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@ Allpublication charges for thisarticle  Rong Zhang,® Jiajing Lan,?® Fei Wang, @ *@ Shumei Chen*® and Jian Zhang ® *?

have been paid for by the Royal Society
of Chemistry In this study, we synthesized multi-nuclear indium oxide clusters (InOCs) using 1,1’-ferrocene dicarboxylic
acid (H,FcDCA) as the chelating and surface protection ligand. The obtained clusters include the cubane-
type heptanuclear InOCs ([In;]) and the sandwich-type thirteen-nuclear InOCs ([In;s]). Notably, [Inss]
represents the highest nuclear number reported within the InOC family. In addition, the presence of
labile coordination sites in these clusters allowed for structural modification and self-assembly. A series
of [In;] clusters with adjustable band gaps have been obtained and the self-assembly of [In;] clusters
resulted in the formation of an Fe-doped dimer, [Fezlng,], and an imidazole-bridged tetramer, [Inyg].
Similarly, in the case of [Iny3] clusters, the coordinated water molecules could be replaced by imidazole,
methylimidazole, and even a bridged carboxylic acid, allowing the construction of one-dimensional
extended structures. Additionally, part of the H,FcDCA could be substituted by pyrazole. This flexibility in
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Introduction

Indium oxide (In,O3) as an n-type semiconductor possesses
excellent electronic and catalytic properties, making it highly
promising in various fields."”®> Many methods have been devel-
oped to prepare nano-In,0s,* high-pressure modified In,03,>*
and indium-containing mixed oxides and zeolites,”® due to
their application in sensors,' electronics,'* and catalysis.'” In
comparison to In,0;, indium oxide clusters (InOCs) provide
clear structural information and allow for atomic-level control
of cluster size. Consequently, they can be used as molecular
mimics to explore functional-oriented structural design and
optimize the performance of In,0; nanomaterials.’*'* However,
the research on InOCs remains relatively limited, with reported
InOCs having low nuclear numbers such as [In,],"*™, [Ing],"%,
[Ins],"**, [Ing],>***, [In,],**, [Inye],*® and [In,,].** In 2006, Neu-
miiller's group synthesized the largest decanuclear InOCs
(denoted as [In;]) known at that time by utilizing InMe; as the
indium source.”® Subsequently, the synthesis of high nuclear
InOCs has faced stagnation, and their corresponding
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applications have been scarcely explored. However, the pursuit
of crystalline InOCs persisted, driven by the recognition of their
promising properties for various technological advancements.

To achieve the synthesis of crystalline InOCs, researchers
recognized the crucial importance of slowing down the hydrolysis
of In** ions, as this process greatly influences the formation of
well-defined crystal structures. The recently developed coordina-
tion delayed hydrolysis (CDH) strategy has shown great potential
in the synthesis of crystalline metal-oxo clusters.>®”” Inspired by
this, we successfully synthesized a series of bixbyite like In,,-oxo
clusters by using diethanol amine as the chelating ligand to
control the hydrolysis of In*" ijons.* Despite these initial
successes, it is crucial to continue delving into the structural
diversity and self-assembly behaviors of InOCs (indium-oxo clus-
ters) to unlock their full potential and broaden their applications.
However, research in this field remains severely limited.

Compared to diethanolamine, 1,1-ferrocene dicarboxylic
acid (H,FcDCA) offers several advantageous features that make
it an ideal chelating ligand for synthesizing InOCs:

(a) Versatility in coordination: H,FcDCA is widely employed
in the construction of coordination compounds due to its flex-
ible conformation and coordination modes.”®**° This flexibility
allows for various bonding arrangements with metal ions,
which can lead to the formation of diverse InOC structures and
potentially higher nuclearity.

(b) Remarkable redox and photoelectrocatalytic activity: the
ferrocene unit in H,FcDCA possesses exceptional redox and
photoelectrocatalytic activity, which has garnered significant
attention in the field of metal-oxo clusters (such as Sn,*" Fe,*>>*
Co,* Zn,*® Mn,** Ti*?*343), The incorporation of such active

© 2024 The Author(s). Published by the Royal Society of Chemistry
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units into InOCs could introduce intriguing properties and
functionalities to InOCs, making them attractive candidates for
various electrochemical and catalytic applications.

(c) Strong coordination ability: the presence of multiple
carboxylate groups in H,FcDCA facilitates strong coordination
with In*" ions. This strong coordination bond effectively
protects InOCs and enhances their stability, making them more
robust and durable under various conditions.

Due to these advantages, the combination of H,FcDCA and
InOCs holds the potential to yield high-nuclear InOCs with
unique properties and enhanced performance. However, no
examples of InOCs functionalized with ferrocene have been
reported thus far.

Based on the above considerations, H,FcDCA was selected as
the chelating ligand to react with InCl; or In(NO3);, resulting in
the synthesis of two distinct groups of InOCs: cubane-type
heptanuclear InOCs ([In;], compounds 1-4) and sandwich-
type thirteen-nuclear InOCs ([In;3], compounds 5-9) (Table 1).
Notably, [In,;] represents the highest nuclear number recorded
within the InOC family. Furthermore, the terminal coordinated
solvents in InOCs exhibit lability, making them easily replace-
able by other ligands. Consequently, they can serve as secondary
building blocks (SBUs) for the formation of dimers, tetramers,
and even a one-dimensional extended structure (Scheme 1).
Significantly, the inclusion of ferrocene units within these
structures endows them with notable redox activity and excel-
lent photocatalytic performance.

Experimental
Materials and instruments

All the reagents and solvents were purchased commercially and
were used as received without further purification. 1,1'-ferro-
cene dicarboxylic acid (H,FcDCA, 99%), InCl; (99%), In(NO3);-
-xH,0 (99%), tetraphenylphosphonium bromide (TPPBr, 99%),
imidazole (HIm, 99%), acetic acid (AcOH, 99%), 2-methyl-
imidazole (2-mim, 99%), pyrazol (HPy, 99%), and 4,4"-biphe-
nyldicarboxylic acid (H,BPDC, 99%) were acquired from
Aladdin Chemical Reagent Shanghai. N,N-diethylformamide
(DEF, 99%), N,N-dimethylformamide (DMF, 99%), triethyl-
amine (99%), methanol (MeOH, 99%), N-methylformamide

Table 1 A summary of compounds 1-9¢
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(NMF, 99%), and N-methylpiperazine (MPP, 99%) were bought
from Sinopharm Chemical Reagent Beijing.

IR spectra (KBr pellets) were recorded on an ABB Bomem
MB102 spectrometer over the 400-3900 cm™ " range. Powder X-
ray diffraction (PXRD) data were collected on a Rigaku Mini Flex
II diffractometer using CuKo. radiation (A = 1.54056 A) under
ambient conditions. The UV-vis diffuse reflection data were
recorded at room temperature using a powder sample with
BaSO, as a standard (100% reflectance) on a PerkinElmer
Lamda-950 UV spectrophotometer and scanned at 200-
1200 nm. Metal proportional analyses were performed on an
Ultima-2 inductively coupled plasma (ICP) spectrometer. The
TGA curves were recorded in the region of 30-800 °C using
a heating rate of 10 °C min~" in a flowing N, atmosphere on
a Mettler Toledo TGA/SDTA 851 analyzer.

Synthesis of compound 1. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FecDCA (54.0 mg, 0.20 mmol), InCl;-4H,0 (30.0 mg,
0.10 mmol), triethylamine (200 pL, 2.7 mmol), and 4 mL of N,N'-
dimethylformamide (DMF) and methanol (MeOH) (v/v, 1:1)
was added to 23 mL glass vials respectively, sealed with ultra-
sound treatment for 5 minutes, and heated in a 100 °C oven for
3 days to generate yellow crystals (yield: 25.0%). FTIR
(KBr, cm~%): 3340(v), 3236(w), 2352(s), 1659(s), 1582(s), 1540(m),
1476(m), 1387(s), 1360(w), 1293(w), 1190(s), 1031(s), 1106(v),
1036(s), 963(w), 918(s), 868(m), 812(w), 671(s), 868(m), 592(s),
552(s), 493(s), 446(m).

Synthesis of compound 2. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (27.0 mg, 0.10 mmol), In(NO);-xH,O
(30.0 mg, 0.10 mmol), triethylamine (200 pL, 2.7 mmol), and
4 mL of N-methylpiperazine (MPP) and methanol (MeOH) (v/v,
1:1) was added to 23 mL glass vials respectively, sealed with
ultrasound treatment for 5 minutes, and heated in a 100 °C
oven for 5 days and yellow crystals were obtained (yield: 21.0%).
FTIR (KBr, ecm™%): 3140(m), 2939(v), 2355(s), 2323(s), 1612(s),
1594(s), 1483(m), 1395(s), 1289(v), 1197(w), 1143(s), 1017(s),
992(w), 925(w), 876(m), 821(s), 777(m), 617(w), 671(s), 587(s),
516(s), 488(s), 451(m).

Synthesis of compound 3. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (27.0 mg, 0.10 mmol), In(NO);-xH,O
(30.0 mg, 0.10 mmol), triethylamine (200 pL, 2.7 mmol), and
4 mL of N-methylformamide (NMF) and acetonitrile (MeCN) (v/
v, 1:1) was added to 23 mL glass vials respectively, sealed with

Complex Composition

Space group a [A] b [A] c[A] Vv [A%]

)[In7FcDCA6(u4 )35 OCHg)(Cl’] ]
Js[In1,Fe" FeDCA o(14-0%)6(113-0% )2 (112-0° 7)6(H0)g]
)[In;FeDCAG(14-0%)3(15-OCH;) (MPP)5]
)12(“3'0CH3)4( m”™)y(OH™),]
)3[In;3FeDCAG(pL4- O Te(Ho- O e (H2-OCH3)6(H20)6]
sl 13FEDCAG(114-0 7 )5(12-0° " )(112-OCH;)(HIm),]
M)a[InysFeDCAG (140" )6 (120" )o( )l

)9[In13FCDCA4(H4'O2 )G(HZ -0~ )G(HZ‘OCHs)e(OC ) (
(H )7[In13FCDCA6(P—4'OZ Jo(Ho- -0*” Jo(H2-OCH3)s(H

(TP
(H"
(H'
[In,5FeDCA,4(114-0°
(
(
(
(

H
H
H
H

© 0N U W

2BPDC),(H,0),]

6(1a-OCH3)s(DMF),(2- mlm) (H20),] I2/a
T)a(Py )d]

27.37206(19) 15.00755(12) 31.8968(3) 13 070.05(17)
19.6313(8)
21.2041(3)

C2/m
C2/m

22.9290(6)
25.0454(3)

13.3713(4) 5987.4(3)
13.8544(2) 7145.74(18)

R3 16.1506(10) 16.1506(10) 65.6859(3) 14 838.2(2)
P24/n 15.4037(2)  20.7536(3)  25.1730(3) 8032.26(18)
R3 25.3175(3)  25.3175(3)  29.8382(4) 16 563.2(5)
P4y/n 35.1846(4)  35.1846(4)  15.8530(4) 19625.3(7)
c2le 32.0443(7)  14.9493(3)  28.0793(7) 13 415.8(5)
R3 19.8087(10) 19.8087(10) 28.7268(2) 9761.79(12)

(3)

(4)

(2)

@ Abbreviations: TPP = tetraphenylphosphine; MPP = N-methylpiperazine; HIm = imidazole; DMF = N,N-dimethylformamide; 2-mim = 2-
methylimidazole; HPy = pyrazol; H,BPDC = 4,4"-biphenyldicarboxylic acid.
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dimer

Scheme 1 Aggregate assembly of indium oxide clusters. Color: pink, In;

ultrasound treatment for 5 minutes, and heated in a 100 °C
oven for 5 days and yellow crystals were obtained (yield: 25.0%).
FTIR (KBr, cm '): 3388(s), 3090(m), 2935(s), 2838(m), 2368(m
2335(m), 1640(w), 1558(s), 1483(m), 1475(s), 1464(m), 1382(s),
1370(s), 1338(s), 1024(m), 918(w), 826(w), 769(w), 661(w),
617(w), 568(s), 523(s), 493(s), 420(s).

Synthesis of compound 4. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (54.0 mg, 0.20 mmol), HIm (7.0 mg, 0.10
mmol), In(NO);-xH,0 (60.0 mg, 0.20 mmol), triethylamine (200
pL, 2.7 mmol), and 4 mL of DMF and MeOH (v/v, 1:1) was
added to 23 mL glass vials respectively, sealed with ultrasound
treatment for 5 minutes, and heated in a 120 °C oven for 7 days
and yellow crystals were obtained (yield: 10.0%). FTIR
(KBr, cm '): 3291(v), 3100(m), 2933(m), 2839(m), 2397(m),
1676(w), 1584(v), 1478(s), 1387(s), 1355(w), 1251(w), 1197(w),
1083(s), 1027(w), 980(w), 945(s), 918(w), 824(w), 787(w), 668(s),
617(w), 580(s), 521(s), 483(s), 446(s).

Synthesis of compound 5. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (14.0 mg, 0.20 mmol), acetic acid (AcOH, 30
pL, 0.47 mmol), In(NO);-xH,O (30.0 mg, 0.10 mmol), triethyl-
amine (200 pL, 2.7 mmol), and 4 mL of DMF and MeOH (v/v, 1:
1) was added to 23 mL glass vials respectively, sealed with
ultrasound treatment for 5 minutes, and heated in a 100 °C
oven for 2 days and yellow crystals were obtained (yield: 28.0%).
FTIR (KBr, cm™"): 3250(m), 2929(m), 2827(m), 1664(s), 1555(s),
1491(m), 1464(m), 1390(w), 1370(w), 1190(w), 1007(w), 925(w),
826(w), 785(s), 573(s), 524(s), 476(w), 422(s).

Synthesis of compound 6. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (14.0 mg, 0.20 mmol), HIm (7.0 mg, 0.10
mmol), In(NO);-xH,O (120.0 mg, 0.40 mmol), triethylamine
(200 pL, 2.7 mmol), and 4 mL of N,N-diethylformamide (DEF)
and MeOH (v/v, 1:1) was added to 23 mL glass vials respec-
tively, sealed with ultrasound treatment for 5 minutes, and
heated in a 100 °C oven for 6 days and yellow crystals were
obtained (yield: 27.0%). FTIR (KBr, cm ™ '): 3139(m), 2935(m),
2828(m), 2368(m), 2335(m), 1651(s), 1560(m), 1491(m),
1390(m), 1370(m), 1325(w), 1258(w), 1202(w), 1103(s), 1079(s),
1017(v), 943(s), 923(w), 864(s), 775(m), 649(w), 612(w), 518(s)
419(s).

Synthesis of compound 7. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (14.0 mg, 0.20 mmol), 2-methylimidazole
(8.0 mg, 0.10 mmol), In(NO);-xH,0O (120.0 mg, 0.40 mmol),

)s
)

’
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red, O; blue, N; gray, C.

AcOH (30 pL, 0.47 mmol), triethylamine (200 pL, 2.7 mmol), and
4 mL of DMF and MeOH (v/v, 1:1) was added to 23 mL glass
vials respectively, sealed with ultrasound treatment for 5
minutes, and heated in a 100 °C oven for 2 days and yellow
crystals were obtained (yield: 25.0%). FTIR (KBr, cm ™ '): 3080(w),
2927(m), 2827(s), 2365(s), 2335(m), 1654(w), 1560(s), 1483(m),
1456(m), 1392(w), 1365(s), 1190(s), 1090(s), 1017(s), 913(w),
824(w), 777(w), 654(w), 580(s), 466(v), 414(s).

Synthesis of compound 8. A mixture of TPPBr (42.0 mg, 0.10
mmol), H,FcDCA (14.0 mg, 0.20 mmol), In(NO);-xH,O
(120.0 mg, 0.40 mmol), pyrazol (HPy, 6.8 mg, 0.10 mmol), trie-
thylamine (200 pL, 2.7 mmol), and 4 mL of DEF and MeOH (v/v,
1:1) was added to 23 mL glass vials respectively, sealed with
ultrasound treatment for 5 minutes, and heated in a 100 °C
oven for 6 days to generate several yellow plate crystals of 8 and
a large amount of unidentified precipitate. Only their crystal
structures are described below. (Yield: 26.0%). FTIR
(KBr, cm™'): 3280(m), 3095(m), 2975(s), 2930(m), 2825(s),
2335(m), 1646(w), 1548(v), 1496(v), 1392(w), 1372(w), 1300(v),
1202(w), 1100(s), 1014(s), 920(w), 842(w), 780(s), 580(s), 516(s),
474(s), 424(v).

Synthesis of compound 9. A mixture of TPPBr (42.0 mg, 0.10
mmol), 4,4 -biphenyldicarboxylic acid (H,BPDC, 12.0 mg, 0.05
mmol), H,FcDCA (14.0 mg, 0.05 mmol), In(NO);-xH,O
(60.0 mg, 0.20 mmol), triethylamine (200 uL, 2.7 mmol), and 5
mL of formamide and polyethylene glycol (v/v, 1:1) was added
to 23 mL glass vials respectively, sealed with ultrasound treat-
ment for 5 minutes, and heated in a 100 °C oven for 14 days and
yellow crystals were obtained (yield: 11.0%). FTIR (KBr, cm ™ ):
3480(v), 3079 (m), 2930(m), 2830(s), 1654(m), 1572(s), 1491(s),
1387(m), 1353(m), 1187(s), 1091(s), 1010(s), 925(s), 834(s),
757(v), 666(m), 582(w), 508(s), 471(s), 424(m).

X-Ray crystallographic analysis

Single crystal X-ray diffraction data of porous materials were
collected using a Hybrid Pixel Array detector equipped with Ga
Ko, radiation (A = 1.3405 A) at about 298 K and 100 K. The
structures were solved with the dual-direct methods using
ShelXT and refined with the full-matrix least-squares technique
based on F, using SHELXL. Non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were added theoretically,
riding on the concerned atoms and refined with fixed thermal

© 2024 The Author(s). Published by the Royal Society of Chemistry
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factors. All absorption corrections were performed using the
multi-scan program.

Photocatalytic measurements

A 25 mL tube was charged with 10 mg of sample powder, 10 mg
[Ru(bpy);]Cl,-6H,0, 8 mL MeCN, 2 mL H,O and 32.1 mg 1,3-
dimethyl-2-phenylbenzimidazoline (BIH). It was ultrasonicated
for 20 min to obtain a well-dispersed suspension. Then the
resulting suspension was transferred into a Pyrex side-
irradiation reaction vessel connected to a closed gas system.
The reaction mixture was irradiated by visible light generated by
a 300 W Xe light-source (PerfectLight, PLS-SXE300/300UV) with
a 420 nm cut-off filter. The generated gas products were
analyzed by a gas chromatography analyzer (FULI 9790II)
equipped with a flame ionization detector (FID) and thermal
conductivity detector (TCD). The product evolution rates were
determined from a linear regression fit.

Results and discussion

Compound 1 was obtained by using InCl;-4H,0 as the metal
source in DMF and MeOH mixed solvents. Single crystal X-ray
diffraction analysis shows that 1 crystallizes in the hexagonal
R3 space group with the formula TPP*[In,FcDCAg(114-0% )5(us-
OCH;)(Cl )3]™ (TPPBr = tetraphenylphosphonium bromide),
which contains an anionic cluster [In;FcDCAg(1s-0” )3(kis-
OCH;)(CI7);]” and a free cationic guest, TPP'. Its cluster
nucleus contains a twisted cubane central ion [In,(j14-0> )5(1s-
OCH;)]"*" which was stabilized by six FcDCA*~ ligands accom-
panied by three chlorides (Fig. 1a). In 1, the In*" ion is six
coordinated, and four In** ions are linked by three j1,-O0* and
a u3-OCH; to form a twisted hexahedron (Fig. 1b). The In-O
bond distance ranges from 2.120 A to 2.384 A (Fig. S1t), which
were comparable with those reported in the literature.*** 1 is
different from the previously reported [Fe,(14-O)s(ps-
OCH;)]|"*".* The cluster nuclei are isomorphic. The periphery of

(b)

Cn
QFe
®a €
@c
@0
()]
1 =_8.045°
<
T=26.361°

Fig. 1 (a) Structure of 1; (b) the cubane central ion is [IN7(pa-O0%)3(uz-
OCH3)I**; (c) coordination environment of 1; (d) 1 accumulates along
the c-axis and is filled with TPP*. Color: pink, In; green, Fe; red, O;
blue, N; gray, C; dark green, Cl; yellow, TPP*.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the cluster nucleus of 1 is modified by three terminal CI”™ ions
and six FcDCA”™ ligands. The FcDCA®™ ligand is divided into
two groups: one group in which the carboxyl torsion angle of
FcDCA®~ ligands is relatively small (8.045°) and which links
three In(m) ions in n*:m":n":n":; mode, while the other group
(26.361°) links four In(m) ions in n*:m*m*m"':p, mode (Fig. 1c).
Due to the existence of TPP", the stacking of 1 along the c-axis is
relatively dense (Fig. 1d).

Compound 2 was synthesized in NMF (N-methylformamide)
and MeCN (acetonitrile) mixed solvents. Compound 2 contains
an anionic cluster, [In;,Fe™,FeDCA;4(114-0% )g(13-0% (ko
0°)s(H,0)6]°". 1Its cluster core contains an [Inj,Fe™,(j,-
0°)6(113-0” )a(112-0”)6]*** coordinated by ten FecDCA®~ ligands
and six water molecules. 2 can be seen as a dimer formed by two
[In,] cores of 1. The two outermost In metal centers are replaced
by Fe ions which are released by the decomposition of FeDCA*~
ligands (Fig. 2a). These structural features and elemental
substitutions have been supported by single crystal X-ray
diffraction (XRD) and inductively coupled plasma (ICP) anal-
ysis results. The two Fe atoms are in the +2 oxidation state,
which is speculated by the bond valence sum calculation with
a BVS value of ca. 2.0 (Tables S3 and S4+).

[Ing,Fe™,(114-0% )s(113-0% )a(12-0%)]*** in 2 contains two
cubane central ions [IngFe"(14-0% )3(15-0%)]"*" and six p,-0>",
where four In** ions are linked by three 11,-0°> and one p;-0>~
to form a twisted hexahedron (Fig. 2b-d). The stacking of 2
along the g-axis is relatively loose (Fig. 2e).

Compound 3 was obtained by introducing 1-methylpiper-
azine (HMPP) in the reaction system of 1, wherein the chlorine
terminal sites of 1 (Fig. 3a, site A and site B) are replaced by
MPP~. Compound 3 also crystallizes in hexagonal R3 space
group with containing an anionic cluster [In;FcDCAg(piy-
0”7)3(u3-OCH,)(MPP);] 7, which contains a cubane central ion
[In,(14-0*")3(15-OCH,)]*** and six FcDCA®~ ligands and three
MPP™ ligands (Fig. 3b and c). The stacking of 3 is relatively loose
(Fig. 3d).

Furthermore, the [In,] core of 1 can be used as SBU to
construct a molecular ring. Compound 4 was obtained by

Fig. 2 Molecular structure of compound 2. (a) Assembly of the In
atom in 2; (b) two cubane central ions [IngFe(ps -0 )s(nz-O>7)**; (c
and d) coordination environment in 2 ; (e) packing structure of 2.
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Fig. 3 Molecular structure of compound 3. (a) A and B represent substitution sites. (b and c) 3 with MPP ligand. (d) Packing of 3 along the c-axis.
(e and f) Molecular structure of 4. (g and h) Packing structure of 4. (i—1) Cluster assembly in 4. The atom color code: pink, In; green, Fe; red, O;

blue, N; gray, C; dark green, Cl.

adding imidazole (HIm) in the reaction system of 1, resulting in
the replacement of site A by an Im™~ bridged ligand to form
a tetramer, [In,g] ring (Fig. 3e-1). Compound 4 crystallizes in
tetragonal P4,/n space group and contains four twisted cubane
central ions [In,(j14-0” )3(u3-OCH,)]*"*, twenty-eight FeDCA®~
ligands, four Im~ ions and four OH™ ions (Fig. 3e and f). The
coordination environment of [In,(us-O>);(uz-OCH3)]™" is
similar to 1, except that the two terminal chlorine atom sites are
replaced by the Im-ligand (Fig. 3f, i and j). The In-O bond
distance ranges from 2.099 A to 2.290 A. The In-N bond
distance ranges from 2.146 A to 2.171 A. Therefore, 4 can be
seen as the tetramer of 1. The center of the ring can be stacked
along the c-axis to form 1D channels (Fig. 3g, h, k and 1). It is
worth mentioning that this [In,g] ring holds the largest size
record among InOCs (Fig. S2 and S91).

Inspired by the tremendous success of using monodentate
carboxylic acid as a regulator in constructing high-nuclear
metal-oxygen clusters and high-valence metal-organic frame-
works (MOFs),**>* acetic acid was further introduced into the
synthesis system, and a series of 13 nuclear In;3-oxo clusters
were successfully synthesized. These In;;-oxo clusters represent
the highest nuclear number in InOCs.

Compound 5 crystallizes in monoclinic C2/c space group and

contains an [Inyz(uys-0")s(-0”)]*>" core, which was

730 | Chem. Sci, 2024, 15, 726-735

stabilized by six FeDCA®>™ ligands accompanied by six depro-
tonated methanol molecules and six water molecules. [In;3(1,-
0% )6(12-0% )] can be viewed as a sandwich-type trilayer
structure (Fig. 4a-d). The middle part is an Anderson-type
[In;(ns-0®)e]”* [In,],* which is a hexagonal planar ring
formed by seven coplanar In(m) ions through six j1,-0*~ bridges.
Each ps0°" is connected to three In(m) ions, forming
a coplanar tetrahedron. And the upper and lower parts are
approximately equilateral triangle [Ins(1,-0%>);]°". The upper
and lower layers of [Inz] form two equilateral triangles with
a side length of 3.85 A, and the angle of In-O-In is 136.10°. A
similar cluster core has been reported in the cobalt(u)-contain-
ing arsenomolybdate [Co(H,0)s]K,[AssCoMO0¢O3,],” but it is the
first discovery in the field of indium oxide clusters. Six methanol
molecules are uniformly connected around the planar ring of
[In13(H4'027)6(H2'027)6]15+ to form an [In13(“’4'027)6(“'2'027)6(”'3'
OCHj;)6]°". The outermost edge of the anionic cluster [Iny] is
modified by six FecDCA®~ ligands, with two carboxyl groups on
each FcDCA”™ ligand in n*:n"m":n":u; modes bridging three In
atoms to form [InyzFeDCAg(1s-0% )g(112-0> )6(13-OCH;)6 P~
(Fig. 4d). It is similar to the layer previously reported [Mn;;].** It
is different from the cluster core configuration of [In,z], which
may be due to the different coordination modes of FcDCA*~
ligands.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Molecular structure of 5: (a) structure of 5; (b) the cubane
central ion is [Inlg(u4—027)6(u2—027)6]15+,‘ (c) [In7(u4—02’)6(u3—
OCH3)6l*" is the Anderson configuration; (d) coordination environ-
ment of [INyz(ia-0%)e(pa-0%7)6)*>. Color: pink, In; green, Fe; red, O;
blue, N; gray, C; dark green, Cl.

Similar to 1, the terminal coordination sites of [In, 3] (Fig. 5a,
site A, site B and site C) can be replaced by diverse molecules. All
sites (A, B and C) are replaced by HIm to obtain compound 6
with the formula [In;zFcDCA4(114-0% )g(12-0® )6(Ho-OCH;)6(-
HIm)e]*~ (Fig. 5b). Compound 7 was obtained by using 2-
methylimidazole (2-mimH) to replace HIm (Fig. 5c).

Compound 7 contains an anionic [In;;FeDCAg(1s-0%)g(pa-
0°)s(112-OCH;)g]*~ core, and the sites A, B and C are occupied
by 2-mim, DMF, and H,O respectively.

Pyrazole (HPy) was added to replace HIm resulting in the
formation of compound 8 (Fig. 5d). Compound 8 contains an
anionic cluster [Iny3FcDCA,(114-0% )g(2-0% s (Mo
OCH,3)s(OCH3;)4Cl 5(Py )4]°~. Compared to 5, sites A and B are
replaced by methanol molecules in 8. Additionally, due to the
similarity of the Py~ coordination mode to the carboxyl group,
two FcDCA®~ ligands are replaced by four chelating Py~ ligands.

Interestingly, 4,4"-biphenyldicarboxylic acid (H,BPDC) was
utilized as a bridged ligand to construct a one-dimensional
extended structure based on [In;3], compound 9. Compound 9
contains an anionic cluster [In;zFeDCAg(14-0% )g(112-0 o(Mo
OCH;)(BPDC),(H,0),]"~ similar to that of 5 (Fig. 5€). Sites A
and B are replaced by 4,4"-biphenyldicarboxylic acid in 9 to form
a chain along the a-axis. The description of structural details of
compounds 5-9 is provided in the ESI{ (Fig. S10-S12). Physical
characterizations such as powder X-ray diffraction (PXRD),
infrared spectroscopy and thermogravimetry analyses revealed
the purity and composition of the samples from a macroscopic
perspective, further corroborating the single-crystal character-
ization results (Fig. S13-S307).

Here, we summarize the synthesis and structure:

(1) By introducing monodentate carboxylic acid as a regu-
lator, we achieve a metal cluster core design from low to high
nuclei;

(2) by introducing auxiliary ligands to obtain dimers, tetra-
mers, and even one-dimensional extended structures, the end

© 2024 The Author(s). Published by the Royal Society of Chemistry
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coordination solvents of [In,] and [In,3] exhibit instability,
serving as SBUs.

Electrochemical measurements

Due to its good acid-base stability and thermal stability, 1 has
the potential to be used as a photocatalyst material. We inves-
tigated the optical properties related to photocatalysis of
compounds 1, 3, and 4 with similar structures. The UV
absorption spectrum obtained from the solid UV diffuse
reflection spectrum conversion shows a very obvious strong
absorption peak at around 600 nm in the UV band (Fig. S31-
S397). After the Kubelka Munk equation transformation,*® we
obtained optical bandgaps of 1.90 eV, 1.85 eV, and 2.25 eV for 1,
3, and 4, respectively (Fig. 6a). We conducted Mott Schottky
testing® (Fig. S40-S427), and the results show that the test
curves of 1, 3, and 4 have a positive slope and are n-type semi-
conductors. By testing at different frequencies, we get the cor-
responding lowest unoccupied molecular orbital (LUMO)
energies of —1.01 eV, —0.92 eV, and —1.05 eV (V vs. NHE, pH =
7). Therefore, it is calculated that the highest occupied molec-
ular orbital (HOMO) is 0.89 eV, 0.93 eV and 1.20 eV respectively.
From the LUMO energy levels, the LUMO positions of 1, 3, and 4
meet the thermodynamic requirements for carbon dioxide
reduction.

Their photocurrent response was studied under visible light
irradiation. The experiment was conducted at room tempera-
ture in 0.2 M Na,SO, electrolyte using a 300 W high-pressure
xenon lamp (A > 420 nm) as a visible light source. To elimi-
nate errors caused by uneven film thickness, a back lighting
method is used. During the testing period, the xenon lamp is
manually shielded to maintain its on-off cycle illumination
(with an interval of 10 seconds), and maintain the voltage at
0.4 V. Visible photocurrent directions were observed for
compounds 1, 3, and 4. On the one hand, photocurrent is
rapidly generated and remains stable, and the intensity has not
significantly decreased, indicating that they have good photo-
electric response and stability. On the other hand, we found
that the response effect showed the following trend: 3 > 1 > 4,
which was consistent with the size trend of the UV band gap
(Fig. 6b).

Photocatalytic CO, reduction

When compounds 1, 3 and 4 were used directly as catalysts for
photocatalytic carbon dioxide reduction, discernible photore-
duction products were not observed. Consequently, we opted to
employ [Ru(bpy);]Cl,-6H,O as the photosensitizer for the
system. Additionally, we utilized 1,3-dimethyl-2-
phenylbenzimidazoline (BIH) as the electron sacrificial agent
for the reaction. Visible light with wavelengths greater than
420 nm was chosen as the light source with a measured light
intensity density of 458 mW cm? using a light intensity meter
for the photocatalytic activity testing. Gas chromatography was
employed to monitor the gas phase products. It can be seen that
after 5 hours of illumination, the systems employing catalysts 1,
3, and 4 respectively achieved CO generation rates of 3477 pmol
g’ h™", 11 umol g* h™', and 10 pumol g * h™%
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Fig. 5
compound 8 (A = B = MeOH, C = =H,0); (e) compound 9 (A =B =

Correspondingly, the rates of H, reached 967 pmol g~* h™*, 571
umol g¢~* h™', and 500 umol ¢g~' h™' (Fig. 7a and b). The
selectivity of 1 pair of CO products reached 82%.

A series of control experiments were also conducted to
elucidate the roles of various components within the pho-
tocatalytic system. The lack of photosensitizers has led to
a significant reduction in products, highlighting the role of
photosensitizers in helping catalysts improve light utiliza-
tion efficiency in the reaction (Fig. S437). In instances where
our cluster was not added, marginal amounts of CO and H,
were detected, likely attributed to the inherent photo-
catalytic activity of the photosensitizer alone. Substituting
CO, with Ar yielded negligible carbon product generation,
confirming the origin of CO from CO, reduction. In the
absence of light, no gas-phase products were detected, con-
firming the photocatalytic nature of the reaction. Similarly,
when BIH was omitted, product formation was not observed,
highlighting the essential nature of electron sacrificial

732 | Chem. Sci, 2024, 15, 726-735
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(a) [Ingz] as a secondary building unit: (b) compound 6 (A = B = C = HIm); (c) compound 7 (A= 2-mim, B = DMF, C = =H,0); (d)

BPDC, C = =H,0. A, B and C represent different substitution sites).

agents. Further investigations encompassed the photo-
catalytic activity of metal salts and ligand H,FcDCA. Metal
salts exhibited similarity to the scenario involving solely
photosensitizers without catalysts, suggesting the absence of
significant catalytic activity in metal salts. The system
incorporating ligand H,FcDCA yielded a hydrogen genera-
tion rate of 239.1 umol g~' h™', along with an average CO
production rate of 0.8 umol g~' h™'. This indicates the
marginal catalytic impact of H,FcDCA in photocatalytic CO,
reduction.

Following the reaction, compounds 1, 3, and 4 were
recovered through filtration, washing, and drying processes,
and their structures were characterized. Post-reaction PXRD
data indicated a loss of crystalline states in 3 and 4,
evidenced by the broadening and disappearance of peak
patterns. In contrast, the PXRD pattern of 1 remained nearly
unchanged (Fig. 7c), signifying its stability after the
reaction. Compared to the other two materials, the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Energy-level diagram of 1, 3 and 4; (b) 0.4 V-bias photo-
current responses of electrodes derived for 1, 3and 4 in 0.2 M Na,SO4
aqueous solution under repetitive chopped visible light irradiation.

pronounced photocatalytic CO, effect of 1 may be attributed
to its superior stability. Notably, 3 and 4 displayed
a propensity for hydrogen gas production akin to the cata-
lytic outcomes of H,FcDCA. The selectivity of compounds 3
and 4 (pair of H, products) increases, which is probably
attributed to the decomposition of compounds 3 and 4 to
produce FcDCA®>~ ligands, mainly for photocatalytic
hydrogen production. This trend could potentially stem
from the instability of the In-N bond within 3 and 4, leading
to decomposition within the catalytic system and resulting
in FcDCA®~ formation.

On the basis of the above discussion, a feasible mechanism
of photocatalytic CO,RR can be explained as follows. In** with
d'® structure and H,FcDCA are extraordinary light-trapping
elements.***® First, many electron-hole pairs are generated
in compounds 1, 3, and 4 driven by visible light, and the In**
ions of InOCs can simultaneously obtain the photoexcited
electrons migrated from the FcDCA®~ ligands and photosen-
sitizers to become reduced indium ions.*®%* At the same time,
the BIH molecules behave as sacrificial agents to quench the
remaining photogenerated holes.”” At last, the accepted
photoexcited electrons in reduced indium ions further move to
the absorbed CO, molecules for the CO, reduction reaction,
while reduced indium ions are oxidized to the original In**
ions. Due to the lack of significant catalytic activity in metal
salts, the ligand H,FcDCA generates H, and trace amounts of
CO. That is a good reflection for the effectiveness of our initial
design for InOCs as a visible light catalyst by selecting an In(i)
center with d'® properties and H,FcDCA ligand with strong
light absorption.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) Reaction rates under different conditions; (b) photocatalytic
performance test chart of compound 1; (c) powder XRD patterns for
compound 1 before and after photocatalytic reaction.

Conclusions

In this study, we successfully synthesized InOCs using 1,1
ferrocene dicarboxylic acid (H,FcDCA) as the chelating ligand
and surface protection ligand. The cubane-type heptanuclear
InOCs ([In,]) and sandwich-type thirteen-nuclear InOCs ([In;3])
were obtained for the first time. Notably, [In;3] represents the
highest nuclear number. The self-assembly of these InOCs
results in the formation of a series of dimers, tetramers, and
one-dimensional extended structure. The inclusion of ferrocene
units within these clusters resulted in remarkable redox activity
and exceptional photocatalytic performance. These findings
highlight the potential of H,FcDCA as a versatile chelating
ligand for synthesizing InOCs with enhanced properties. The
ability to control the size and structure of InOCs opens up new
avenues for their utilization in various applications such as
catalysis, optoelectronics, and nanotechnology. Further
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exploration and application of InOCs with structural diversity
are necessary to uncover their full potential and promote their
broad range of applications.
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