polydimethylsiloxane methacrylate
(PDMS;,-MA) and PEG-diacrylate (PEG-DA) macromers were
combined to form templated PDMS-PEG hydrogels that exhib-
ited acellular mineralization when exposed to SBF, as well as
enhanced osteogenesis of cultured hBMSCs.'*®> Greater bioac-
tivity was observed for phosphonated-siloxane PEG hydrogels
prepared with a poly(diethyl(2-(propylthio)-ethyl)phosphonate
methylsiloxane)-diacrylate (PPMS-DA) macromer.'®® Finally,
we sought to induce bioactivity to our previously reported
PCL SMP scaffolds.?® In the first study, PDMS-dimethacrylate
(DMA) was combined with PCL-DA at varying wt% ratios
(90:10, 75:25, and 60:40), giving rise to PCL-PDMS
scaffolds.'®” These maintained shape memory behavior, but
displayed acellular mineralization with SBF exposure, as well as
enhanced degradation rates due to phase separation effects.
In a subsequent study, towards the goal of enhancing bioactiv-
ity, polymethylhydrosiloxane-dimethacrylate (PMHS-DMA) was
utilized to form analogous PCL-PMHS scaffolds.'®® The
increased hydrophilicity of PMHS versus PDMS, stemming from
the capacity of silane (Si-H) groups to form dihydrogen bond-
ing with hydroxyl (-OH) groups of water, was expected to better
parallel hydrophilic bioactive silicates. Indeed, PCL-PMHS
scaffolds exhibited enhanced rates of HAp mineralization, as
well as in vitro degradation rates. However, incorporation of a
PEG-tethered cell adhesive peptide to PCL-PMHS scaffolds
resulted in less presentation at the surface, reducing cellular
adhesion.

For the future development of bioactive materials, the
combination of high throughput screening (HTS)"*®'*° along
with artificial intelligence (AI),"*° specifically machine learning
(ML),**! has great potential. ML used to analyze data from HTS
assays can be critical in predicting properties of regenerative
scaffolds, with different material combinations. For HTS and
ML to be effective toward generating and predicting attributes
of bioactive scaffolds, there must be standardized protocols for
testing, which is currently lacking.'*? In addition to selecting
optimal material combinations, AI can be helpful in determin-
ing suitable 3D printing fabrication techniques and scaffold
structure depending on the patient and location of the bone
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defect. Integrating Al with computer-aided design (CAD) to 3D
print patient-specific scaffolds, especially with complex geome-
tries, can reduce the time to generate scaffold structures and
facilitate the selection of scaffold parameters (e.g., pore size,
percent porosity, strut size) to mimic the adjacent trabecular or
cortical bone. For example, after an imaging modality (e.g., CT
scan) is used to identify the exact geometry of the defect, the AI
integrated CAD system could generate a 3D scaffold that
perfectly fits into the bone defect to enable proper osseointe-
gration and angiogenesis through the scaffold."** Furthermore,
the use of AI techniques to determine optimal scaffold para-
meters during fabrication can pave the way for more thorough
in vitro and in vivo assessments of the most promising scaffold
compositions.

3. Assessment of scaffold of bioactivity

A number of analyses have been used to assess scaffold
bioactivity, namely via acellular HAp formation, in vitro cellular
behavior, and in vivo bone formation (Fig. 4). Assessment of
acellular bioactivity should also consider scaffold sterilization
and any pre-treatments (e.g., pre-wetting with ethanol graded
baths) to be used for subsequent in vitro cell culture or in vivo
assessment.

3.1. Invitro (acellular) assessment of scaffold bioactivity

Immersion of scaffolds to induce mineralization. SBF has
been widely adopted to measure bioactivity of materials, includ-
ing per ISO 23317.">* Exposure to SBF, which is acellular and
protein-free, is frequently utilized to confirm scaffold bioactiv-
ity in terms of HAp formation.'****?*> Developed by Kokubo in
1991,'*® SBF mimics the inorganic composition of human
plasma (e.g., Mg®", Ca®*, Na*, and K*) with a physiological pH
(~7.4), and is used at body temperature (~ 37 °C). Kokubo et al.
suggested the SBF volume (in mL) be greater than 1/10 the
surface area of a porous material (in mm?)."* As a means to
accelerate mineralization, SBF of higher concentrations have
been utilized.*® However, highly concentrated SBF solutions
can produce uneven, localized precipitation onto surfaces, and
also exhibit spontaneous precipitation. This may be somewhat
mitigated by increasing the temperature'®” or decreasing pH of
concentrated SBF solution.'”® Due to the labor-intensive pre-
paration of SBF, alternatives have been explored. Dulbecco’s
modified Eagle medium (DMEM), a commercially available cell
culture medium, possesses ion concentrations similar to that of
human blood plasma.'®® o-TCP, B-TCP, and HAp were each
incubated in DMEM (37 °C, 5% CO,) for 4 days, leading to CaP
precipitate on these surfaces. However, it was noted that the
presence of serum can decrease the rate of precipitation.

Scanning electron microscopy (SEM)/energy-dispersive X-ray
spectroscopy (EDS). SEM/EDS may be used in conjunction to
evaluate the mineralized surface of bioactive scaffolds, includ-
ing after immersion in SBF. SEM is frequently utilized to
provide images of scaffold morphology and microstructure.™°
Coupling with EDS affords determination of elemental
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Fig. 4 Generalized methods for assessing scaffold bioactivity: (top) acellular mineralization via exposure to SBF, characterization of HAp mineralization,
(middle) cell culture, and (bottom) in vivo analyses using bone defect models.

composition of the surface.*" Briefly, when the surface is
penetrated by the electron beam, element-specific X-rays are
emitted and can be quantified by the spectrometer. SEM/EDS
can thus determine the Ca to P molar ratio of a surface, which
is ~1.67 in the case of HAp."**

X-ray diffraction (XRD). Another tool used to confirm HAp
mineralization on scaffolds is XRD based on the characteristic
diffraction signature."®*™*° Briefly, incident X-rays irradiate the
surface and the intensities and scattering angles of the emitted
X-rays are measured."*” XRD can determine HAp phase compo-
sition, degree of crystallinity, and crystallite size.'**"3%13°

Vibrational spectroscopy. Attenuated total reflectance-
Fourier transform infrared (ATR-FTIR) spectroscopy is also
commonly used to evaluate HAp mineralization."**'*" Briefly,
molecular functional groups are revealed by nature of their
distinct IR absorption band.'"” The ATR mode configuration
acquires molecular vibrations through a reduced path length of
the probing IR beam, allowing evaluation of the surface to a
depth of a few micrometers. ATR-FTIR can be used to identify
PO,*” [~560 and 600 cm™ " and ~1000-1100 cm™ '], CO;*~
[between ~1460 and ~1530 cm™ '], and OH™ [~3570 cm ]
groups present in HAp."*®*3 HAp formation, size, and distri-
bution may be assessed with FTIR imaging via micro-ATR-IR."**
Raman spectroscopy has also been used to evaluate
HAp deposits onto scaffolds via the inelastic scattering of
light, and water produces less interference versus IR
spectroscopy.'*>"4¢

2728 | J Mater. Chem. B, 2024,12, 2720-2736

Staining. Staining techniques can be used to evaluate acel-
lular HAp mineralization of bioactive scaffolds. These methods
generally involve incubation of the mineralized specimen in an
aqueous staining solution, followed by fluorescent imaging and
analysis (e.g., with Image] software) to yield mineral intensity or
mineralized area (% coverage)."*”"'*® While advantageously
rapid, most stains lack specificity to HAp mineral deposits
versus calcium- and phosphate-containing deposits and so
cannot be used alone to identify HAp.

Alizarin red S, [3,4-dihydroxy-9,10-diox0-9,10-dihydroanth-
racene-2-sulfonic acid; C;,H,NaO,S; “AzHNa”] is a water-
soluble sodium salt of Alizarin sulfonic acid that undergoes a
reaction with HAp, described as follows:'*°

Ca;(PO,)s(OH), + 10AzZHNa —10CaAz | + HPO,>~
+2H,PO, + 10Na" + 2H,0

The red/orange colored precipitate can be quantified, per-
mitting the relative extent of HAp mineralization to be com-
pared across specimens. Per Gregory et al., the precipitate can
be removed via acetic acid extraction, neutralized with ammo-
nium hydroxide, and absorbance intensity evaluated by a scan-
ning spectrometer at 405 nm.">® Alizarin red S staining is not
specific to HAp, and will likewise produce such deposits from
other sources of Ca** ions.""

Von Kossa staining may also be used to evaluate HAp
mineralization on scaffolds. Von Kossa staining utilizes a silver

This journal is © The Royal Society of Chemistry 2024
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nitrate solution to transform calcium phosphate salts to silver
phosphate salts, described as follows:"**

Ca,(PO,), + 6AgNO; — 3Ca(NO;), + | 2Ag;PO,

The grey/black precipitate can be quantified to afford com-
parison of scaffold specimen HAp mineralization. However,
this stain is not specific to phosphates of HAp, and cannot be
used to provide absolute identification of HAp.">*

Other dyes that can stain HAp mineral deposits on scaffolds
include xylenol orange and calcein blue.'**'** Xylenol orange [3,3'-
bis[N,N-bis(carboxymethyl)amino-methyl]-o-cresolsulf-onephthalein
tetrasodium salt; Cs;H,gN,Na,0,3S] forms orange, fluorescent
complexes with divalent metal ions (e.g;, Ca>")."® Calcein blue
[4-methylumbelliferone-8-methyliminodiacetic acid] also binds to
calcium to afford blue staining of the mineral.">’

The Osteolmage™ mineralization assay (Lonza) is based on a
fluorescent stain that is advantageously specific to HAp miner-
alization. Thus, Osteolmage™ has been used to stain HAp
deposits formed via acellular mineralization'>®*"° as well as
following cell culture,'®®'%

3.2. Invitro (cellular) culture to assess scaffold bioactivity

The bioactivity of scaffolds may also be assessed via cell
culture.'® A variety of cell sources have been implemented,
namely stem cells such as bone marrow mesenchymal stems
cells (BMSCs), adipose-derived MSCs (ASCs), perivascular stem
cells, and induced pluripotent stem cells (iPSCs)."** Such
osteoprogenitor cells undergo osteogenic differentiation into
osteoblasts, osteoclasts, and osteocytes, all cells found in native
bone tissue.'®® Originating from the bone marrow, BMSCs have
been particularly utilized in bone regeneration strategies.'®®
Biomolecules, such as the fibronectin-derived peptide sequence
Arg-Gly-Asp-Ser (RGDS), are often incorporated into the scaf-
fold to direct or support desired stem cell adhesion, spreading,
and differentiation.”’ Exogenous (external) growth factors, par-
ticularly BMP-2, have also been incorporated into scaffolds
to accelerate osteogenesis, although these strategies often risk
off-target effects in vivo.*> A wide range of methods have been
used for biomolecule incorporation, as a single method of
biomolecule incorporation is not necessarily universally effec-
tive for all scaffold types. For instance, phase separation
within the scaffold can alter incorporated biomolecule surface
presentation.'®® Fluorescent imaging can be used to confirm
the quality of cellular adhesion and spreading, whereby fixed
cells are stained with phalloidin (cellular actin cytoskeleton)
and DAPI [4',6-diamidino-2-phenylindole] (cell nuclei).*®” Prior
to the aforementioned analyses, the cytocompatibility of the
scaffold should be confirmed using a variety of assays (e.g,
MTT assay,"®® or lactate dehydrogenase [LDH] assay*®°).
Scaffolds that demonstrate cytocompatibility and the
capacity to support cell adhesion and spreading, are often
then evaluated for their capacity to support the osteogenic
differentiation of adherent stem cells. In these studies, osteo-
genic medium - typically prepared by supplementing a con-
ventional medium with some combination of r-ascorbic acid,

This journal is © The Royal Society of Chemistry 2024
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B-glycerophosphate, and dexamethasone - may be utilized to
mimic the osteogenic milieu present in bone.'”®'’" During
osteogenesis, stem cells cultured on bioactive scaffolds will
produce HAp deposits, the extent to which can be evaluated
using histological methods with some of the previously noted
stains (e.g., Alizarin red S and von Kossa'>*'"%). The expression of
the numerous osteogenic markers involved in osteogenesis,"”" and
methods for assessment have been recently reviewed by Le
et al'” Briefly, following a defined period of culture, the
scaffold homogenates may be subjected to a variety of analyses
to detect the expression of mRNA levels of genes (via poly-
merase chain reaction [PCR]) or expression of proteins (via
immunofluorescence staining, western blot, and ELISA assays).
Multiple osteogenic markers are typically evaluated as each
gives insight into specific aspects of osteogenesis, including
stages of progression. These include transcription factors (e.g.,
RUNX2, Osterix, Msx2), extracellular matrix proteins'’* (e.g.
secreted protein acidic and rich cysteine [SPARC], osteopontin
[OPN], osteocalcin, collagen 1 a1 chain [COL1A1]), and secreted
growth factors'’®> (e.g., vascular endothelial growth factor
[VEGF],"”® BMP-2,"”” and BMP-4'"%). ALP, an early marker of
osteoblast differentiation, is often quantified as an indicator of
scaffold bioactivity.'”*"® Expression of “off-target” markers
can also be assessed to delineate the specificity of scaffold
bioactivity for osteogenesis. Off-target evaluation often includes
assessment of markers for chondrogenic (e.g., SRY-box tran-
scription factor 9 [SOX9] and collagen 2 a1 chain [COL2A1])
and adipogenic (e.g.,, CCAAT/enhancer binding protein
[0-C/EBP-u], and adipocyte fatty acid binding protein [AFABP])
differentiation.

3.3. Invivo and ex vivo methods to assess scaffold bioactivity

A number of in vivo and ex vivo models of bone repair are
available for the assessment of bioactive scaffolds.’®" Animal
species that have been utilized include rodent, rabbit, dog,
sheep, goat, and pig, with each presenting unique advantages
and disadvantages.'®* Bone defects are frequently created in
calvariae [as confined defects], or in ulnae, tibiae, and femurs
[as segmental defects]. The minimum size for a critical defect,
wherein spontaneous healing does not occur over a long
duration, must be considered."®®'®* However, non-critically
sized calvarial defects, permitting two rather than one defect
per animal, have been used to assess scaffold osseointegration
and neotissue infiltration at the perimeter.>® This approach
exemplifies a potential way to commit to the 3Rs (reduce,
replace, refine) principle of humane animal research.'®®
Recently, models have also been created to assess osteoporotic
defect healing,'®*'®” and attention has been given to sex-based
differences in bone defect healing."®® Several methods to detect
in vivo mineralization of scaffold treated defects have been
commonly employed as highlighted below. Tissue preservation
is required for most ex vivo analyses, and includes methods
such as slow freezing, vitrification, hypothermic preservation,
and cryopreservation.'®’

In vivo analyses. Numerous methods exist for non-
invasive, longitudinal monitoring of scaffold-induced bone
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regeneration, including bone mineral density (BMD)."*%'"
Micro-computed tomography (micro-CT) is perhaps the most
widely utilized, given its relative low cost and efficacy.*?>"%3
Having a spatial resolution of 50-1 pm,*®* micro-CT affords 3D
evaluation of bone ingrowth and volumetric changes. Micro-CT
can also be used to determine BMD (mg HAp cm*).'®> Positron
emission tomography (PET) can be used to evaluate longitudi-
nal bone formation using y-ray emitting tracers, such as a
sodium fluoride ([*®F]-NaF) that forms fluoroapatite with HAp
of new bone tissue.'°® Bone regeneration can also be monitored
by single-photon emission computed tomography (SPECT)
employing positron-emitting tracers, such as °°™technetium
[**™Tc-labelled diphosphonates] that are absorbed by HAp."”
Dual-modality, integrated micro-CT/PET*****° and micro-CT/
SPECT'®® images have been used to assess scaffold-induced
bone regeneration. Dual-energy X-ray absorptiometry (DEXA)
may also be used to assess BMD.>*°°> Other methods of non-
invasive monitoring have been employed to avoid potential
tissue damage associated with X-rays. Magnetic resonance
imaging (MRI) based on semi-quantitative methods may be
employed to overcome low sensitivity to bone.>** For instance,
Ribot et al. developed a 3D anatomic and perfusion MRI
protocol to observe scaffold-induced healing of femoral defects
in rats, including mineralization and neovascularization.>**
Ultrasound imaging, while limited by depth of penetration,
may be used to quantify bone regeneration.”®® Optical fluores-
cence imaging (e.g., IVIS) can be performed on fluorescently-
labelled scaffolds to monitor resorption in vivo.***

Ex vivo analyses. Endpoint tissue specimens harvested from
experimental models, as well as tissue culture specimens, are
frequently evaluated with the aforementioned in vivo methods.
Micro-CT is widely used to view morphological features and
HAp mineral deposits, wherein longer scan times are permitted
for improved spatial resolution.'®® Environmental SEM is also
useful as it retains the natural state of the specimen by
excluding the need for high vacuum conditions, as well as
specimens that are clean, dry, and electrically conductive.>*®
Other examples demonstrate the use of ex vivo MRI>%’
DEXA,*°® and ultrasound>*® in the evaluation of endpoint tissue
specimens. Raman spectroscopy is also useful to evaluate the
chemical properties of regenerated bone tissue at the nano-
scale, including the degree of mineralization.>'**""

Histological and histomorphometric analyses. Histological
and histomorphometric analyses of regenerated, mineralized
bone tissue is crucial in assessing the bioactivity of scaffolds.
Bone histomorphometry provides quantitative evaluation
through the use of digitized histological images,*'**'* using
various image analysis platforms.>'**'® Typically, harvested
specimens are sequentially fixed, decalcified, dehydrated,
embedded (e.g., in paraffin or PMMA), and sectioned. A variety
of stains are available for these analyses, including some
mentioned previously to detect acellular mineralization of
scaffolds. Hematoxylin & eosin (H&E) staining — which stains
cell nuclei a dark blue/purple color and basic proteins in the
ECM a pink/orange color**®*'” - is useful to identify woven
bone, an early stage of bone development characterized by
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random collagen matrix deposition.
staining employs acid-base chemistry by using 3 dyes to
selectively stain tissue components.?*® When staining for bone
regeneration, new bone, collagen, and osteoids are stained
blue, while mature bone is stained red.**° Von Kossa staining
can also be used to differentiate mineralized [stained black]
versus unmineralized [stained red] bone matrix produced by
bioactive scaffolds.**?

Mechanical testing. A variety of biomechanical tests are
utilized to evaluate the efficacy of scaffolds to promote bone
regeneration in experimental models.””"**> In macroscopic
assessments, harvested constructs are frequently subjected to
quasi-static tests wherein stress or strain is applied in different
modes (e.g.,, compression, tension, bending, torsion, and
shear). Bulk modulus, strength, and toughness values can then
be determined. In some cases, standards are applied such as
ISO 604*>*7*° and ISO 5833.>**” Push-out tests are also
frequently employed to give insight into scaffold osteointegra-
tion with surrounding tissues, and efforts continue to be made
to refine best practices.*® Microscopic biomechanical analyses
are also utilized to give insight into nanoscale mechanical
properties.”*> Nanoindentation can be utilized to measure
enhanced local hardness imparted by mineralized bone
tissue.”'" Atomic force microscopy (AFM), using contact or
tapping modes, can be used to reveal nanoscale features (e.g.,
collagen fibrils and HAp crystals), while the nanoindentation
mode is useful for nanomechanical modulus mapping.**°>*"*
Sub-resonance AFM (e.g., PeakForce Tapping mode) has also
been developed for nanomechanical mapping®*? and was used
by Zhou et al. to evaluate bone tissue submerged in an aqueous
environment.”** It was also shown that micro-CT has also been
coupled with mechanical testing to measure contact area and
3D full-field strain in bone/dental implant constructs;*** such a
method could likewise be highly informative to the assessment
of bioactive scaffolds.

4. Conclusions

Bioactive scaffolds remain a contemporary approach to bone
regenerative engineering. Emerging in recent years are an array
of methods to induce bioactivity to polymeric scaffolds that
utilize bioceramic fillers, coatings and surface treatments, and
additives. Bioactive composite scaffolds continue to be formed
with traditional bioceramic fillers (e.g., DBM and BGs), includ-
ing combinations of two or more types. Newer bioceramics have
also emerged (e.g., LAPONITE® and eggshell microparticles).
Bioactive coatings applied to scaffolds include deposited bio-
ceramics, bioceramics embedded in a polymer matrix, and
polymer-only types. Surface treatments such as plasma treat-
ment, PECVD, and iCVD have also been leveraged to induce
bioactivity. Finally, bioactive additives have been combined
with ‘bioinert’ polymers to form bioactive scaffolds. Such
additives include primarily certain natural polymers (e.g., chit-
osan and collagen), as well as silicon- and phosphonated/
silicon-based synthetic polymers. Overall, these methods yield

This journal is © The Royal Society of Chemistry 2024
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bioactivity throughout the scaffold (via fillers and additives) or
at the surface of the scaffold (via coatings and surface treat-
ments). For the former types, bulk properties (e.g., stiffness and
degradation) are impacted which may or may not be desirable.
With surface modification, bulk properties are retained, but
bioactivity can be expected to be diminished when the surface
is lost. High throughput screening and machine learning will
be critical for efficient and successful future development of
bioactive scaffolds, but necessitates standardized characteriza-
tion methods. Al integrated CAD also has potential to play a
pivotal role in the treatment of patient-specific complex bone
defects. A plethora of in vitro (acellular and cellular), in vivo,
and ex vivo methods exist to evaluate scaffold mineralization
and other aspects of bone regeneration. Perhaps the most
common initial assessment of scaffold bioactivity is the capa-
city to undergo HAp mineralization when exposed to SBF. HAp
can be subsequently assessed with numerous methods (e.g,
imaging, spectroscopy, and staining). Mineralization by cul-
tured cells, particularly MSCs, as well as evaluation of other
markers of osteogenesis is also commonly used to assess
scaffold bioactivity. Such analyses typically rely on staining
techniques and other assays. In vivo models of bone repair
afford an opportunity to assess scaffold bioactivity in a physio-
logical environment. Several assessment methods (e.g., PET,
SPECT, and MRI) afford longitudinal monitoring of mineraliza-
tion and tissue regeneration, with micro-CT being the most
frequently employed. Harvested endpoint tissue specimens
typically undergo histological and histomorphometric analyses,
and biomechanical assessments are also valuable. While recent
studies highlight the breadth of methods to prepare and assess
bioactive scaffolds, several primary challenges remain for
bioactive scaffold-based approaches to displace the clinical
use of standard biological and alloplastic grafting. Overall,
comparison of scaffold bioactivity in the literature is difficult.
Studies employ different analyses (e.g., methods, test condi-
tions, and selected time points) to assess bioactivity both
in vitro and in vivo. Thus, standardized methods would be
extremely useful to the field. Controls that could be uniformly
included along with experimental scaffolds would also be
beneficial to studies, but are currently lacking.**> Explant
cultures (a.k.a. organ or ex vivo cultures), wherein explanted
tissue-scaffold constructs are maintained in vitro and often with
applied mechanical loading, may provide a valuable intermedi-
ate step between in vitro cell culture and in vivo experimental
models.**® Despite these challenges, bioactive scaffolds hold
tremendous promise in the treatment of bone defects.
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