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The electrocatalytic nitrate reduction reaction (NOzRR) is an ideal NHz synthesis route with ease of oper-
ation, high energy efficiency, and low environmental detriment. Electrocatalytic cathodes play a dominant
role in the NOzRR. Herein, we constructed a carbon fiber paper-supported CuO, nanoarray catalyst (CP/
CuQ,) by an in situ electrochemical reconstruction method for NOs™-to-NHsz conversion. A series of
characterization techniques, such as X-ray diffraction (XRD) and in situ Raman spectroscopy, unveil that
CP/CuQ, is a polycrystalline-faceted composite copper nanocatalyst with a valence composition contain-
ing Cu®, Cu* and Cu?*. CP/CuO, shows more efficient NOs™-to-NHsx conversion than CP/Cu and CP/
Cu,0, which indicates that the coexistence of various Cu valence states could play a dominant role. CP/
CuOy with a suitable Cu?* content obtained by adjusting the conductivity during the in situ electro-
chemical reconstruction process exhibited more than 90% faradaic efficiencies for the NOsRR in a broad
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range of —0.3 to —1.0 V vs. RHE, 28.65 mg cm~2 h™! peak ammonia yield, and stable NO3RR efficiencies
for ten cycles. These findings suggest that CP/CuO, with suitable copper valence states obtained by fine-
tuning the conductivity of the electrochemical reconstruction may provide a competitive cathode catalyst

Published on 21 2024. Downloaded on 11/7/2025 4:48:29 PM.

rsc.li/nanoscale

1. Introduction

Ammonia (NHj;), as the essential chemical feedstock of
pharmaceutical manufacturing, fertilizer production, energy
supply, etc., plays an important role in global energy and agri-
cultural production."” At present, industrial-scale NH; syn-
thesis is dominated by the energy-intensive Haber-Bosch (H-
B) process. However, the H-B process requires high tempera-
ture (400-500 °C) and high pressure (150-300 atm), leading to
the consumption of 2% of the world’s annual energy output
and 400 Mt of carbon dioxide emission per year.> Therefore,
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for achieving excellent activity and selectivity of NOz™-to-NHz conversion.

finding a new method for NH; synthesis that is environmen-
tally friendly, efficient, and can utilize renewable energy
sources has important research value and application
prospects.

Electrocatalytic technologies are beginning to show their
potential in NH; synthesis due to their ease of operation, high
energy efficiency, and low environmental detriment.*® The
electrocatalytic nitrate reduction reaction (NO3;RR) is an ideal
NH; synthesis route, which not only complements the tra-
ditional energy-intensive and costly NH; production process,
but also helps to alleviate the environmental problems caused
by nitrate pollution (such as eutrophication).”® Nitrate
reduced to ammonia would undergo a multi-step electroreduc-
tion process at the cathode that involves the transfer of nine
protons and eight electrons to ultimately produce NH; and
H,O in acidic and neutral electrolytes.'”'*> Throughout the
electrochemical reaction at the cathode, the rate-determining
step (*NH; to NH;) and the competing hydrogen evolution
reaction (HER) dominantly impede the kinetics and faradaic
efficiency of the NO3RR."*™® As a result, it is crucial to ration-
ally design cathode catalysts to achieve excellent activity and
selectivity of the NOzRR.

Various catalysts, including noble and transition metals,
alloys, and non-metallic electrodes, have been explored to
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enhance the selectivity and efficiency of the NO;RR.""*® For
example, Liu et al. developed atomically precise silver (Ag)
nanocluster catalysts for an efficient NO;RR to synthesize NH3,
achieving high stability in neutral media.'® A transition metal-
based Ni/Ni(OH), catalyst was reported to enable ammonia
production at ampere-level current densities. Metal-free amor-
phous graphene was also found to benefit the direct electrore-
duction of nitrates to ammonia.?* However, common issues
with these catalysts include their limited availability, high
cost, and potential deactivation over long-term use. Copper
(Cu), on the other hand, shows promise in addressing these
issues due to its abundance, lower cost, and superior NO3~
adsorption and reduction of *NO; to *NO,, which is attributed
to the highly occupied d-orbitals and the energy level of Cu
matching the lowest unoccupied *r orbital of NO;-N.*'
Nevertheless, pure Cu would rapidly deactivate owing to the
NO;RR intermediates (e.g., NO,”) accumulating on the Cu
surface.”” To overcome this limitation, researchers have proved
that optimizing the valence state of Cu is a preferable way, as
Cu®" species (e.g., CuO,) with a relatively low energy barrier for
the NO3;RR are more active in adsorbing, activating, and even
desorbing the intermediates.>*>* For instance, Wu et al.
reported a strategy for controlling the oxidation state of copper
using aryl diazonium salts for covalently binding aryl groups
onto the copper surface.?®

In this study, a carbon fiber paper-supported CuO, nanoar-
ray catalyst (CP/CuO,) obtained by an in situ electrochemical
reconstruction method was used for NO;™-to-NH; conversion.
The crystalline state, morphology, and electronic state of Cu
were investigated by various spectroscopy characterization
techniques. The performance of the CP/CuO, cathode was
assessed in the electrocatalytic reduction of NO;~ to NH;
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including NH; yield, faradaic efficiency and stability. The
electrochemical measurements, density functional theory
(DFT) calculations, and spectroscopy characterization studies
of CP/Cu, CP/Cu,O and CP/CuO, cathodes were compared to
evaluate the role of CuO, in NO; -to-NH; conversion. Finally,
the effects of different physicochemical morphologies of CP/
CuO, constructed by conductivity modulation on NH; yield
and faradaic efficiency were investigated.

2. Materials and methods
2.1 Working electrode preparation

The CP/Cu precursor was first synthesized using a chronoam-
perometry (i-t) method. As shown in Scheme 1, a carbon fiber
paper sheet was used as the cathode (1 cm x 2 ¢cm), a platinum
sheet was used as the anode, and a saturated calomel electrode
(SCE) was used as the reference electrode, respectively. 25 mL
of electrolyte containing 70 mM CuSO, and 0.50 M Na,SO,
solution was added to a single-cell reactor. Then copper ions
can be electrochemically reduced to metallic copper and de-
posited onto the carbon fiber paper at a constant stirring rate
of 600 rpm and a deposition potential of 0.3 V vs. RHE for a
duration of 800 seconds.

The acquired CP/Cu precursor was immersed in an alkaline
solution which consisted of 2.5 M NaOH and 0.125 M
(NH,4),S,05 for 15 min to convert Cu to Cu(OH),. After washing
3-5 times with deionized water, the Cu(OH), was dried. The
Cu(OH), was then pyrolyzed to obtain Cu,O-loaded CP (CP/
Cu,0) at 550 °C for 2 hours in a tube furnace (inert gas
atmosphere).
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Scheme 1 Schematic illustration of the synthesis of CP/CuO,.

13896 | Nanoscale, 2024, 16, 13895-13904

KNO,, KOH

Conductivity control 4

CP/Cu,0

Cu*e
eStep 4, in-situ electrochemical reconstruction

This journal is © The Royal Society of Chemistry 2024


https://doi.org/10.1039/d4nr01625d

Published on 21 2024. Downloaded on 11/7/2025 4:48:29 PM.

Nanoscale

CP/Cu,0 was treated by cyclic voltammetry (CV) for 50 elec-
trolysis cycles (—0.5 to 0.2 V vs. RHE) in the alkaline electrolyte
(1 M KOH) with varying nitrate concentrations, as displayed in
Scheme 1. The nitrate concentrations of the alkaline electrolyte
used were 0.1, 0.5, 0.8, and 1 M, and the corresponding con-
ductivities of the electrolytes were 112, 128, 138, and 143 pS
cm™, respectively.

2.2 Ammonia electrosynthesis

Electrochemical measurements were performed in an H-cell
configured with the anodic and cathodic chambers (100 mL
each) being separated by an anion exchange membrane
(Nafion 115). 60 mL of 1 M KOH containing 0.1 M KNO; was
added to each chamber. CP/CuO, was used as the working
electrode. Electrochemical methods including CV, linear scan-
ning voltammetry (LSV), and electrochemical impedance spec-
troscopy (EIS) were used for characterization of the NO;RR per-
formance of the CP/CuO, catalysts. LSV tests were performed
in the range of —1 to 1 V vs. RHE at 5 mV s~ '. CV curves were
recorded in the range of —0.52 to —0.62 V vs. RHE at 20, 40, 60,
80, 100, and 120 mV s~ ' in 1 M KOH. EIS was conducted at
0.15 V vs. RHE and frequencies from 0.1 to 100 kHz. The
measurement methods of NO,~, NO;~, NH,", N,H,, N, and H,
are depicted in the ESL{ and their standard curves are shown
in ESI Fig. S1-S5.}

3. Results and discussion
3.1 Preparation and characterization of electrodes

The preparation process of the CP/CuO, electrode is shown in
Scheme 1. First, the CP was pre-treated to remove the impuri-
ties on the fiber surface and to improve the attachment point
of the copper grains. CP loaded with copper grains (CP/Cu)
was obtained by chronoamperometry, and the optimum
copper deposition state was obtained by tuning the deposition
potential and reaction time (ESI Fig. S6 and S7t). The copper
grains on CP/Cu were converted to Cu(OH), by wet chemistry.
They were then annealed to obtain CP/Cu,O by the thermal
decomposition method. Finally, CP/Cu,O was reduced to a
composite Cu nanocatalyst (CP/CuO,) with better electro-
chemical stability in solutions containing nitrates. During the
in situ electrochemical reconstruction process, the CV curves
of the first 40 cycles varied significantly and with little overlap,
indicating that Cu,O was reduced on the surface of the carbon
fibers (ESI Fig. S8a and bt). In subsequent cycles, the CV
curves show good overlap, demonstrating that the catalyst has
formed a stable chemical state (ESI Fig. S8c and df).

As shown in Fig. 1a and b, after the in situ electrochemical
reconstruction process, CP/CuO, formed a cluster-like struc-
ture consisting of many spherical nanograins on its surface at
a conductivity of 112 uS ecm™'. The characteristic diffraction
peaks of C, Cu and Cu,O are observed in the XRD spectra of
the CP/CuO, electrocatalyst, as shown in Fig. 1c and ESI
Table S1.f The diffraction peaks of C are from the graphitic
carbon structure of the CP, with 26.5° being attributed to the

This journal is © The Royal Society of Chemistry 2024
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(002) facet and 54.5° being attributed to the (004) plane of the
carbon substrate.”” The weaker diffraction peaks observed at
43.3° and 50.5° are attributed to the Cu (100) facet and the Cu
(111) plane, respectively. It is important to note that the (200)
diffraction peak is a secondary diffraction originating from the
(100) plane.®*® The CP/CuO, electrocatalyst showed weakly
(100)- and (111)-oriented CuO crystalline phases and also
strongly (100)-, (111)-, and (220)-oriented Cu,O crystalline
phases. The elemental composition and valence states of CP/
CuO, were further investigated by XPS. One can see in Fig. 1d
that CP/CuO, exhibits the characteristic peaks of C 1s, O 1s,
Cu LMM, Cu 2p3/2 and Cu 2p1/2.2>%! As displayed in Fig. 1e,
there are three different types of oxygens present in CP/CuO,,
namely O; (oxygen on the complex structure), Oy (oxygen on
the Cu/Cu,O structure) and Oy (oxygen-deficient species).>*™>
This also indicates that CP/CuO, is a mixed-valence copper
nanocatalyst. Fig. 1f shows the high-resolution Cu LMM XPS
spectrum of CP/CuO,. The three peaks observed at 567.76,
573.94 and 571.80 eV correspond to Cu’ (76.54%), Cu®
(17.34%) and Cu** (6.12%), respectively.**® In addition, our
Cu 2p XPS spectrum (ESI Fig. S91) also showed a similar
phenomenon of mixed Cu®*" and Cu*/Cu®. These results collec-
tively demonstrated that CP/CuO, is a polycrystalline-faceted
composite copper nanocatalyst.

3.2 Evaluation of ammonia electrosynthesis

The catalytic activity of CP/Cu, CP/Cu,O and CP/CuO, for the
electroreduction of nitrate to ammonia was investigated in
H-cells. Before investigating the NO3;RR performance of the
catalysts, their LSV curves were tested until the polarization
curves reached a steady state. Fig. 2a shows the LSV curves of
the three catalysts. In general, the presence of NO;~ leads to
an increase of current density for the three catalysts. The
phenomenon indicates that the NO;~ reduction process
occurred on the three catalysts.>***° Moreover, the current
density of CP/CuO, with NO;~ shows the most significant
increase compared to that of virgin CP, CP/Cu and CP/Cu,O
(Fig. 2a and ESI Fig. S107). In particular, at —0.4 V vs. RHE, the
current density of CP/CuO, increased to —311 mA cm™2, which
is approximately 2.78 times higher than that of CP/Cu. The
results suggest that more NO;™ reduction occurred on the CP/
CuO,, cathode.

In addition, we further investigated the kinetics of the
NO;RR by analyzing the Tafel curves of the three catalysts
(Fig. 2b). CP/CuO, exhibited the smallest Tafel slope
(194.09 mV dec™") compared to CP/Cu (255.06 mV dec™ ) and
CP/Cu,0 (233.55 mV dec™"), suggesting that the composite
state Cu interface of CP/CuO, is beneficial for improving the
reaction kinetics compared to pure Cu. The higher electroche-
mically active surface area (ECSA) and the electrochemical
double-layer capacitance (Cq;) values of CP/CuO, than those of
CP/Cu and CP/Cu,O (Fig. 2c and ESI Fig. S117) indicate more
catalytically active sites on CP/CuO,. Furthermore, EIS
measurement was also used to further confirm the excellent
electrocatalytic performance of CP/CuO,. The Nyquist plots of
EIS show that CP/CuO, exhibited a lower charge transfer impe-
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Fig. 1 Characterization of CP/CuO,. (a and b) SEM images of CP/CuO,. (c) XRD patterns of CP/CuO, (Cu,O: JCPDF No. 05-0667; CuO: JCPDF No.
48-1548; Cu: JCPDF No. 04-0836; C: JCPDF No. 23-0064). (d) XPS survey spectrum of CP/CuQ,. (e) High-resolution O 1s XPS spectrum and (f)

high-resolution Cu LMM XPS spectrum of CP/CuO,.

dance than the control groups, implying a more efficient elec-
tron transfer on the surface of CP/CuO, (Fig. 2d).

In the electrolysis experiments after 8 h, the CP/CuO, elec-
trocatalyst was able to promote the conversion of NO;~ to
NH," consistently and efficiently, with the intermediate
product NO,™ almost not accumulating but being rapidly con-
verted (Fig. 2e). In order to gain insight into the reduction of
NO;~ to NH; over CP/CuO, in a mixed solution of 0.1 M KNO;
and 1 M KOH, electrochemical in situ Raman spectroscopy
measurements were performed at —0.6 V vs. RHE for a dur-
ation of 1 h. As shown in Fig. 2f, CP/CuO, shows peaks stretch-
ing at 730 and 1047 cm™', which were attributed to the
vibrational modes of N-O (NO;3™) and free NO;™ in the liquid
environment.*>*> The stretching intensity of these peaks
increased gradually as the reaction time extended from 0 to

13898 | Nanoscale, 2024, 16, 13895-13904

60 min, indicating the aggregation of NO;~ on the catalyst due
probably to the strong adsorption of NO;~ on the CP/CuO,
surface. The vibrational peaks at 1280 and 1548 cm™' are
attributed to the reaction intermediates of *NO, and *HON,
and the Raman signals of these intermediates are weak during
the reaction (ESI Fig. 5127).*>** Nevertheless, the Raman peak
at 1664 cm " attributed to NH, is clearly stronger.*” These
phenomena indicated that the NO3;RR could rapidly convert to
ammonia accompanied by some detectable intermediates
through a stepwise deoxygenated hydrogenation pathway on
the CP/CuO, cathode.

The efficient catalytic performance of CP/CuO, in ammonia
production from nitrate reduction can be attributed to the suit-
able valence of Cu. With respect to the detailed role of Cu in
each specific valence state, we tentatively considered them

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Electrochemical performance of CP/CuO,. (a) LSV curve of CP/CuO,. (b) Tafel slope of nitrate reduction by CP/CuQ,. (c) Cq of nitrate
reduction for CP/CuO,. (d) Nyquist plots of CP/CuO,. (e) Eight hours of NOzRR reaction process. 1 M KOH solution containing 0.1 M NOz™ as the
electrolyte. (f) In situ Raman spectra of CP/CuO, during its electrochemical process.

from the viewpoint of Gibbs free energy of reaction intermedi-
ates (ESI Fig. S13t) by DFT calculations. The calculated results
indicate that Cu® has a positive contribution to the conversion
of NO;™ to *NH; but a thermodynamically unfavorable process
is the desorption of *NH;. Cu’ displays a favorable NO;~
adsorption (*NO;) compared to Cu® and Cu®" because of a
higher downhill energy barrier of —4.02 eV, nevertheless only
-1.88 and -1.84 eV on Cu’ and Cu®*" respectively.
Unfortunately, Cu" has the very difficult step in the conversion
of “*NO to *N” owing to an uphill energy barrier of 1.74 eV.
Regarding Cu®’, it almost displays all beneficial steps in coor-
dinate numbers of 1-8 from the conversion of “NO;~ to *NH;”
aside from a slight uphill of 1.24 eV (versus 1.74 €V on Cu') in
the foregoing step of “*NO to *N”. Importantly, Cu>" displays
the smallest uphill energy barrier for the final desorption of
the *NH; intermediate which serves as the rate-determining
step for Cu®, Cu" and Cu®". Therefore, the valence composition
of Cu plays a key role in our NO;RR performance.

The performance of CP/CuO, in ammonia synthesis at
different potentials (—0.1 to —1.0 V vs. RHE) was deeply investi-
gated. To verify that ammonia production originated from the
electrochemical reduction of NO;~ entirely, CP/CuO, was
placed in electrolyte with and without NO;™ for electrocatalytic
tests (please see 2.2 Ammonia electrosynthesis). As shown in

This journal is © The Royal Society of Chemistry 2024

ESI Fig. S14,1 almost no ammonia generation was detected in
the solution without NO;~, further confirming that the
ammonia originated totally from the reduction of NO;™. The
complementary '°N isotopic labeling experiment showed a
typical double peak with chemical shifts at 6.85 and 6.97 ppm
in the '"H NMR spectrum (ESI Fig. S151), indicating the above
similar conclusion. As shown in Fig. 3a and ESI Fig. S16a,f
CP/CuO, exhibited faradaic efficiencies of more than 90% in
the range of —0.3 to —1.0 V vs. RHE and realized a peak
ammonia yield of 28.65 mg cm™> h™" at a potential of —0.9 V
vs. RHE. Such high selectivity to NH; was probably attributed
to the suitable adsorption energy and a favorable thermo-
dynamic process for some key intermediates over our electro-
catalyst. Other by-products such as H, or N,H, were not detect-
able in our system (ESI Fig. S4, S5 and S177). However, the far-
adaic efficiency still not being equal to 100% was probably
attributed to the detectable reaction-incomplete intermediate
NO,™ (Fig. 2e). CP/CuO, performed well in terms of ammonia
yield and faradaic efficiency, well in agreement with the results
of their LSV, ECSA, and EIS tests. A suitable potential of —0.6 V
vs. RHE was chosen to test the long-term stability of CP/CuO,,
as can be seen in Fig. 3b. The results show that there was
almost no performance attenuation in the continuous
ammonia electrosynthesis with the CP/CuO, electrocatalyst

Nanoscale, 2024, 16,13895-13904 | 13899
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during 10 cycles. In addition, no significant changes were still
observed in the CV curves (ESI Fig. S18t), Cu LMM XPS spectra
(ESI Fig. S19at) and Raman spectra (ESI Fig. S207) of the cata-
lysts before and after the reaction, and even the neglected Cu
leaching (ESI Fig. S19b and ct) in each repeated run, together
indicating that the catalyst composition remained robust even
after ten cycle tests. Compared to the reported copper catalysts
and other advanced catalysts, the CP/CuO, electrocatalyst in
this study showed superior faradaic efficiency and NH," yield
for the NO3RR (Fig. 3c and ESI Table S27).

3.3 Unveiling of the role of conductivity in the reconstruction
of CuO,

To investigate the surface compositions and valence states of
Cu for the NO3;RR, the CP/CuO,, CP/CuQO,;;, CP/CuO,,, and
CP/CuO,.; catalysts were prepared in 112, 128, 138 and 143 pS
em™' electrolyte, respectively, through an in situ electro-
chemical reconstruction process (please see 2.1 Working elec-
trode preparation). Note that the increased oxygen element
indicates the increased valence of copper. With increasing the
conductivity of electrolyte from 128 to 143 uS ecm™, the mor-
phologies of CP/CuOg ranged from a spherical-like cluster con-
sisting of numerous rod-shaped copper grains (128 pS cm™,

13900 | Nanoscale, 2024, 16, 13895-13904

Fig. 4a) to irregularly distributed copper grains (138 pS cm™,

Fig. 4b) and a more ordered distribution of large rod-like
copper grains (143 pS cm™', Fig. 4c). Changes in the chemical
compositions of these CP/CuOg electrocatalysts were first
detected by Raman spectroscopy (Fig. 4d). The characteristic
Raman peaks of Cu* and Cu®* could be clearly observed, such
as the stretching peak at about 300 cm™" pointed to the CuO
(Cu®") phase.*® This result is consistent with the valence
changes revealed by XPS, as shown in Fig. 4e. In the XPS
spectra of CP/CuQOy,.;, CP/CuOy,,, and CP/CuO,,s, the signals of
the Cu** species become more prominent with increasing con-
ductivity. The results indicate that the four catalysts consist of
cu’, Cu” and Cu®" and that the amount of Cu®" increases from
6.94% to 25.91% with increasing conductivity (ESI Table S31).
In addition, the XRD results in ESI Fig. S211 support a similar
conclusion, with the intensity of the Cu (100), (111) and Cu
(220) facets decreasing progressively as the conductivity of elec-
trolyte increases, while the intensities of the diffraction peaks
representing the CuO phase increase gradually.

The in situ electrochemical reconstruction by CV was found
to be two stages of dissolution (oxidation process) and redepo-
sition (reduction process) of copper ions.*”” The Cu®** ions of
the catalyst would leach into the electrolyte during the

This journal is © The Royal Society of Chemistry 2024
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CuO,,z. (g) Faradaic efficiencies and NH,* yields of CP/CuO,,4, CP/CuO,,, and CP/CuO,,s. (h) Schematic illustration of the conductivity-mediated
in situ electrochemical reconstruction of CuO, for nitrate reduction to ammonia.

oxidation process, and then the Cu® or Cu® would redeposit
onto the catalyst during the reduction process. A decrease in
the conductivity of the electrolyte leads to an increase in elec-
trical resistance, which slows down the ion migration rate in
turn.*® Consequently, in a low conductivity microenvironment,
slow ion migration causes a higher accumulation of Cu®** on
the catalyst surface. This would contribute to the formation of
a clustered deposit with some lower valence copper during the
reduction process (ESI Fig. S221). In contrast, at higher con-

This journal is © The Royal Society of Chemistry 2024

ductivity, Cu** ions can migrate and diffuse faster, resulting in
a decrease in the local Cu®** concentration in the electrolyte
which would cause the slight reduction of Cu>* on the catalyst
(Cu*'jiquia = Cu’/Cu’soiiq). Thus, we could obtain more Cu®"
on the catalyst in a higher conductivity microenvironment
(Fig. 4e and ESI Table S37).

LSV analysis shows the current responses of CP/CuOy.4, CP/
CuO,,, and CP/CuO,,; to NO;~, and the current densities vary,
in the sequence of CP/CuO,;; > CP/CuO,.; > CP/CuOyiy
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(Fig. 4f). This order is accordingly consistent with their
ammonia yields and faradaic efficiency (Fig. 4g and ESI
Fig. S161). In terms of NO3RR performance, CP/CuO, pro-
duced with the lowest conductivity performs best, followed by
CP/CuO,.; with the highest conductivity. The Raman spectrum
of CP/CuO,,; was similar to that of CP/CuO, after 1 or 10 elec-
trolysis experiments (ESI Fig. S20ct). The phenomenon indi-
cates that CP/CuO,.; is unstable during electrolysis, and this
would lead to a shift towards a similar chemical composition
to CP/CuO,, even for the initial CP/CuO,.; electrocatalyst with
the highest Cu®" content. As a result, the NO;RR performance
of CP/CuO,.,; was close to that of CP/CuO, (Fig. 4g).

These results clearly indicate that conductivity-mediated
in situ electrochemical reconstruction of CuO, can not only
tune the physicochemical characteristics of catalysts, such as
the physical morphology (Fig. 4a—c), but also, importantly,
effectively control the valence state of copper which plays a key
role in the NO3RR performance. The comparison of the
NO3RR performance of CP/CuO, with that of CP/Cu,0O and CP/
Cu in Fig. 2a shows that the catalysts with all three valence
states (Cu’, Cu” and Cu®*) exhibit desirable nitrate reduction.
Furthermore, the results in Fig. 3 and 4f, g proved the signifi-
cance of a suitable content of Cu®" in the CuO, electrocatalyst.
The phenomena could be attributed to the easy formation of
some key reaction intermediates during the NO;RR process
and effective suppression of the competitive cathodic HER (see
ESI Fig. S13 and S171) on the CuO, interface.*>*® Therefore,
for achieving a high NH; yield during the NO;RR process, an
appropriate conductivity microenvironment is needed to opti-
mize the ratio of Cu valence states.

4. Conclusions

This study introduces a carbon fiber paper-supported CuO,
nanoarray catalyst (CP/CuO,) obtained by an in situ electro-
chemical reconstruction method for NO; -to-NH; conversion.
The CP/CuO, catalyst with various valence states of Cu shows
an obvious improvement in NO; -to-NH; conversion in com-
parison with CP/Cu and CP/Cu,0. CP/CuO, with a suitable
Cu** content exhibited good stability, high faradaic efficiencies
and high ammonia yields in a wide potential range. The
results suggest that CP/CuO, obtained by the conductivity-
mediated in situ electrochemical reconstruction route may
provide a commercially competitive electrocatalyst for achiev-
ing excellent activity and selectivity of NO3;™-to-NH; conversion
(Fig. 4h).
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