
rsc.li/crystengcomm

 CrystEngComm

ISSN 1466-8033

Volume 26
Number 46
14 December 2024
Pages 6503–6668

HIGHLIGHT
Na Wang, Hongxun Hao et al.
Polymorph transformation of solid drugs and 
inhibiting strategies



CrystEngComm

HIGHLIGHT

Cite this: CrystEngComm, 2024, 26,

6510

Received 15th August 2024,
Accepted 12th October 2024

DOI: 10.1039/d4ce00811a

rsc.li/crystengcomm

Polymorph transformation of solid drugs and
inhibiting strategies

Yaoguang Feng, a Hui Wang,a Di Wu,a Kui Chen,a Na Wang, *ab Ting Wang, ab

Xin Huang, ab Lina Zhou ab and Hongxun Hao *ab

Metastable forms and amorphous forms exhibit higher solubility and dissolution rates compared to stable

crystalline forms, making them viable options for pharmaceuticals with low solubility. However, the use of

metastable forms and amorphous forms may result in polymorph transformation in pharmaceutical

manufacture and storage, which will reduce their bioavailability. Firstly, different polymorphic

transformations were discussed. Then, the factors affecting crystals and amorphous stability, including

solvent, temperature, humidity, and preparation processes were analyzed. Finally, strategies and their

mechanisms to inhibit polymorphic transformation and amorphous recrystallization were also summarized,

including suitable storage conditions, optimization of the preparation processes, use of additives,

adjustment of formulation recipes, and surface and loading techniques.

1. Introduction

Currently, the majority of active pharmaceutical ingredients
(APIs) are formulated in solid forms,1–3 including
polymorphs, hydrates or solvates, and amorphous forms.4–6

Drug polymorphism refers to the phenomenon where the
same drug molecule crystallizes into different crystal
structures, and crystals of various polymorphs can exhibit
distinct lattice parameters, crystal packing, or molecular
conformations.7,8 Solvates are also regarded as polymorphs
when the term “polymorph” is used in a broader sense.9,10

Hydrates are the most prevalent type of solvate, owing to the
small size and polarity of water molecules, which act as both
hydrogen bond donors and acceptors.11 In contrast to the
long-range ordered and periodic arrangement of crystals,
amorphous (non-crystalline) forms exhibit long-range
disorder and short-range ordered arrangements. Various solid
forms of the same APIs often have different physical,
chemical, and mechanical properties. The differences in these
properties could further affect the solubility, dissolution,
bioavailability, stability, compressibility, clinical efficacy, and
safety of the APIs.12–14

The most thermodynamically stable solid forms are
usually chosen for the final formulated product because of

the lowest tendency to undergo polymorph transformation
during processing and storage.15 However, sometimes, stable
crystals may exhibit defects, such as low solubility and
bioavailability.16–18 For example, the stable crystalline form A
of chloramphenicol palmitate is biologically inactive, while
the metastable crystalline form B is biologically active.19 In
vivo investigations of rifaximin have demonstrated that the
crystalline forms δ and γ show higher bioavailability than the
thermodynamically most stable crystalline form α.20

Therefore, some metastable crystals or even amorphous
forms can be selected as commercially available solid forms
of drugs to improve their bioavailability. For example, the
antipsychotic drug aripiprazole has nine polymorphic
crystals, of which the most common clinical form is
metastable form III.21 The antihypertensive drug valsartan is
marketed in amorphous form, despite its hygroscopicity and
unfavorable chemical stability.22

Although the use of metastable or even amorphous
forms of drug formulations may increase the bioavailability,
there is also a risk of polymorph transformation. A famous
example is ritonavir, a protease inhibitor used for the
treatment of HIV. Due to the transition from form I to a
previously unknown stable form II, it was forced to
withdraw from the market, causing significant economic
losses for Abbott.23,24

Therefore, the study of drug polymorph transformation is
crucial in drug development. In this review, the phenomenon
of polymorphic transformation of solid drugs and its
influencing factors are discussed in detail. In addition,
strategies and mechanisms to inhibit the polymorphic
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transformation and amorphous recrystallization are also
summarized.

2. Polymorph transformation and its
influencing factors

The transition from metastable to stable state is a common
phenomenon of APIs. For solvates, metastable crystals, and
amorphous forms, due to their thermodynamic instability,
they may undergo polymorph transformation during storage
and production, which occurs as a result of solvent removal,
transition to a stabilized crystalline form, and transition to a
crystalline state, respectively.

The transformation of APIs may happen during different
stages of the processing of solid drugs (including
crystallization, drying, pulverization, sieving, mixing,
granulation tableting, etc.) and storage process.25–28 The
main factors affecting the transformation of polymorphs
include solvent, temperature, humidity, grinding, pressure,
etc. The polymorphic transformation can be categorized into
solid–solid phase transformation (SSPT) and solution-
mediated phase transformation (SMPT).29

2.1 Solution-mediated phase transformation

In the preparation of solid drugs, solution crystallization is
one of the most important methods. Solution-mediated
phase transformation involves the following stages:
dissolution of the metastable phase in contact with the
solution, nucleation of the stable phase, and crystal growth
of the stable phase.30,31 The solvent-mediated transformation
process can be affected by many factors, such as solvent,
temperature, water content, pH, particle morphology,
impurity or additive, etc.32–35

Zhu et al.36 conducted an SMPT study using theophylline
as a model compound. It was found that high temperature

can facilitate the transformation, and the duration of the
transformation varied with the solvent. Ding et al.37

investigated the solution-mediated dehydration of sodium
avibactam hydrate and found that different solution-
mediated dehydration mechanisms in different solvents lead
to different solid forms.

Li et al.12 obtained three solvent-free forms (A, B, C) of
pradofloxacin and demonstrated that form B was the most
stable by SSPT experiments. This may be related to the
presence of a large number of hydrogen bonds and C–H⋯π

interactions in the crystal structure of form B. Besides, the
calculated stacking coefficient of form B was largest. The
study of avatrombopag maleate by Hu et al.38 also showed
that the stability of the crystal during SSPT can be attributed
to its tightly packed structure and strong molecular
interactions.

For some drugs that can form hydrates,
thermodynamically stable crystalline forms can transform
into hydrates in aqueous solvents. The results of the
study of levofloxacin hydrochloride by Liu et al. showed
that high water content promotes the SMPT process
from form II (anhydrous) to form I (monohydrate), while
high temperatures inhibit this process.39 Li et al.40

investigated the effects of particle size on the SMPT
process using the anti-infective drug 5-nitrofuranone as a
model drug. The results show that decreasing the
particle size enhances the nucleation of stable crystalline
forms because the decrease in particle size accelerates
the dissolution of metastable forms and exposes more
crystalline surfaces per unit mass, thus providing more
possible nucleation sites on the metastable crystalline
surfaces.

In a recent study, Zheng et al.41 obtained eight different
polymorphs of aripiprazole through suspension
crystallization in 15 different solvents. They elucidated the
mechanism of solvent effects on the polymorphism of

Fig. 1 Mechanism of solvent effect on aripiprazole solution-mediated phase transformation. Four scenarios based on van der Waals interaction
and solvent properties. Reproduced from ref. 41. Copyright 2024 American Chemical Society.
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aripiprazole's suspension crystallization by calculating
solvent property parameters and employing molecular
dynamics simulations. Their findings indicated that the van
der Waals interaction energy between solvent molecules and
aripiprazole molecules, the hydrogen bond donor tendency
of solvent molecules, the volume, sphericity, and the cohesive
energy density of the solvent molecules are critical factors
influencing the outcomes of solvent-mediated phase
transformation (Fig. 1).

In addition to the above, Table 1 lists some examples of
SMPT that have been performed on drugs by researchers in
recent years.

2.2 Solid–solid phase transformation

Solid-to-solid phase transitions are phase transitions that
occur directly without solvent mediation, through the
recombination or rearrangement of molecules, ions, or atoms
into a more stable solid form.35 Transformation of the
crystalline form, including dehydration of the hydrate, may
occur during heating and drying or processes such as
granulation and tableting that generate mechanical and
thermal energy.58 The main factors affecting the solid–solid
phase transition include temperature, humidity, pressure,
crystal defects, impurities, etc.

Fig. 2 Polymorph transformation and color change of sulfonamide during heating. Reproduced from ref. 62. Copyright 2024 American Chemical
Society.

Table 1 Selected instances of researchers conducting SMPT on pharmaceuticals in recent years

Molecule Imposed conditions and polymorph transformation Year Ref.

Posaconazole Water, form S → form A 2024 42
Aztreonam Methanol, 10–28 °C, form C → form B 2023 43

Methanol, 28–45 °C, form C → form A
Trimethoprim Water/ethanol, form β → form α 2023 44

Acetonitrile + water, form α → form β
Glutathione Water, form α → form β 2023 45
Nitrofurantoin Acetonitrile/nitromethane, form α → form β 2023 46

Ethanol/n-propanol/1,4-dioxane, form β → form α
Risperidone Methanol/ethanol/acetone, form II → form I 2023 47
Baloxavir marboxil Acetonitrile + water, form I/form III → form II 2023 48
Acetaminophen Water, form II → form I, trihydrate → form II 2023 49
Nilotinib Methanol + water, amorphous → form H3, methanol, form C → form H2c/A 2022 50
Valnemulin hydrochloride Methanol + water, dihydrate → methanol–water solvate 2021 51

Ethanol + water, dihydrate → ethanol–water solvate
Erlotinib Toluene, anhydrous form I → monohydrate form III 2021 52
Glipizide Water, form II → form I/III 2021 53
Tolfenamic acid 2-Propanol, form IX → form II 2021 54
Piroxicam Acetone, monohydrate → form I/II 2019 55
Acyclovir Methanol/ethanol, form V → form I 2019 56
Lansoprazole Water + ethanol, monohydrate → ethanol solvate 2019 57
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Zhu et al.59 showed that baicalein monohydrate MH1 was
converted to hemihydrate above 30 °C and to
thermodynamically stable crystalline form α when heated to
125 °C. Grooff et al.60 investigated the polymorph
transformation of nifedipine at different storage
temperatures. It was found that the amorphous form of
nifedipine transformed at room temperature to its metastable
form C. The rate of transformation was temperature-
dependent, and it was accelerated by increasing temperature.
Centore et al.61 reported an abundance of solid-phase
transformation of 4-hydroxybenzohydrazide, including
monotropic/enantiotropic, fast/slow, diffusive/displacive, and
single-crystal to single-crystal. And the transformation results
can be manipulated by temperature and rate of temperature
rise and fall. Mohamed et al.62 reported that the weak
intermolecular interactions in sulfonamide can be
manipulated by heating, which may lead to polymorph
transformation accompanied by significant reversible and
irreversible heat-induced color changes (Fig. 2).

For the drugs that tend to form hydrates, the relative
humidity (RH) of the storage environment is equally
important, as changes in humidity may lead to polymorph
transformation in solid drugs due to the removal or addition
of crystal water. Berzins et al.63 investigated the effect of
humidity on the polymorph transformation of xylazine
hydrochloride. It was found that, when the RH was less than
10%, all the hydrates were dehydrated and transformed into
the anhydrate form, and when the RH was more than 20%,
all the anhydrate forms absorbed water and transformed into
hydrates. Meanwhile, the inter-transformation process
between anhydrate and hydrate was also affected by the size
of drug particles. As shown in Fig. 3, Kons et al.64 established
solid-state transformation relationships for six polymorphs of
dantrolene, of which form IV, V, and VI could be obtained by
solid-state dehydration of three different monohydrates (MH-
I/II/III) under different humidity conditions, respectively.

Grinding or ball milling processes are common to reduce
the size of drug particles in the pharmaceutical industry.65,66

The heat and mechanical energy generated during the
milling process may lead to the transformation of the
crystalline form of the drug. Common grinding methods
include neat grinding, variable temperature grinding, liquid-
assisted grinding, ionic liquid-assisted grinding, and
polymer-assisted grinding.67 The polymorph transformation
of solid drugs during milling can also be affected by many
factors such as temperature, solvent, crystalline species, and
additives.

Trask et al.68 investigated the effect of a small amount of
solvent-assisted grinding on the polymorph transformations
of anthranilic acid. Form I was converted to form III and
form II upon neat grinding and grinding with small amounts
of n-heptane, respectively. No polymorph transformation was
observed in neat grinding for both form II and form III. Upon
the addition of a small amount of water and n-heptane for
grinding, form III was transformed into form I and form II,
respectively.

In the tableting process, compressive forces lead to shear
stresses, which would distort the crystalline lattice and
molecular rearrangement. In addition, the increase of
temperature due to compression can also affect the
polymorphic transition in the solid state.69,70 The
polymorphic transition induced by compression tablets was
described in detail in a review article published in 2022 by
Park et al.58 Furthermore, regarding pressure-induced
polymorphic transition, this phenomenon has been observed
for different drug compounds by direct compression
experiments using a diamond compression anvil (DAC) at
pressures ranging from a few GPa to several tens of GPa. This
part was described in detail in a review article by Guerain in
2020.71

In addition to the above, Table 2 lists some examples of
SSPT of pharmaceuticals that have been investigated by
researchers in recent years.

3. Inhibition strategies for polymorph
transformation

Undoubtedly, polymorph transformation of solid drugs is a
common phenomenon. Ritonavir and rotigotine are well-
known “marketed drugs” that have been withdrawn from the
market because of polymorphic transformation issues.
Ritonavir, which was originally marketed for the treatment of
AIDS in 1996, underwent a transition from crystalline form I
to the thermodynamically stable form II, and this stable form
adversely affected efficacy. In addition, since the production
of ritonavir formulations requires configuration in an
aqueous solution of ethanol, the production of formulations
became unfeasible due to the lower solubility of form II.96,97

Rotigotine, a drug for the treatment of Parkinson's,
underwent a transition from crystalline form I to the less
soluble and more stable crystalline form II, resulting in a
decrease in its efficacy.98

Therefore, it is critical to ensure that the polymorph of a
drug does not change during its life cycle. In addition,
regulating the polymorph of a drug helps to prevent

Fig. 3 Preparation of six polymorphs of dantrolene and solid phase
transition relationships. Reproduced from ref. 64. Copyright 2021
American Chemical Society.

CrystEngComm Highlight

Pu
bl

is
he

d 
on

 1
5 

 2
02

4.
 D

ow
nl

oa
de

d 
by

 F
ai

l O
pe

n 
on

 7
/2

3/
20

25
 9

:0
9:

01
 A

M
. 

View Article Online

https://doi.org/10.1039/d4ce00811a


6514 | CrystEngComm, 2024, 26, 6510–6544 This journal is © The Royal Society of Chemistry 2024

infringement of intellectual property protection that may
cover other polymorphs. Therefore, it is important to strictly
control the polymorph of a drug to ensure its efficacy and
avoid legal disputes.

The methods and strategies that have been reported for
controlling the polymorph transformation of drugs include
storing the drug product in a suitable environment,
optimizing the preparation process and formulation, using
additives or excipients, and domain-limiting techniques such
as loading and coating.

3.1 Storage in a suitable environment

Temperature and relative humidity play important roles in
affecting the stability of a product during storage. In general,
drug molecules move more slowly when stored at low
temperatures, which is beneficial in inhibiting polymorph
transformation including dehydration of hydrates. It has
been suggested that amorphous pharmaceutical solids are
expected to remain stable at temperatures approximately fifty
degrees below their glass transition temperature (Tg) because
the extremely low molecular motility at that temperature
condition can ensure that crystallization will not occur within
a certain time scale, i.e., “Tg – 50 K rule of thumb”.99–102 The
stability of amorphous tauroursodeoxycholic acid at different

storage temperatures was investigated by Xu et al.103 After
three months of storage at 4 °C, only 1.96% of the
amorphous form was converted to crystalline form I.
However, at 50 °C, the conversion ratio increased to 8.98%.
Kissi et al.104 indicated that decreasing the storage
temperature significantly enhances the resistance of
nifedipine amorphous to recrystallization. As shown in Fig. 4,
storing nifedipine amorphous at 278 K will result in
recrystallization within one day, while storing at 253 K can
ensure physical stability for 136 days.

However, low temperatures are not always favorable for
inhibiting polymorph transition. Cai et al.105 reported
extensive fracture of the amorphous of griseofulvin at
temperatures of 80 °C or less below the glass transition
temperature, with large cracks accelerating the nucleation
and crystallization of the amorphous.

The effect of relative humidity (RH) is also equally critical.
Cheng et al.106 suggested that high ambient humidity may
accelerate the polymorphic conversion of famotidine from
form B to form A during milling. Wolbert et al.107 showed
that the crystallization kinetics of the amorphous form of
griseofulvin increased with increasing temperature and
relative humidity. At low RH, all forms of sulfathiazole
exhibited kinetic stability, while at RH levels above 70%,
form I transformed into mixtures of form II and form IV.108

Table 2 Selected instances of researchers conducting SSPT on pharmaceuticals in recent years

Molecule Imposed conditions and polymorph transformation Year Ref.

Levofloxacin Ball milling, hemihydrate → anhydrous 2024 72
Carbapenem 5% RH, form C → form C-1 2024 73
Baloxavir marboxil Heat, form III → form II 2024 74
Spirotetramat Heat/ball milling, amorphous → form II 2024 75
Donepezil-maleic acid Form A/EA/DM-E → form W 2024 76
Mebendazole 75% RH, form A → form C 2024 77
Irbesartan Milling, form A/B → amorphous 2023 78
Risperidone Wet media milling, form B → form A → amorphous 2023 78
Creatine phosphate sodium 130 °C, form Hy4 → form Hy2 2023 79
Carbamazepine Grinding, form III → form IV 2023 80
Glycine Water-assisted milling, form α → stable form γ 2023 81
Furosemide Grinding, forms I/III → amorphous 2023 82
Dotinurad Heat, solvates → form II 2023 83
Dabigatran etexilate mesylate 150 °C, form I → form III 2023 84
Ritonavir Grinding, form I/II → partially amorphous 2022 85
Koumine hydrochloride 105–120 °C/75% RH, amorphous → form A 2022 86

Room temperature, form B/C/D/E → form A
Lenvatinib mesylate 50 °C, solvates form H-EA/form H-THF → form B 2022 87
Levofloxacin hydrochloride 80–90% RH, anhydrate form II → monohydrate form I 2022 39
Dufulin 60 °C, 92.5% RH, form IV/V/ IV/amorphous → form I 2021 88
Erlotinib Open atmospheric, form IV → form III 2021 52
Glipizide 25 °C, grinding, form I → form II 2021 53
Valacyclovir hydrochloride 25 °C, 10% RH, form III → form SH 2021 89
Efavirenz 60–80 °C/grinding, form II → form I 2020 90
Fluconazole 70% RH, amorphous → form II 2020 91

40 °C/40% RH, amorphous → form I, II and hydrate
Avibactam 85–95% RH, form A → dihydrate form E 2020 37

>95% RH, anhydrous form D → dihydrate form E
Sofosbuvir Liquid-assisted grinding, form I → form A/amorphous 2020 92
Flibanserin Strong light, 92.5% RH, form I → form A 2020 93

60 °C, 92.5% RH, form II → form I
Apatinib 60% RH for a month, form S3 → sesquihydrate 2019 94
Gandotinib <8% RH, form II → form I 2019 95
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Zhao et al.109 prepared nitrendipine–polyvinyl pyrrolidone
(PVP) amorphous solid dispersion (ASD), and the
recrystallization tendency of ASD increased with increasing
ambient humidity (Fig. 5).

Humidity-induced polymorph transformation can be
mitigated by packaging design, including the type of
packaging and the use of desiccants, such as the use of
desiccants in the packaging of high-density polyethylene
(HDPE) bottles or the use of moisture-resistant aluminum–

aluminum (Al–Al) blister packs.110 Łaszcz et al.111 found that
aripiprazole form III was partially converted to monohydrate
after three months in the storage condition of triplex blister
pack (PVC/PE/PVdC) or high-density polyethylene (HDPE)
bottles vials at 40 °C and 75% RH, whereas form III stored in
aluminum/aluminum blisters or HDPE bottles with desiccant
remained stable under the same conditions.

In practice, temperature and relative humidity often
combine to influence the polymorph transformation. All
forms of clopidogrel have been reported to be very stable
below 40 °C at 0% RH.112 Caron et al.113 prepared ASDs of
two binary systems, sulfathiazole/PVP and sulfadimidine/PVP,
and these amorphous systems remained X-ray amorphous

after more than 1 year of storage at 4 °C with desiccant. Lust
et al.114 prepared ASDs of piroxicam and Soluplus that were
stable for at least six months at 0% RH and low to moderate
temperatures (6 °C and 25 °C). Aging at higher humidity
(40% and 75% RH) and 25 °C resulted in recrystallization of
amorphous piroxicam to anhydrous form I and monohydrate
form MH within one month and two to three months,
respectively Lobmann et al.115 prepared amorphous
simvastatin by cryo-milling, which recrystallized completely
within a few days at 25 °C and 60% RH. At 25 °C and 0% RH,
the amorphous started to recrystallize slightly later (11 days),
whereas at 4 °C and 0% RH, it remained amorphous state for
67 days.

3.2 Optimization of the preparation process

The preparation method and process of solid drugs can
significantly impact stability, and suitable preparation
processes can be designed to avoid polymorph
transformation. For example, dry granulation or hot melt
granulation may be chosen for moisture or solvent-sensitive
drugs. Hot-melt extrusion granulation may be chosen for
thermally stable drugs that may undergo polymorph
transformation during grinding or extrusion. For drugs that
are unstable in terms of moisture and heat, a powder direct
compression process can be chosen. For drugs that cannot
be compacted, they can be prepared as capsules rather than
tablets.

Considering that water could induce polymorph
transformation from unstable form α to stable form β of
imatinib mesylate, Komai et al. prepared imatinib mesylate
tablets containing form α by dry granulation, and it was
expected that the polymorph transformation from form α to
form β would not take place for three years at 25 °C.116

Thakral et al.117 effectively reduced compression-induced
polymorph transformation of chlorosulfonylurea by using
ceramic-lined molds as well as lubricating specific sites.
Zhang et al.118 and Graeser et al.119 reported variations in the
physical stability of amorphous simvastatin prepared using
different methods. Amorphous simvastatin obtained by
quench cooling was more stable than amorphous milled at
low temperatures. In addition, quench cooling simvastatin

Fig. 4 PXRD of nifedipine (NIF) amorphous stored at 0% RH and
different temperatures; NIF A/B/C/D/E represents storage at 313 K, 296
K, 278 K, 253 K, and 193 K, respectively. Reproduced from ref. 104.
Copyright 2018 American Chemical Society.

Fig. 5 (A) DSC curves and (B) PXRD patterns of the nitrendipine/PVP ASD samples after storage under various humidity conditions. Reproduced
from ref. 109. Copyright 2024 The Korean Society of Industrial and Engineering Chemistry.
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amorphous with a broader particle size distribution was
discovered to exhibit greater stability compared to
simvastatin with a narrower particle size distribution.

Karmwar et al.120 prepared different indomethacin (IND)
amorphous samples employing diverse preparation
techniques, including melt quenching, spray drying, ball

milled, and cryo-milled. Additionally, different initial
polymorphs (form α and γ) were considered for the milled
samples. As shown in Fig. 6, the ranking of the amorphous
samples stability was: quench cooled > cryo-milled (form α)
> spray dried > ball milled (form α) > ball milled (form γ) =
cryo-milled (form γ). They also prepared amorphous
indomethacin by transformation via the melt and found that
the physical stability of the amorphous samples increased
with the increase in cooling rate, the stability of the
amorphous samples was in the order of 30 K min−1 > 20 K
min−1 > 10 K min−1 > 5 K min−1 > 3 K min−1 ≈ 1.2 K
min−1.121

Zhang et al.122 prepared various nitrendipine/PVPVA64
ASDs by microwave irradiation-quenching, solvent
evaporation, and hot-melt extrusion, and the results showed
that the ASDs prepared by hot-melt extrusion exhibited
stronger recrystallization inhibition effect. Li et al.123

generated physically stable nilotinib amorphous by adjusting
several parameters, including the volume of washing water,
drying duration, and anti-solvent/solvent ratio. The greatest
physical stability was attained by employing a washing water
volume exceeding 50 mL, prolonging the drying time to over
18 hours, and maintaining an anti-solvent/solvent ratio of
more than 40. Bhujbal et al.124 prepared ASDs of naproxen

Fig. 6 Diffractograms showing the onset of crystallization of
amorphous samples of indomethacin (IND) from different preparation
processes. QC: quench cooled; SD: spray dried; BM: ball milled; CM:
cryo-milled. Reproduced from ref. 120. Copyright © 2010 Elsevier B.V.

Fig. 7 Effect of spray drying process on the physical stability of naproxen amorphous solid dispersions. Reproduced from ref. 124. Copyright 2021
MDPI.
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and polyvinylpyrrolidone (PVP) by spray drying using two-
fluid nozzles (2FN) and three-fluid nozzles (3FN). Compared
to the 2FN ASD, the faster recrystallization of naproxen in the
3FN ASD using water and acetone solution was attributed to
the inhomogeneous mixing of the drug and polymer. The
3FN ASD using only acetone as solvent was the most stable
one under storage conditions (Fig. 7).

The size and defects of the particles may also affect the
polymorph transformation. Minkov et al.125 reported that
decreasing the particle size maintains the metastable form of
DL-cysteine. If DL-cysteine form I was obtained as particles
with the size about 1 μm through grinding, no
transformation into form II was observed on cooling down
even to 10 K. Thakuria et al.126 prepared 1 : 1 caffeine–glutaric
acid cocrystal polymorphs (form I and form II). The
millimeter-sized crystals of form I showed slower conversion
to form II compared to micron-sized (0.2–3 μm) powders.
Svoboda et al.127 prepared amorphous nimesulide powders
with different particle sizes and defects. For amorphous
powders of 50–125 μm and 125–180 μm, they would fully
crystallize within 49 minutes and 100–200 minutes
respectively. For amorphous powders with smooth surfaces,
no crystals were formed even after 30 days. The effects of
particle size and mechanically induced defects on the
recrystallization kinetics of enzalutamide amorphous were
also investigated by Svoboda et al.128 The recrystallization
rate of enzalutamide amorphous was primarily accelerated by
the presence of processing-damaged surfaces on the powder
particles. It was further noted that this detrimental effect
could be prevented by annealing the material at its softening
point to repair or reduce the number of defects.

3.3 Use of additives or excipients

The polymorph transformation can be inhibited by
introducing additives, including polymers, organic small

molecules, surfactants, structural analogs, and specific
impurities.

Solvent-mediated polymorph transformations can be
divided into the dissolution of the metastable form, and the
nucleation and growth of the stable form. According to the
literature, the mechanism of additives to inhibit solvent-
mediated polymorph transformations may include the
following components. The presence of certain additives can
affect solubility and thus dissolution or subsequent
nucleation and growth steps.129–131 Additives may be also
adsorbed on the crystal surface, affecting the adsorption of
solute molecules on the crystal surface thereby hindering
crystal growth.132,133 For example, strongly hydrophobic
polymers may be adsorbed on the crystal surface, affecting
the binding of water to the crystal surface, thus inhibiting
the formation of hydrates.134,135 In addition, additives may
be associated with solute molecules, thereby reducing the
rate of nucleation.132,136,137 Additives may also increase the
viscosity of the solution system, resulting in a low mass
transfer rate and hence inhibiting crystal transformation.138

Sonoda et al.137 stabilized the substable crystalline form
IV of tolbutamide through complexation by adding 6-di-O-
methyl-β-cyclodextrin in an aqueous solution, thus inhibiting
the transition to the stable crystalline form I. Ishiguro
et al.139 investigated the inhibition of the transformation
process of chlorpropamide by the addition of 2-hydroxybutyl-
β-cyclodextrin to aqueous solutions. Higher concentrations of
cyclodextrin inhibited the transition from form II to form III,
and at lower concentrations, cyclodextrin inhibited the
transition from form III to form A. Gu et al.140 showed that
the structure-related additives significantly inhibited the
conversion of form I to form II of sulfamerazine in
acetonitrile suspension by inhibiting the nucleation and
crystal growth of the more stable form II. The order of
inhibition was N4-acetylsulfamerazine > sulfadiazine >

sulfamethazine. This ordering is consistent with the ordering

Table 3 Examples of solvent-mediated polymorph transformation inhibition using additives

Molecule Additives Inhibition process Ref.

Nitrofurantoin Polysorbate 80 Acetonitrile, from α from β 46
Piroxicam HPCa Acetone, monohydrate form II 55
L-Phenylalanine Ammonium sulfate, dextrose Water, anhydrate monohydrate 131
2,4-Db PVP,c PVPVAd Aqueous methanol solution, metastable form II form I 133
Olanzapine PEG,e PVP, HPC Water, form I hydrate 134, 141
BMS-566394 f MC,g HPMC,h HPC Water, anhydrate dihydrate 136
Carbamazepine MC, HPMC, HPC Water, form I form IV 138, 142–145
Piroxicam SLS,i NaCMC j Water, anhydrate monohydrate 146–148

HPMC, Tween 80
Piracetam PEG Water, form III monohydrate 149
Caffeine PAAk Water, anhydrate hydrate 150
Irbesartan DACl Water, form A form B 151
Cefditoren pivoxil Sugar ester, HPMC Water, amorphous recrystallization 152

a Hydroxypropyl cellulose. b 2,4-Dichlorophenoxyacetic acid. c Polyvinyl pyrrolidone. d N-Vinyl-2-pyrrolidone and vinylacetate. e Polyethylene
glycol. f A poorly water soluble developmental drug intended for oral delivery. g Methyl cellulose. h Hydroxypropylmethyl cellulose. i Sodium
lauryl sulphate. j Carboxymethylcellulose sodium salt. k Polyacrylic acid. l Dodecylamine chloride.
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of the binding energies of the additives to the crystal
surfaces.

Table 3 lists some reported examples of additives that can
inhibit solvent-mediated polymorph transformations.

According to the literature, there may be interactions
between the additive molecule and the drug molecule, such
as hydrogen bond, that reduce the molecular mobility of the
drug molecule, thereby inhibiting the solid phase transition.
The interaction of additives with drug molecules also
competes with water molecules for binding sites and
therefore reduces the humidity-mediated solid-phase
transition.153,154 The Incorporation of excipients with low
glass transition temperatures may be an effective strategy to
reduce drug amorphization during milling because excipients
can lower the glass transition temperature of the
complex.155,156 For mechanically induced solid-phase
transformation, the addition of ductile additives or excipients
can effectively reduce the interfacial shear stress, thus
reducing amorphous transformation.157 In addition, for
specific additives, the acid–base microenvironment may also
be altered, which also favors the stabilization of metastable
form.158

Lin et al.159 investigated the transformation behavior of
gabapentin during the milling process. It was found that
gabapentin crystalline form II was transformed to crystalline
form III and then to crystalline form IV during the milling
process. However, no transformation of form II occurred by
adding some additives, such as calcium hydrogen phosphate,
cyclodextrin, and mannitol, during the milling process. The
effect of organic acids on the solid-phase transformation of

piracetam was studied by Fan et al.160 Low levels of organic
acids inhibited the transition from form I to form II under
heating conditions, and the inhibition followed the following
order: citric acid > tricarboxylic acid > glutaric acid > adipic
acid, which is consistent with the order of acidity of organic
acids. The molecular simulation suggest that organic acid
molecules could be adsorbed on the major crystal planes of
PCM form I to form a steric hindrance layer, thereby slowing
down the migration of drug molecules. They further
proposed an inhibition mechanism as shown in Fig. 8, where
the presence of organic acids at the grain boundaries of
piracetam crystals can delay the phase separation of
piracetam molecules from form I and inhibit the nucleation
of form II.

Baaklini et al.161 inhibited the spontaneous polycrystalline
transformation of pyrazinamide form γ at room temperature
by co-spray drying with 1,3-dimethylurea, and the product
remained stable for storage at room temperature for up to 12
months. In contrast, the phase transition to the form δ was
observed after 14 days of storage under ambient conditions
without any specific treatment. Table 4 lists some reported
examples of additives that can inhibit solid-phase crystal
form transitions.

3.4 Amorphous solid dispersions or co-amorphous strategy

Preparation of amorphous solid dispersions (ASDs) by
uniformly dispersing the drug in an amorphous state
polymer matrix is an effective method to inhibit
crystallization and improve amorphous stability.170–172 In

Fig. 8 Schematic illustration of the effect of organic acids on the solid phase transformation of piracetam (PCM) form I to form II. Reproduced
from ref. 160. Copyright 2023 Elsevier B.V.
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recent years, the U.S. Food and Drug Administration has
approved several amorphous solid dispersing system agents
for marketing, such as encorafenib–Co-povidone ASDs,
apalutamide–hypromellose acetate succinate ASDs,
regorafenib–povidone ASDs, etc.173

According to the literature, the stabilization mechanism of
amorphous solid dispersions consists of the following
components. Typically, most drugs have relatively low Tg,
whereas polymeric carriers tend to have high Tg, and the
“anti-plasticizing effect” of the polymeric additive can
increase the Tg of ASDs and decrease the molecular mobility
of drugs in ASDs, which leads to decreasing crystallization
rates.174–177 The polymer provides spatial site resistance,
increases the viscosity of the system and facilitates the
lowering of molecular mobility to reduce the nucleation rate
and the lowering of the diffusion coefficient to affect crystal
growth.175,178,179 Drug–polymer interactions, such as van der
Waals forces, ionic bond, hydrogen bond, halogen bond, etc.,
can improve the physical stability of ASDs by reducing
molecular mobility.174,175,180–183

A variety of polymers have been reported for use in ASD
formulations. Zhang et al.175 classified these polymer carriers
into four categories based on their chemical structures:
polyvinyl lactam polymers, cellulosic polymers, acrylate and
methacrylate (co-)polymers, and various other types. (Fig. 9).
In addition, proteins and poly(amino acids)s have recently
been recognized as a promising class of excipients for the
stabilization of amorphous solid dispersions.184 Kabedev
et al.185 evaluated the stability of indomethacin-BLG (β-
lactoglobulin) ASDs, along with an investigation into the
mechanisms of amorphous stabilization. The ASDs could be
stable for at least 12 months when stored under dry
conditions. The simulation indicate that the stabilization
mechanism was the reduced mobility of the drug molecules
and the hydrogen bond network formed on the surface of
β-lactoglobulin. Huang et al.186 prepared ASDs of tadalafil
and poly-l-lysine, and the ASDs can maintain amorphous state
for at least 9 months at both 25 °C and 40 °C. The stability
may be attributed to hydrogen bond between tadalafil and
poly-l-lysine, which was confirmed by IR spectroscopy.

Table 4 Examples of solid-phase crystal form transition inhibition using additives

Molecule Additive Inhibition process Ref.

Chlorpropamide MCCa Compression, form C form A 117
Gabapentin L-Valine Milling, from α from β 158
Theophylline PVPb Granulation, monohydrate anhydrate 162, 163
Olanzapine PVP High humidity, anhydrate hydrate 153
Gabapentin Starch Milling, form III form II 154
Salbutamol sulphate Glutaric acid Milling and dry mixing, form I amorphous 156
Posaconazole Magnesium stearate Compression, crystalline amorphous 157
Flufenamic acid Mefenamic acid Form I form III 164
Xylazine hydrochloride Sucrose, lactose Heat, form X form A 165
Zopiclone Sucrose, lactose Heat, form C form A 165
Caffeine MCC Compression, form I form II 166
Sodium naproxen PVP Heat, dihydrate monohydrate anhydrous 167
Carbamazepine PEGc Grinding, dihydrate form II form III 168
Cytosine Organic dye Hydrate dehydration 169

a Microcrystalline cellulose. b Polyvinyl pyrrolidone. c Polyethylene glycol.

Fig. 9 Polymeric carriers in ASDs. Reproduced from ref. 175. Copyright 2023 Elsevier B.V.
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Bertoni et al.187 prepared an amorphous solid dispersion
of indomethacin by spray solidification using the excipient

Gelucire, which remained stable for 18 months without
crystallization of indomethacin. In addition, its solubility and
bioavailability were increased 31-fold and 2.5-fold,
respectively, compared to pure indomethacin form γ. They
hypothesized that indomethacin could not crystallize in ASD
due to the lack of molecular mobility required for nucleation
and crystal growth. Kennedy et al.188 researched the
amorphous solid dispersions (ASDs) of a water-insoluble VR1
antagonist (AMG 517), aiming to enhance its physical
stability as well as solubility in vivo. AMG 517 was doped into
polymer particles of HPMCAS or HPMC by spray drying. The
ASDs formulation remained physically stable for at least six
months under 40 °C and 75% RH. In contrast, the highly
amorphous AMG 517 showed a tendency to crystallize after
only 15 days of storage.

The type of polymer, molecular weight, chain length, side
chain functional groups, and hydrophobicity all affect the
resistance of ASDs to stabilize against crystallization.189 In
addition, the results of Frank et al.190 suggested that neither
the presence of polar functional groups nor hydrogen bond
donating side groups are necessary to inhibit crystallization.
As shown in Fig. 10, the non-polar polymer polyPH has a
good crystallization inhibition effect. Besides, polyACM
contains hydrogen bond donating functional groups, but is
not a particularly strong inhibitor. They further
hypothesized that the inhibitory ability of the polymers is
also related to the polymers solubility in the drug, as well
as the polymer-induced heteronucleation. In addition to the

Fig. 10 Rate of nabumetone crystallization ASDs with different
functionalized polymers. Black traces indicate pure nabumetone
amorphous, each colored trace indicates nabumetone in the
corresponding colored polymers. Reproduced from ref. 190. Copyright
2018 American Chemical Society.

Table 5 Some examples of the use of polymer additives to form ASDs

Drug molecules and polymers used in ASDs

Polyvinyl pyrrolidone (PVP)
Acetaminophen,191,192 apremilast,193 bicalutamide,194,195 ciprofloxacin succinate salts,196 celecoxib,197,198 carvedilol,199 dipyridamole,200

felodipine,201 indomethacin,202,203 irbesartan,204 itraconazoe,203 ketoconazole,205 myricetin,206 nifedipine,207–210 nimesulide,211 naproxen,192

nitrendipine,212 oridonin,213 oxaprozin,204 phenobarbital,207 rafoxanide,214 sulfathiazole, sulfadimidine,113 salbutamol sulfate,215 valdecoxib216

Poly(vinylpyrrolidone-co-vinyl acetate) (PVP/VA)
Acetaminophen,191 apremilast,193 carvedilol,199 celecoxib,198 felodipine,217 ibuprofen,218 itraconazole,219 irbesartan, oxaprozin,204

nimesulide,220 Kollidon®VA64: aripiprazole,221 carbamazepine,222 cannabidiol,223 ezetimibe,224 flutamide,225 nisoldipine,226 probucol,227

triclabendazole228

Soluplus®
Aripiprazole,221 celecoxib sodium salt,229 carvedilol,199 dronedarone,230 ezetimibe,231 erlotinib,232 itraconazole,219 lacidipine,233 rivaroxaban,234

siderol,235 posaconazole236

Hydroxypropyl cellulose (HPC)
Cyclosporine A,237 ezetimibe,238 valdecoxib216

Hydroxypropyl methylcellulose (HPMC)
Celecoxib,198,239 indomethacin,202 itraconazole,240,241 indapamide, metolazone242

Hydroxypropyl methylcellulose acetate succinate (HPMCAS)
Ciprofloxacin,243 celecoxib,239 carvedilol-L-aspartic acid,244 carbamazepine,245 cinnarizine, clofoctol, clotrimazole,246 fluconazole,247

griseofulvin,246,248,249 indomethacin,202,203 itraconazole,203,219,241,250,251 ibrutinib,252 ketoconazole,246 lumefantrine,253 nifedipine,208,254

piperine,255 β-lapachone256

Cellulose
Cyclosporine A,257 rifampicin,258 sulfathiazole108

Poly(acrylic acid) (PAA)
Clofazimine,259 ketoconazole,205 lamotrigine, pyrimethamine, trimethoprim,260 nifedipine254

Polyethylene glycol (PEG)
Esomeprazole zinc,261 itraconazole,241 ritonavir262

Other polymers
Chitosan: curcumin263 Eudragit L 100: lumefantrine253

Dextran sulfate: itraconazole240 Poloxamers: triclabendazole264

Pectin: thiamine chloride hydrochloride265 Gelucire: indomethacin266,267
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above examples, Table 5 lists some of the reported examples
of ASDs.

To optimize binary ASDs, a third component can be
added to the system to create ternary ASDs, and the third
component can be another polymer, surfactant, excipient,
or small molecule. Urbanetz268 prepared ASDs of
nimodipine–PEG–povidone, in which povidone acted as a
recrystallization inhibitor, and the solid dispersions were
stored at 25 °C for 6 months without crystallization.
Davis et al.269 prepared a ternary amorphous solid
dispersion of itraconazole (ITZ)–HPMCP-Soluplus by spray
drying, and ITZ remained amorphous after one year of
storage at 40 °C and 75% RH. In addition to the above
examples, Table 6 lists some reported examples of ternary
ASDs.

In addition to ASDs composed of polymers, co-amorphous
systems consisting of drugs and organic small molecules,
such as amino acids, organic acids, flavonoids, and
carbohydrates, are receiving a lot of attention.174,322,323

Numerous studies illustrate that co-amorphous systems
possess superior physical stability compared to solitary
amorphous drugs. Given that the glass transition
temperature (Tg) of the co-amorphous system typically lies
between the Tg of its individual constituents, the elevated
physical stability cannot be solely attributed to Tg. In the
majority of studies, the enhanced physical stability of co-
amorphous systems is ascribed to intermolecular
interactions, which include hydrogen bonding, π–π

interactions, and even ionic interactions.322,324 Kasten
et al.325 evaluated twenty different L-amino acids and six

Table 6 Some examples of ternary ASDs

Third component: polymer

Drug and ref. Polymer–polymer Drug and ref. Polymer–polymer

Aprepitant270 TPGSa–PVPb BI 730357 (ref. 271) HPMCASc–TPGS
Carbamazepine272 PHEMAd–PVP Cyclosporine A273 HPCe–HPMCAS
Celecoxib274 PVP–TPGS Curcumin275 HPMC f–Eudragit®
Efavirenz276 HPC–Eudragit® Fenofibrate277 Kollidon®–HPLg

Griseofulvin278 HPMCAS–PHPMAh Griseofulvin279 Soluplus®–Kollidon
Griseofulvin280 PVP–PHPMA Gefitinib281 Eudragit®–HPMC
Itraconazole282 HPMC–HPC Itraconazole283 PVA–PVP/VA
Itraconazole284 HPMCP–Soluplus® Itraconazole285 TPGS–PVP/VA
Indomethacin286 PVP/VA–PEOi Indomethacin272 PHEMA–PVP
Indomethacin287 Eudragit®–HMPC Indomethacin288 PAA j–PVA
Ibuprofen289 Kollidon®–HPMCP Ketoconazole290 HPMC–PAA
Lopinavir291 Eudragit®–MCCk LW6 (ref. 292) PVP–poloxamer
Loratadine293 Shellac–HPMC Lacidipine294 Soluplus®–Gelucire®
Niclosamide295 HECl–Kolliphor Olmesartan medoxomil296 HP-β-CDm–MGn

Progesterone280 PVP–PHPMA Phenindione280 PVP–PHPMA
Probucol297 PVP–poloxamer Regorafenib298 PVP–HPMCAS
Telmisartan299 PVP–Soluplus® VR1 antagonist188 HPMCAS–HPMC

Third component: surfactant

Drug and ref. Polymer–surfactant Drug and ref. Polymer–surfactant

Atazanavir300 PVPVA–SDSo Atorvastatin Calcium301 HPMC–SLSp

Curcumin302 PVP–Tween 80 Docetaxel303 PVP–SDS
Felodipine304 PVP/VA–SDS Griseofulvin305 Soluplus®–SDS
Lacidipine306 Soluplus®–SDS Probucol307,308 HPMC–SDS
Ritonavir309 HPMC–SLS Ritonavir310 PVP/VA–Span
β-carotene311 HPMCAS–Span 20

Third component: excipient

Drug and ref. Polymer–excipient Drug and ref. Polymer–excipient

Coenzyme Q312 Poloxamer–Aerosil 200 Indomethacin313 HPMC–silicon dioxide
Indomethacin314 PVP–kaolin Naringenin315 Poloxamer–neusilin
Toltrazuril316 PEG–Ca(OH)2 Telmisartan317 PEG–magnesium oxide

Third component: organic small molecule

Drug and ref. Polymer–molecule Drug and ref. Polymer–molecule

Indomethacin318 PVPVA–L-arginine Indomethacin319 PVP–saccharin
Ketoconazole320 PVP–organic acidsq Tetrabenazine321 HPMC–citric acid

a
D-α-Tocopherol polyethylene glycol 1000 succinate. b Polyvinyl pyrrolidone. c Hydroxypropyl methylcellulose acetate succinate. d Poly(2-

hydroxyethyl methacrylate). e Hydroxypropyl cellulose. f Hydroxypropyl methylcellulose. g Hydrogenated phospholipid. h Poly[N-(2-
hydroxypropyl)methacrylate]. i Polyethylene oxide. j Poly(acrylic acid). k Microcrystalline cellulose. l Hydroxyethyl cellulose. m Hydroxypropyl-β-
cyclodextrin. n N-Methyl-D-glucamine. o Sodium dodecyl sulfate. p Sodium lauryl sulfate. q Tartaric acid, citric acid, succinic acid.
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different acidic and basic model drugs (carvedilol,
mebendazole, carbamazepine, simvastatin, indomethacin,
and furosemide) and the ability to form co-amorphous
preparations. The results suggest that basic amino acids
are potentially good conformers in the case of acidic
drugs. Vasilev et al.326 prepared co-amorphous systems of
flubendazole (FluBZ) with L-phenylalanine (Phe) and
L-tryptophan (Trp), respectively. The two co-amorphous
systems containing Phe and Trp were stable for 3 months
at 25 °C and 0% RH, twice as long as pure FluBZ.
(Fig. 11). Some examples of drugs prepared as co-

amorphous systems with organic small molecules are
listed in Table 7.

In the co-amorphous system, two drug molecules
that can either synergize each other's actions or can
work in a tandem manner can also be selected, called
drug–drug co-amorphous. Allesø et al.355 prepared an
amorphous binary system of naproxen–cimetidine by
cryogenic milling. The amorphous form was maintained
after storage at 40 °C for 186 days. The inherent

Fig. 11 Stability of amorphous and co-amorphous flubendazole
(FluBZ). Phe: L-phenylalanine, Trp: L-tryptophan. Reproduced from ref.
326. Copyright 2023 American Chemical Society.

Fig. 12 PXRD patterns of amorphous sinomenine (a–c), amorphous
platensimycin (d–f), co-amorphous sinomenine–platensimycin (g and
h), and sinomenine–sulfasalazine (i and j) before and after storing at
different periods under 25 °C and 75% RH. Reproduced from ref. 356.
Copyright 2022 American Chemical Society.

Table 7 Some examples of using small molecule additives to form co-amorphous systems to inhibit the crystallization of amorphous drugs

Drug and ref. Additive Drug and ref. Additive

Additives: amino acids

Carvedilol327 L-Aspartic acid Carbamazepine328 Tryptophan
Ciprofloxacin329

L-Leucine Carbamazepine330 L-Arginine
Flubendazole326 L-Phenylalanine, L-tryptophan Glibenclamide331 Serine, threonine
Indomethacin328 Arginine Indomethacin332 Arginine, histidine, lysine
Naproxen333 Arginine, tryptophan, proline Ranolazine334 Tryptophan
Simvastatin335 Leucine, tryptophan, lysine Simvastatin331 Lysine
Spironolactone336 L-Tryptophan

Additives: organic acid

Cenicriviroc mesylate337 Fumaric acid Carbamazepine330 Citric acid
Carbamazepine338 Tannic acid Indomethacin338 Tannic acid
Ketoconazole339 Oxalic, citric, tartaric, succinic acid Lamotrigine340 Cholic acid
Paracetamol341 Citric acid Pyrimethamine340 Cholic acid
Sulfathiazole342 Citric acids, L-artaric Trimethoprim340 Cholic acid

Additives: carbohydrates

Biclotymol343 pentaacetylglucose Celecoxib197,344 Octaacetylmaltose
Carbamazepine345 Glycosyl rutin Diphenhydramine hydrochloride346 Lactose
Ibuprofen347 Octaacetylmaltose Indomethacin348 Octaacetylmaltose, octaacetylsucrose
Lurasidone hydrochloride349 Saccharin Metronidazole350 Acetylated cyclodextrin
Nifedipine351 Acetylated maltose, acetylated sucrose Olanzapine352,353 Saccharin
Repaglinide354 Saccharin
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dissolution rates of both naproxen and cimetidine were
observed to be four and two times higher respectively,
in comparison to their crystalline counterparts. Chen
et al.356 developed two co-amorphous systems
combining sinomenine (SIN) with two potent antibiotics,
namely platensimycin (PTM) and sulfasalazine (SULF).
Following an exposure period of one month at 25 °C
and 75% RH, both of these co-amorphous systems
effectively maintained their amorphous properties
(Fig. 12g and h). In contrast, after a few days, the
two amorphous forms of SIN and PTM began to
recrystallize (Fig. 12b and f).

Regarding co-amorphous binary drug systems, Shelke
et al.357 and Wang et al.358 have recently published relevant
review articles. Some examples of drug–drug co-amorphous
are listed in Table 8.

3.5 Spatial confinement techniques

Polymorph transformation can be suppressed by placing
amorphous or crystalline forms in spatial confinement,
including the application of coatings, loading in mesoporous
materials, etc.

It has been reported that the rate of surface crystallization
significantly surpasses that of bulk (interior) crystallization
by multiple orders of magnitude.381–385 For example, Huang
et al.386 reported very fast surface diffusion in amorphous
griseofulvin, 108 times that of bulk diffusion at Tg, which is
consistent with the rapid growth of crystals on its surface.
Thus, surface-specific techniques that limit the mobility of
surface molecules can be used to inhibit polymorph
transformation. Two mechanisms have been reported for
surface coatings to inhibit crystalline transformation or

Table 8 Examples of the preparation of a co-amorphous binary drug for stabilization of amorphous systems and combination therapy

Co-amorphous binary drug Ref. Co-amorphous binary drug Ref.

Atorvastatin–glipizide 359 Atorvastatin–probucol 360
Atorvastatin–lisinopril 361 Atenolol–hydrochlorothiazide 362
Antipyrine–paracetamol 363 Artemisinin–curcumin 364
Ciprofloxacin–colistin 329 Cilnidipine–valsartan 365
Ezetimibe–indapamide 366 Glipizide–simvastatin 115
Lurasidone hydrochloride–repaglinide 367 Lurasidone hydrochloride–puerarin 368
Indomethacin–cimetidine 369 Indomethacin–ranitidine hydrochloride 370
Indomethacin–ritonavir 371 Indomethacin–paracetamol 372
Indomethacin–nicotinamide 372 Indapamide–ezetimib 366
Nifedipine–nimodipine 373 Naproxen–cimetidine 369, 374
Naproxen–aceclofenac 375, 376 Naproxen–indomethacin 375–377
Ritonavir–quercetin 378 Tranilast–matrine 379
Sulfamethoxazole–trimethoprim 380 Sinomenine–platensimycin, sinomenine–sulfasalazine 356

Fig. 13 X-ray diffractograms of ezetimibe ASDs samples at 50% and 70% loading with and without Al2O3 coating during two years of storage at
40 °C and 75% RH. Reproduced from ref. 388. Copyright 2022 Elsevier B.V.
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amorphous recrystallization, the first mechanism being that
the coating acts as a barrier to reduce water adsorption. The
second mechanism is that the coating can directly inhibit
surface mobility, effectively eliminating the surface-air
interface of the particles.387–389

Duong et al.388 developed ASDs of ezetimibe using
HPMCAS with drug loadings at 50 and 70% w/w, and
employed the atomic layer coating (ALC) process to apply a
layer of aluminum oxide onto the surface of the ASD
particles. As shown in Fig. 13, under accelerated storage
conditions, crystallization was observed in the uncoated ASDs
with 50% and 70% drug loadings, merely a few days into
storage. In contrast, both thin and thick-coated samples at
50% loading showed no physical instability for two years.
Ehmann et al.390 reported stabilization of unstable crystalline
form III of paracetamol by treating silica surfaces under
ambient conditions. Moseson et al.387 prepared ASDs of three
drugs including erlotinib, naproxen, and lumefantrine with
HMPCAS or PVPVA by spray drying (SD) and hot melt
extrusion (HME) processes, respectively. Aluminum oxide
(Al2O3) and zinc oxide (ZnO) were then coated on the ASDs
particles by the ALC process. As shown in Fig. 14,
crystallization of certain ASDs systems was effectively delayed
or completely inhibited for up to 48 weeks. Some examples of

cladding coatings to inhibit amorphous crystallization are
listed in Table 9.

In recent years, the application of mesoporous carriers
has been evolving in the pharmaceutical field for stabilizing
the amorphous. Drug molecules adsorbed in the nanoscale
pores or microchannels of the carriers can restrict molecular
mobility and molecular diffusion due to spatial constraints,
reducing the probability of nucleation. In addition,
interactions such as hydrogen bonding between the drug
molecules and the carriers may be formed, which also
contributes to the stabilization of the
amorphous.177,389,404,405

Wang et al.406 reported surface-functionalized mesoporous
silicon (pSi)-based formulations for the delivery of the
insoluble drug indomethacin (IMC). Indomethacin was
present in amorphous form in the mesoporous silica matrix,
and IMC–pSi demonstrated superior solid-state stability for
six months when subjected to accelerated stability test
conditions (40 °C and 75% RH). Zhang et al.407 reported that
the extremely unstable crystalline form VIII of flufenamic
acid was sufficiently stable under nanoscale confinement in
controlled pore glass. Nielsen et al.408 noted that the degree
of crystallization in amorphous indomethacin was lessened
when the amorphous drug was encapsulated inside micro-

Fig. 14 Physical stability of ASD systems with and without coating. The star symbol (★) indicates that crystallization was detected. The open
columns indicate that the sample did not crystallize after 48 weeks. DL: drug loading. The xx nm indicates the coating thickness. Reproduced from
ref. 387. Copyright 2022 American Chemical Society.
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containers, compared to the amorphous indomethacin found
in a bulk drug. A reduction in the micro-container size from
223 μm to 174 μm led to improved stability of the amorphous
form. Speybroeck et al.409 used a solvent impregnation

method to load 10 model drugs with different
physicochemical properties (carbamazepine, cinnarizine,
danazol, diazepam, fenofibrate, griseofulvin, indomethacin,
ketoconazole, nifedipine, and phenylbutazone) onto ordered

Table 9 Examples of cladding coatings used to inhibit amorphous crystallization

Drug and ref. Coating Drug and ref. Coating

Acetaminophen391 Carnauba wax Celecoxib392 Ethyl cellulose
Carvedilol393 Tripalmitin, polysorbate Clofazimine394 Alginate, PSSa

Delamanid395 Poly(methacrylic acid) Felodipine396 Eudragit®
Ketoprofen397 Perfluorohexane Indomethacin398 Gelatin, chitosan
Indomethacin399 Gelatin Indomethacin400 Gold, PSS, PDDAb

Loratadine401 Dextran sulfate Nifedipine399 Gelatin
Posaconazole402 Al2O3 Stavudine403 PMMAc

a Sodium poly(styrenesulfonate). b Poly(dimethyldiallyl ammonium chloride). c Poly(methyl methacrylate).

Fig. 15 PXRD patterns of different APIs loaded into the mesoporous silica. (a) Amlodipine, (b) deferasirox, (c) ezetimibe, (d) ibuprofen, (e)
lacosamide, (f) valsartan. Reproduced from ref. 410. Copyright 2021 Elsevier B.V.
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mesoporous silicate SBA-15. In all cases, the loaded drugs
were amorphous and no crystallization was observed after 6
months of storage at 25 °C and 52% RH. Šoltys et al.410

systematically compared the performance of four different
types of silica when loaded with different APIs. The silica
materials used include two commercially procurable silica
excipients, namely Parteck® SLC 500 and Syloid® 72FP, along
with two silica particles prepared in the laboratory, one being
highly porous sub-micron particles while the other
hierarchically porous microparticles. These silica materials
mainly differed in their particle size, pore size, and pore
volume. The sub-micron particles exhibited the best
performance of all the tests. As shown in Fig. 15(a, c, and f),
using sub-micron particle loading, no crystalline form was
detected for the three APIs at different loading levels. Some
examples of mesoporous materials used to stabilize drug
amorphous forms are listed in Table 10.

4. Conclusions and outlooks

Metastable crystal forms and amorphous are in a high-energy
state and are prone to transition from metastable forms to
stable forms and recrystallization of amorphous during
manufacture and storage. Therefore, it is necessary to
understand the various factors that cause the polymorph
transformation of drugs, including solvents, temperature,
humidity, pressure, impurities, defects, etc. The problem is
that it is difficult to predict whether crystals can undergo
phase transitions and the conditions and results under which
they occur, usually only after extensive experimentation and
the acquisition of polymorphs. In addition, the modeling of
the polymorph transformation process is not yet complete
and it is important to develop appropriate models to
understand the factors affecting the kinetic process.

It is also important to understand the means of stabilizing
metastable or amorphous form, including optimization of
the preparation process, use of additives or excipients, spatial
confinement, storage at suitable temperature and humidity
conditions, etc. Changing the temperature and humidity is a
common strategy to inhibit polymorph transformation, which
requires the selection of appropriate storage temperature and

humidity based on drug properties. Factors such as solvents,
temperature, humidity, stress, etc. that may cause polymorph
transformation in the preparation process also need to be
noted and optimized. Additives are one important strategy to
inhibit polymorphic transformation. Amorphous solid
dispersions in particular have been widely studied as a
strategy to inhibit amorphous crystallization. Adding a third
component to the binary dispersion can also improve the
physical stability of the amorphous form. Detailed knowledge
of key drug and polymer properties is required when
designing additive formulations to ensure safe drug use.
However, for a wide variety of additives, the selection of ideal
additives is still dominated by experimental screening and
the precise selection of additives is still a difficult problem.
Meanwhile, molecular simulation is becoming a common
tool to understand the interaction between drugs and
additives, which is important for additive design and needs
to be further investigated. Surface coating as well as
mesoporous materials can also be used to inhibit polymorph
transformation due to their good stabilizing ability. In
conclusion for specific drugs, the advantages and
disadvantages of each crystalline inhibition method need to
be fully explored to optimize the process parameters and
overcome the challenges of polymorph transformation.
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Table 10 Some examples of mesoporous materials used to inhibit amorphous crystallization

Drug and ref. Mesoporous matrix Drug and ref. Mesoporous matrix

Aprepitant411 Silica Aripiprazole412,413 Silica
Carvedilol414 Silica Celecoxib415 Magnesium carbonate
Celecoxib416–419 Silica Celecoxib420 CaCO3

Celecoxib421 Terpolymeric nanoparticle Darunavir422 Silica, magnesium aluminosilicate
Ezetimibe423 Neusilin US2 Fluconazole424 Silica
Fenofibrate417,425,426 Silica Felodipine427 Silica
Gemfibrozil428 Silica Ibuprofen410,414,429,430 Silica
Indomethacin431,432 Silica Itraconazole433 Syloid XDP
Ivermectin434 Silica K-832 (ref. 435) Silica
Nifedipine436 Glass Paclitaxel437 Hematite nanorods
Quercetin438 Silica Ritonavir439 Silica
Riluzole440 Silica Silymarin441,442 Silica
Simvastatin443 Silica Vortioxetine444 Silica
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