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Pharmaceutical pollutants are released into the environment due to their direct outflow from waste
disposal, animal discharge, and drug manufacturing. The long-term health effects on humans and
animals due to their biological activity are the negative impacts of pharmaceutical pollutants. Microbial
degradation is an effective remediation strategy for removing harmful contaminants from contaminated
zones by breaking down foreign substances into smaller useable materials. The novel aspect of the
review deals with the advancements and kinetic prospects of the microbial degradation of
pharmaceutical pollutants. This review illustrates the classifications, toxic effects on health, occurrences
and sources of pharmaceutical pollutants. The interaction mechanism between microbes and pollutants
and the molecular mechanism under aerobic and anaerobic conditions are clearly demonstrated in this
review. This review discusses in depth the advancements in the field of microbial degradation, such as
the utilization of genetically engineered microbes and enzyme immobilization techniques for enhancing
the degradation of pollutants. The purpose of this review is to describe the microbial degradation
kinetics in order to efficiently supervise the pharmaceutical-contaminated sites. Recent advancements
and future prospects for the effective removal of pharmaceutical contaminants are also discussed in depth.

Environmental significance statement for the paper “Promising approaches and kinetic prospects of the microbial degradation of pharmaceutical contaminants.” 1.
What is the problem/situation? The release of pharmaceutical pollutants has increased worldwide through improper disposal of medicines, drugs and other used
compounds from drug manufacturing units. This hinders the biological activity of many living organisms and has a long-term effect on the ecosystem. 2. Why is it

important to address/understand this? The remediation of pharmaceutical contaminants is essential for mitigating the negative effects caused by the compounds in

the ecological system. Microbial degradation is considered to be one of the effective remediation strategies due to its lack of toxic byproduct release during the
process. Micro-organisms have the ability to degrade complex pharmaceutical compounds into simpler substances in the presence of enzymes. Hence, a clear
understanding of the mechanisms and advancements in microbe-based degradation of pharmaceutical pollutants is essential for effectively addressing the pollution
problems. 3. What is the key finding and what are the implications of this in relation to 1 and 2 above. The molecular mechanism in the microbial degradation of
pharmaceutical pollutants is one of the key findings in this review. The interaction of micro-organisms with pollutants adds on for the better understanding of the

degradation process. The factors that need to be optimized during the microbial degradation process have been discussed in detail, of which the type of microbial

inoculum, pH, and temperature are crucial for better degradation. Advances such as genetic engineering and immobilization enable the complete degradation of
pharmaceutical compounds and also inhibit the release of toxic compounds.

1. Introduction

a significant impact on the ecology, as they are not effectively
monitored prior to disposal. Pharmaceuticals play a critical role

Humans have created a plethora of synthetic compounds for in improving the quality and expectancy of life of people across
use in a variety of sectors. Some new pollutants have the globe. Several medications are used each year to treat
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Pharmaceuticals have been found in surface and ground water
at concentrations of parts per trillion and billion.> Most medi-
cations are partially metabolised by organisms into inactive
forms. Approximately 75% of antibiotics are excreted as active
metabolites. Nonsteroidal medications are highly water-soluble
chemicals that are partially destroyed and have a negative
influence on the environment.**

Extensive pharmaceutical distribution is a major concern as
it poses serious threats worldwide.® Active chemicals, such as
hormone receptors are detrimental to marine organisms in the
setting of an aquatic system. To control the hazardous phar-
maceutical pollution, certain discharge regulations are required
under standard settings. High aqueous-based discharges must
be closely monitored and recognised in order to hypothesise on
the best ways for removing and degrading pharmaceutical
compounds from water sources. Apart from these, pharma-
ceutical contaminants also come in the form of agricultural
runoff, which might include pesticides.®®

Pharmaceutical pollutants, including high COD concentra-
tions, vary depending on industrial discharge. Nitrogen usage
in antibiotic manufacturing increases nitrogen concentrations,
but no legally controlled legislation or system is in place to
mitigate these pollutants.®'® In general, chlorination is the most
commonly used procedure for purifying drinking water. Overall,
physicochemical methods are used first, followed by secondary
treatment processes involving biological reactions. Adsorption
is favoured in fundamental physicochemical processes for the
elimination of some medicinal substances, and organic and
inorganic pollutants. Advanced oxidation and precipitation
procedures can be used to eliminate bio-organic substances.
However, certain residual medications such as ibuprofen,
iopromide, and sulfamethoxazole are still present in the
effluent and must be treated using subsequent biological
processes.*™"

Microbial species are important xenobiotic degraders that
aid in the maintenance of correct ecological balance. Microbial
degradation is a highly effective approach for removing
dangerous pharmaceutical pollutants from the environment
(Ramesh et al., 2023). The pharmaceutical breakdown rates are
primarily determined by factors such as the composition of the
microbial culture, medicines, pH, and temperature. Microor-
ganisms play an important role in the environment via several
biodegradation pathways involving enzymes, metabolites, and
co-metabolites.**** Furthermore, the use of microbial break-
down mechanisms can greatly lower the toxicity of active
medicinal compounds. In nature, the interaction between
microorganisms and drugs is non-inhibitory. Basic molecular
biology and engineering principles are used in preliminary
procedures that provide an imperfect solution to metabolic
mechanisms."®

Recent innovations in genetic engineering domains, such as
recombinant techniques, allow for a shift in practical applica-
tions. Microbial systems are built in such a way that enzyme
switching to mineralization of medicinal substances is possible.
Synthetic biology and system biology, two topics related to
systemic biology, aid in reducing the obstacles and drawbacks
connected with earlier conventional microbial degradation

© 2023 The Author(s). Published by the Royal Society of Chemistry
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processes.””*® The principles of sustainable metabolic and
synthetic engineering help maximise the sustainability of
pharmaceutical degradation. Current studies have resulted in
the successful rebuilding of metabolic pathways. Another recent
breakthrough is the immobilisation of microbial cells in an
appropriate carrier material. The immobilisation of bio-
degrading organisms in biofilm systems has advantages in
terms of ease of use, operation, and economics. Enzymes or
bacteria/fungi with degrading capacity can be immobilised in
an intact system with an inert carrier material. As a result,
microbial immobilisation contributes to being a prospective
candidate in recent improvements. Different kinetic models can
be used to predict the mechanism of biodegradation.'*** The
literature previously has not focused on the recent advance-
ments with the kinetic aspects of the microbial mediated
remediation of pharmaceutical pollutants. This review article
specifically focusses on the kinetic prospects and advances like
metabolic or genetic engineering with immobilization for the
microbial degradation of pharmaceuticals.

The primary concern of the review has been on the mecha-
nisms and advances in the microbial degradation of pharma-
ceuticals. The paper provides a comprehensive summary of
several pharmaceutical pollutant groups, their sources, and the
accompanying health impacts. The interaction of microorgan-
isms and pharmaceutical pollutants, as well as their chemical
mechanism, has been described. The review discusses the
recent advances in the microbial realm, such as metabolic
engineering and cell immobilisation. The description of the
degradation kinetic analysis aids in the determination of the
mechanisms involved in pharmaceutical contaminant
elimination.

2. Pharmaceutical pollutants
2.1 Classifications

Antivirals, anti-inflammatories, anti-convulsants, antibiotics,
and analgesics are the major prevalent pharmaceutical pollut-
ants. Table 1 lists the classification and characteristics of
pharmaceutical pollutants.”>** Antiviral medications are used
to treat viral infections such as influenza, hepatitis, polio,
measles, and small pox by inhibiting the pathogen growth.
Antiviral medicines are more active in nature during viral
propagation. Antiviral medications impede viral attachment
entry into the cell, nucleic acid synthesis with protein synthesis,
and eventually packaging and vital release into the environ-
ment. Amantadine, gancyclovir, zidovudine, nevirapine, and
emtricitabine are examples of common antiviral medicines.*®*
Antiviral medications are commonly found in aquatic systems
such as wastewater, effluents, surface water, and ground water.
Antibiotics are additional developing pharmaceutical contami-
nants that are widely used in the veterinary and health indus-
tries. Antibiotics are medication classes used to treat bacterial
illnesses in humans and animals by inhibiting growth or
metabolism and killing the bacterium. Antibiotics are primarily
produced by microorganisms to accomplish a variety of activi-
ties. They can function as predators with an attacking mecha-
nism or as a chemical weapon with a defensive mechanism.***

Environ. Sci.: Adv,, 2023, 2,1488-1504 | 1489
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Table 1 Classification and characteristics of pharmaceutical pollutants
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S.  Classification of Pharmaceutical Chemical Molar mass  Boiling point Melting point
no. pharmaceutical compounds formula CAS ID (g mol™) (°C) (°C) pK.  References
1. Antivirals Acyclovir CgH,,N:05 59277-89-3 225.21 595 256.6 2.52 22
Adefovir CgH{,N50,4P 142340-99-6 273.186 632.5 102 1.35 23
Amantadine CyoHoN 665-66-7 151.25 360 180 101 24
2.  Non-steroidal Aspirin CoHgO, 50-78-2 180.158 140 136 2.97 25
anti- Ibuprofen Cy3H150, 15687-27-1 206.29 157 75-77 52 26
inflammatory Naproxen C14H13NaO;3 22204-53-1 230.26 403.9 153 4.2 27
drug Diclofenac C.,H.;CLNO,  15307-86-5 296.148 412 302-310 4 28
Celecoxib C,,H,, FsN;0,S  169590-42-5  381.373 529 161-164 111 29
Etoricoxib C13H;5CIN,0,S  202409-33-4  358.842 510 135-137 45 30
3. Anti-convulsant ~ Pregabalin CgH;,NO, 148553-50-8 159.23 85 196 4.2 31
Phenytoin C15H,,N,0, 57-41-0 252.268 464 298 2.3, 32
8.3
Ethosuximide C,H,,NO, 77-67-8 141.168 265.3 64.5 8.2 33
Topiramate C1,H1NOgS 97240-79-4 339.363 438.7 125 1.4, 34
4.3
4.  Antibiotics Erythromycin C3,Hs,NO; 5 114-07-8 733.93 818.4 135-140 8.88 35
Sulfamethoxazole C;oH;;N305S 723-46-6 253.279 482.1 169 3.92 36
Azithromycin C35H,5N,04, 83905-01-5 785 822.1 129-135 85 37
Trimethoprim C,,H,4N,0; 738-70-5 290.32 405.2 199-203 71 38
Levofloxacin Ci1gH,0FN;0, 100986-85-4  361.368 571.5 213-218 535 39
Cephalexin C16H,5N;0,8 15686-71-2 347.39 727.4 326.8 3.45 40
5. Analgesics Codeine Cy1gH,1NO; 76-57-3 299.364 462 154 8.2 41
Fentanyl C,H,N,O 437-38-7 336.471 466 87.5 8.05 42
Hydrocodone Ci15H,NO; 125-29-1 299.368 65 118-128 8.9 43
Meperidine C,5H,,NO, 57-42-1 247.33 328.9 186-189 8.63 44
Methadone C,,H,,NO 76-99-3 309.445 423.7 235.54 9.2 45

The first antibiotics are penicillin compounds produced from
organic components via chemical synthesis or modification.
Antibiotics are further categorised as bacteriostatic or bacteri-
cidal based on their method of action.>

Non-steroidal anti-inflammatory medications are a large
class of therapeutics with a vast functional variety that is used to
alleviate pain and inflammation. Aromatic groups with acidic
functional moieties are common in anti-inflammatory medi-
cines.” A broad classification based on chemical forms includes
oxicams, salicylates, acid, indole derivatives, and anthranilates.
The majority of anti-inflammatory medications are attached to
plasma proteins, which improves the bioavailability by allowing
them to cross the organ barrier. Anti-inflammatory medications
have notable effects such as tumour cell induction, DNA
damage protection, and neogenesis inhibition.**

Anticonvulsants, frequently referred to as antiseizure or
antiepileptic medications, have the ability to regulate convul-
sions caused by electrical activity in the brain.*® Antiepileptic
medications give the necessary seizure relief. Phenytoin,
benzodiazepine, primidone, and phenobarbital are examples of
common anticonvulsants. More than 30% of persons are
resistant to anticonvulsant medications that result in signifi-
cant side effects during seizure management. Hormones are the
most common drug classes in the pharmaceutical industry.
Underactive hormone secretion will be treated with synthetic
hormone replacement therapy.**** Other pharmaceutical
pollutants found in the environment include antidepressants
and antipyretics. Certain classes of pesticides also come under

1490 | Environ. Sci.: Adv, 2023, 2, 1488-1504

such disinfectants, and wormicides also come under pharma-
ceutical class of contaminants. Fig. 1 represents the classifica-
tion and health effects of pharmaceutical pollutants.

2.2 Health effects

Pharmaceuticals react biologically differently to various partic-
ular and non-specific species. Pharmaceuticals with low
concentrations can be found in the environment for extended
periods of time. The bioavailability of pharmaceuticals and
their associated health ailments are tabulated in Table 2.7%
The toxic effects on aquatic organisms exposed to pharmaceu-
tical contaminants alter their lifetime. Analgesic exposure in the
environment causes kidney diseases and morphological
abnormalities in the gills. Pollutants at 1000-3000 g L
concentrations might cause acute renal failures with changes in
foetal anomalies.®®®® Fish are noteworthy organisms harmed by
excessive pharmacological concentrations. Pharmaceutical
pollutants cause structural disturbance with changes in gene
expression and the reproductive system, which are the major
governing mechanisms. Aside from fish, several algae are
vulnerable to the negative effects of medications.” In plants,
fatty acid production is a critical step in the photosynthetic
process. Chronic toxicity in the photosynthetic machinery of
both algae and plants has been found, impairing chloroplast
function. Because of their active nature, hormones, even at low
doses, can pose substantial health risks. This causes consider-
able endocrine disturbance in fish, resulting in estrogenic

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Classification and health effects of pharmaceutical pollutants.

Table 2 Bioavailability of the pharmaceutical and their associated health ailments

Health Effects

Domestic animals

Chronic and acute toxicity

Carcinogenicity
Neurotoxicity

Reproductive damage

S. ChEMBL
no. Pharmaceuticals 1Id Bioavailability =~ Administrative route = Dosage Health ailments References
1. Acetaminophen 112 70-90% Oral, rectal, and 150 mg kg™* Abdominal pain, diarrhea, 56
intravenous irritability, and vomiting
2. Cimetidine 30 60% Oral, and 400 mg/per day Reversible impotence or 57
intravenous gynecomastia
3. Digoxigenin 1153 70-80% Oral 0.25 mg/per day  Ventricular arrhythmias, 58
hypotension, symptomatic
bradycardia
4. Carbamazepine 108 75-85% Oral 200 mg/per day Coma, imbalance, 59
dizziness, and drowsiness
5. Warfarin 1464 100% Oral 7.5 mg/per day Joint pain, bleeding, vision 60
change, significant
hemorrhage
6. Albuterol 714 21-27% Inhalation route 4 mg/3-4 times Cough, throat irritation, 61
a day vomiting
7. Ciprofloxacin 8 70% Oral, and 1000 mg/per day  Tendinitis, tendon rupture 62
intravenous
8. Codeine 485 60% Oral 240 mg/per day Acute pancreatitis, liver 63
damage
9. Dehydro 193 45-68% Oral, and 120 mg/per day Flushing, peripheral 64
nifedipine intravenous edema, dizziness, and
headache
10.  Diltiazem 23 40% Oral 240 mg/per day Headache, allergic 65
reactions
11.  Doxycycline 1433 73-95% Oral 200 mg/per day Bloating, blistering, 66
decreased appetite
12.  Metformin 1431 40-60% Oral 500 mg/per day Lactic acidosis 67

© 2023 The Author(s).
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effects. Cyanobacteria and algae have a higher histopatholog-
ical index and are more antibiotic resistant.””> When exposed
to tetracycline chemicals, oxidative DNA damage with metal
complex formation has been reported. Atorvastatin exposure
had a significant impact on lipid regulators with beta blockers
in both target and non-target organisms. Because of their high
sorption nature and affinity in sediments, enzymes involved in
the beta receptor activity represent a risk to aquatic animals.
Neurotoxicity is the most common health problem associated
with psychiatric medicines in effluents or municipal wastewater
systems. Anticancer drugs at concentrations ranging from 0.1 to
0.3 mg L' have an effect on optical acuity and mutagenicity.
Endocrine disruptors induce reproductive and digestive system
disruption. Males experience hypogonadism as a result of
ibuprofen contraindications.”?”* These pesticide compounds
may enter into water systems through surface run-off or leach-
ing. Indirect toxic effects on the fishes with impairment in the
metabolic system of primary producers are few ailments related
to aquatic species. Hormonal imbalance, neurological
dysfunction, blood disorders, and immune impairment are the
known effects of pesticides in the health system.” As a result,
pharmaceutical exposure leads to expanding health and envi-
ronmental problems.

2.3 Sources and occurrence

Without suitable treatment techniques, pharmaceutical chem-
icals are widely discharged into the environment. Pharmaceu-
ticals are also used in different agricultural elements for disease
prevention and treatment. Pharmaceutical use has increased in
recent years due to its physicochemical and biochemical action
modes. Certain molecules are metabolised during drug delivery,
while others stay intact prior to elimination. Because of their
low volatile and highly polar character, these metabolites
remain stern and are not excreted into systems or disposed of in
waste effluents. Pharmaceutical contaminants are unlikely to
enter the environment via industrial disposal channels.””””®
Pharmaceutical chemicals are classified into two types: point
sources and non-point sources. Pharmaceuticals are most
typically introduced into the environment by sewage sludge
dumping, groundwater leaching, and surface run off. Medical
chemicals have been found in municipal and hospital effluent
sewage. Hospital sludge has a higher concentration than that of
municipal sludge. Expired medications are dumped in home
sewage. Pharmaceuticals are also present in landfills; however,
they are less concentrated due to their sorption or breakdown
capabilities. Primary and secondary point sources of pharma-
ceutical pollution are landfills and wastewater. Sewage treat-
ment plants contain considerable amounts of medicines that
remain unmetabolized for extended periods of time.” Duan
et al. (2021) investigated the occurrence and source analysis of
pharmaceutically active components in China City's aquatic
systems. Diclofenac acid, carbamazepine, and caffeine are the
most commonly detected substances. Besides, high lincomycin
concentrations (81.1 ng L") are frequent in the antibiotic class.
Other medications detected in average concentrations (16 to
21 ng L") include sulfamethoxazole, roxithromycin, and

1492 | Environ. Sci.: Adv, 2023, 2, 1488-1504
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erythromycin.®**®*' The investigation also revealed that the target
compounds were detected in low amounts and that non-
antibiotics were more frequent in the ecosystems.

3. Microbial degradation

3.1 Molecular mechanism and interaction of microbes with
pharmaceutical pollutants

Many organic and inorganic compounds are degraded signifi-
cantly by microorganisms. Microbial systems play a significant
role in ecosystem functioning since they are a key community.
When medicines enter the ecosystem, many processes such as
sorption, hydrolysis, and biodegradation occur, which prevents
ecotoxicity in environmental systems. Microbial degradation is
the best strategy in the environmental aspect for effective
harmful pollutant removal.®” Natural creatures in water and soil
are significant players in environmental process management.
They also control the release of drugs into the environment.
Microbial species participate in the degradation and purifica-
tion processes via metabolic and co-metabolic pathways. The
two primary biodegradation pathways are bio-oxidation and
hydrolysis. The enzymes involved in metabolic and co-
metabolic pathways aid in pharmacological transformation.*
Fig. 2 depicts the interaction mechanism between microbes and
pharmaceutical pollutants.

Microbial biodegradation can be categorised into three
stages: bioattenuation, biostimulation, and bioaugmentation.**
Bioattenuation is the inclusiveness of organisms to improve
metabolic activity and pharmaceutical breakdown. Limited
nutrients are added to enable the microbial species to degrade
harmful contaminants. Supplementary organisms are added to
microflora for specific impurities during the bioaugmentation
process. By metabolising pollutants, microorganisms use
pharmaceutical contaminants as their sole source of growth.
Pharmaceutical contaminants can be completely mineralized
during the biodegradation process.?*® The biodegradation of
pharmaceuticals has the benefit of both aerobic and anaerobic
mineralization. In terms of bacteria-based biodegradation,
a mixed bacterial consortium is favoured since it has a variety of
enzymes capable of degrading the chemicals. Several investi-
gations have been conducted on the breakdown of particular
medicinal components by specific bacterial species. In one
investigation, the Achromobacter sp. destroyed sulfamethox-
azole. Pharmaceutical wastewater sediments were used to
isolate the bacterial species. The bacterial culture must first
adjust to its new habitat before beginning the degradation
process. For strain growth, sulfamethoxazole was used as an
electron donor and carbon source.?”%*

Diclofenac was also subjected to biodegradation by Labrys
portucalensis sp. in another investigation. This mechanism was
primarily identified by the detection of metabolites. The reac-
tion begins with hydroxylation reactions, which result in isomer
formation. The hydroxylation reaction takes place using mono
and dioxygenase enzymes released by Labrys sp. as the first step
in the microbial degradation process. The enzyme methyl
transferase adds a methyl group to 4-hydroxy diclofenac mole-
cules. The decarboxylase enzymes then participate in the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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intermediate process. The auto-oxidation of hydroxylated
metabolites occurs via an alternative pathway, resulting in
benzoquinone molecules. Diol dehydrogenases fission rings,
resulting in Kreb's cycle intermediates and simpler metabolite
molecules.®* After 24 hours of treatment, diclofenac had
a comparable response to Chlamydomonas reinhardtii. The
concentration of metabolites was also observed to rise with the
cell biomass.”

Other microbial species that participate in the pharmaceu-
tical breakdown process include fungi. Pharmaceutical
substances are broken down by extracellular multi-enzyme
complexes. Olicon-Hernandez et al. (2019)°** investigated asco-
mycete fungus species’ degradation of diclofenac compounds.
Penicillium oxalicum was isolated from hydrocarbon-polluted
materials and employed in flask and bench scale reactors for
biodegradation. For free Penicillium sp., the clearance rate was
greater than 99%. During biodegradation mechanisms,
hydroxylated metabolites linked with phase 1 and phase 2
detoxification pathways are formed concurrently. The inclusion
of transferase enzyme in the process mechanism facilitates the
formation of high conjugate metabolites - diclofenac acyl
glucuronide.®* Trametes pubescens was used to breakdown clo-
fibric acid, another pharmaceutically active molecule. Trametes
sp. consumes clofibric acid as a substrate, which has both
antagonistic and synergistic effects. Trametes, a white rot
fungal, undergoes oxidation followed by the production of
metabolite intermediates. The fungal-based microbial degra-
dation reached around 30% degradation.”” In the microbial
degradation of pesticides, pesticides are utilized as microbial
nutrient sources, which are consequently degraded into small
compounds. Mechanisms involved in the degradable pathways
are hydrolysis, reduction, decarboxylation, condensation,
dehydrogenation, and oxidation. Initially, adsorption of pesti-
cides occurs on the cell membrane surface. Second, minerali-
zation of the organic compounds to simple inorganic

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Interaction mechanism between microbes and pharmaceutical pollutants.

compounds takes place under the influence of enzymatic
action. In addition, microbial pesticide degradation includes
co-metabolism as a primary mechanism.**** Chen et al*
explored the metabolic pathway for the chloracetamide degra-
dation by microbial species. Different biological and physio-
logical reactions such as hydroxylation, dechlorination, and
dealkylation have been observed in the microbial degradation
of chloracetamide pesticides.” Different microbial remediation
studies on the removal efficiency of pharmaceutical pollutants
are listed in Table 3.9

3.2 Influencing factors

Certain biotic and abiotic variables generally influence the
biodegradation process. In terms of microbial degradation, the
factors associated with microbial growth and processing are
growth source, temperature, pH, and nutrient source. Besides,
pharmaceutical features and microbial culture incubation with
medicines have an important influence on the degradation
process.**®

pH is a vital component in the microbe-based degradation
process because it influences enzymatic activity, proliferation,
adaptability, shape, and certain membrane properties. The
acidic and alkaline pH values are intimately related to the ionic
form of medicinal substances, which influences the degrada-
tion process indirectly.* In a study of ibuprofen degradation
by Bacillus thuringiensis, it was discovered that a pH in the
range of 6 to 7 was optimal for maximum ibuprofen degrada-
tion. The bacterial enzymes hydroquinone monooxygenase
and hydroxyquinol 1,2-dioxygenase are most active at pH levels
between 7 and 8, which may have altered the breakdown
process. The uncharged form of ibuprofen interacts with the
bacterial cell surface releasing enzymes, leading to
disintegration.**?

Temperature is an essential factor that influences the
microbial breakdown process. The chemical reaction doubles

Environ. Sci.: Adv., 2023, 2,1488-1504 | 1493
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or rises four times for every 10 °C temperature increase. The
temperature is directly related to the operation of cell enzymes
and cell membranes. High temperatures cause protein dena-
turation, whereas low temperatures affect the cell viscosity and
stiffness, limiting the enzyme performance. Temperature has
also been shown to have a considerable impact on the meta-
bolic development and activity of cultures.****** In a study by Yu
et al.,””® the effect of different parameters on sulfamethoxazole
degradation by Pseudomonas koreensis and Paenarthrobacter
ureafaciens was analysed. The effects of temperatures ranging
from 10 to 50 °C have been investigated. The bacterial consor-
tium grew better at temperatures ranging from 20 to 40 degrees
Celsius. The ideal temperature for maximum sulfamethoxazole
was found to be 30 °C. Microbial development was not possible
at low temperatures. Similarly, no pharmacological decrease
was observed at high temperatures.**

Microbial inoculum is a key aspect in the degradation of
medicinal substances. When the inoculum is large, it can
occasionally hinder the degrading capacity due to poisonous
material release. The ageing of the inoculum affects the
organism's ability to degrade.”® Yang et al.*” studied the impact
of several parameters on the degradation of chloramphenicol by
Pseudomonas and Shewanella sp. For maximum breakdown
ability, bacterial inoculation amounts of 1, 2, and 3% were
changed. The effectiveness of biodegradation increased, as the
bacterial count increased from 1% to 2%. Yet, at 3% bacterial
concentration, the degradation remains steady without further
rise. At a bacterial load of 2%, a maximum of 60-65% degra-
dation efficiency was achieved.”® The nature and characteristics
of medicinal compounds play an additional role in biodegra-
dation. The more stable and complex pharmacological
substances are more difficult to breakdown."*”
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4. Recent advancements
4.1 Metabolic or genetic engineering

Genetic and metabolic engineering is a rapidly growing disci-
pline globally for the production of novel microbes with desired
features. In general, genetically modified organisms are
bacteria that have had their genetic code altered via the
recombinant DNA process. Designing genetic and metabolically
modified organisms is required for creating new metabolism
pathways for pharmaceutical degradation, reducing hazardous
metabolite accumulation, increasing metabolic catabolism, and
improving organism substrate flux. The introduction of novel
genes aids in the adaptation of microorganisms to pharma-
ceutical pollutants.”*® The steps involved in the production of
metabolically engineered microbes are shown in Fig. 3. The
recombinant DNA field enables improved energy generating
methods, increased copy number, and inclusion of desired
genes. The metabolic engineering method has included novel
aspects relevant to limiting factors and pathways. Various
genetic methods have been used to reinforce optimal gene
expression and change the metabolic pathways of enzymes.'**
Some fundamental elements must be present in order to regu-
late the complicated enzyme system and metabolism. Four
parameters must be observed when it comes to the breakdown
of pharmaceutical contaminants: enzyme nature, metabolic
management of the breakdown pathway, creation with meta-
bolic pathway regulation, and lastly, overall process develop-
ment for improved genetic modification. Fungal genetic
engineering plays a significant role in modifying enzyme targets
and affinity for medicinal drugs."*>**

Another new subject that offers potential solutions for
pharmaceutical degradation is metabolic engineering. In vitro

—

Vo d
- >
Pharmaceutical

pollutants

A

o

\ L
Y
Synthetic biology

» Bacterial survival declines
» Low-efficiency removal
» Lower degradation rate

| 1. Selection of microorganisms |

2
&y o=
o=
2. Metabolic or genetic
modification

» Improved bacterial survival
——3 > High removal efficiency
» Enhanced degradation rate

Fig. 3 Steps involved in the production of metabolically engineered microbes.
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and in vivo approaches are used to create a synthetic metabolic
pathway. In silico technologies can be used to anticipate prob-
able metabolic pathway paths. Another emerging subject is
enzyme engineering, which involves the development of novel
enzymes with activating/deactivating roles in the metabolic
breakdown pathway."***** Aulestia et al' applied genetic
characterisation to determine the metabolic pathway for
ibuprofen degradation in a recent research study. Rhizorhabdus
wittichii eliminates the pharmaceutical pollutant ibuprofen by
the generation of metabolites. Genetic approaches have been
used to identify IBU genes with non-colored and leaky mutants.
For a better understanding of pathways, molecular biology
methods such as mutant insertion and sequence analysis were
used.”™ A research study employed Escherichia coli metabolic
engineering to complete naphthalene breakdown. A total of 17
genes involved in the degradation pathway were optimized and
rebuilt. It is possible to recreate the metabolic modules involved
in the conversion of naphthalene into catechol and other
metabolites. In that study, consecutive naphthalene degrada-
tion was achieved by altering the BL-CA-cat genes.'*® Similarly,
recent studies have focused on the genetic and metabolic
alteration of microbial species for improved pharmaceutical
contaminant breakdown.

4.2 Immobilization

Enzymes play a crucial role in the microbial breakdown of
medications by metabolising the complex compounds. These
enzymes can be used directly to degrade the substances. The
enzymes can be introduced into the degradation medium as free
cells or immobilized. Because enzymes in their free state are
difficult to separate, they can be immobilized into solid support
materials that only enable the transfer of degrading chemicals
into it."*”**® The immobilization procedure will also considerably
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increase the enzymes' stability and reusability. The two ways for
immobilizing enzymes onto solid substrates are physical and
chemical. Chemical approaches include cross-linking and cova-
lent bonding, whereas physical methods include encapsulation,
entrapment, and adsorption. Physical or ionic attachment of
enzymes to solid supports is one way of immobilization via
adsorption. Fig. 4 denotes the microbial immobilization for the
removal of pharmaceutical pollutants. Silica gel, activated
carbon, porous glass, biomass, and other organic porous
substances are the commonly utilized support materials.'***
Because adsorption does not necessitate the use of expensive
materials, enzyme or cell structure will not be altered, resulting
in high enzymatic activity. Encapsulation encompasses immo-
bilizing enzymes in a spherical shaped non-permeable
membrane, whereas entrapment involves enclosing enzymes or
cells in a closed fiber-like network. Because physical trapping of
enzymes is sometimes ineffective, resulting in enzyme leakage,
chemical methods of immobilization are used. Partially
deformed enzyme structures and molecular networks produce
a stable and strong bond with the support matrix. Chemical
immobilisation techniques such as covalent, disulphide, and
ionic bonding allow many treatment and reuse cycles.*****
Cross linking is another type of immobilisation in which
enzymes can be immobilised as crystals or aggregates. Primozic
et al."* immobilised a laccase enzyme as a cross-linked aggregate
for diclofenac biodegradation. Laccase precipitation in propanol
and aminosilane magnetic nanoparticle solutions was used to
form the aggregates. The degradation process was carried out in
a stirred batch reactor. The ability to remove diclofenac was
approximately 13-16 g diclofenac/g laccase. Even after the fourth
regeneration cycle, the immobilised enzyme's half-life remained
constant. Immobilised laccases also exhibit good stability."*

Laccase was immobilised in a polyvinylidene fluoride
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Fig. 4 Microbial immobilization for the removal of pharmaceutical pollutants.
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nanocomposite and nanotube containing diclofenac and carba-
mazepine for breakdown in another recent investigation by
Masjoudi et al.*** Initially, phase inversion was used to create
multiwalled carbon nanotubes using polyvinylidene fluoride
nanocomposites. The laccase enzyme was immobilised in the
produced samples and used as a catalyst in pharmaceutical
degradation. In the membrane reactor, an activity recovery of
38.31% was recorded with immobilised laccase, with a removal
efficiency of 27%."** Whole cells can also be immobilised for
pharmacological degradation. Zur et al.'*> immobilised the entire
Pseudomonas moorei strain in bacterial cellulose for degrading
purposes. Immobilisation was performed for 72 hours in order to
improve its effectiveness, and it was examined for auto aggre-
gation and co-aggregation capacity. This complete cell immobi-
lised system decomposed around 150 mg L~" of paracetamol.
Hydroquinone 1,2-dioxygenase, deaminase, and acyl amidohy-
drolase are major enzymes implicated in the paracetamol
breakdown route via entire immobilisation.**® As a result, an
immobilised enzyme system with reusable capacity can be
successfully used for pharmaceutical degradation.

5. Microbial degradation: kinetic
models

The kinetics section is critical for determining the breakdown of
pharmaceutical contaminants. Microbial degradation kinetics
aids in the accurate evaluation of microorganisms and their
environments for pollutant degradation. Besides, model building
is critical in regulatory considerations for predicting biodegrada-
tion at different time intervals. For the microbe-based degrada-
tion of pharmaceutical contaminants, many kinetic models have
been developed.'***** One such model for determining degrada-
tion kinetics is the Haldane equation. This equation addresses the
kinetics of cell development on hazardous substrates. The Hal-
dane equation can be represented as follows:**

:umaxSO
s "
Ks + So + (Ki >

When the inhibition phenomenon occurs, the Haldane
equation is more appropriate. The significant parameters are
max, Ks, and K;. Certain investigations show that low values of
max are due to low biomass concentrations. At high pharma-
cological concentrations, substrate inhibition can occur,
resulting in the incomplete mineralization of intermediates.**
Calero-Diaz et al.™* used kinetic modelling analysis to better
understand the biodegradation of ibuprofen, ciprofloxacin, and
carbamazepine in a membrane bioreactor system. The
following equation was used in the investigation to determine
the decay coefficient and kinetics.

T 1=Yu(1—f)

where the decay efficient is represented by by and the volatile
biomass fraction is denoted by the term 1 — fp. The addition of

M=

by (2)

© 2023 The Author(s). Published by the Royal Society of Chemistry
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pharmaceuticals ibuprofen, ciprofloxacin, and carbamazepine
to the membrane bioreactor system resulted in a higher
biodegradation rate, which doubled as the cell growth rate
increased. With various pharmacological concentrations and an
average decay rate of 1-80 g (h™! mg "), 83-100% elimination
was obtained.” In addition to the proposed models, the
pseudo-first-order kinetic model is a commonly utilised tech-
nique of pharmacological degradation. In the first-order
kinetics, the reaction rate can be calculated and is propor-
tional to the change in initial pharmaceutical concentration
with time. Ciprofloxacin biodegradation has also been studied
in another study using Thermus sp. A bacterium that degrades
pharmaceuticals has been identified from the pharmaceutical
sludge. The linear relationship between time and diminishing
medication concentration can be described as follows:

InC, = -kt +1nC, (3)

The first-order kinetic model agreed well with the experi-
mental data, indicating that microorganisms were responsible
for the majority of the deterioration. Sodium acetate increased
Thermus sp. biomass production by acting as an electron donor
in the non-growth factor metabolism.'®® As a result, various
kinetic models have been created and confirmed by researchers
based on their research.

6. Future outlooks and challenges

One of the key challenges facing pharmaceutical microbial
degradation is the lack of standard methodologies for assessing
and comparing the degrading ability of different microbial
species. Some typical biodegrading analysis methods are inac-
curate, which have to be investigated further. The presence of
many pollutants in the system reduces the degrading ability.
The effect of antibiotics, for example, on the pharmaceutical
transport behaviour is critical for successful clearance. This
effect's hazy concept needs to be researched further. To antici-
pate the optimum period for degradation, the microbial species’
adaptation time to the pharmaceutical wastewater environment
must be well characterised. The mineralization process mostly
degrades pharmaceutical substances. However, certain micro-
organisms  biotransform  pharmaceutical components,
producing intermediates that are more dangerous than the
primary pollutants. As a result, a mixed microbial consortium
might be used for complete pollutant mineralization rather
than a single pure culture, which lacks this potential. The uti-
lisation of extra substrates, which aids in biodegradation via co-
metabolic processes, can also improve the biodegradation effi-
ciency. The adoption of optimum statistical approaches can
improve the growth conditions of microbial cultures. The
incorporation of statistics and bioinformatics fields facilitates
process condition optimisation. While the subject of genetic
engineering has been developed for the alteration of microbial
strains to aid in enhanced biodegradation processes, there is
a dearth of research studies focusing on this issue. As a result,
the scope of genetic engineering should be properly studied,
and pathways should be clarified. To gain a better
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understanding, various biodegradation routes used by micro-
organisms must be precisely identified. The reusability of
enzymes or entire cells involved in the pharmaceutical degra-
dation process can now be achieved because of the recent
advances in immobilisation. However, some mass transfer
constraints impact the movement of intermediates and
metabolites into and out of the immobilised support system.
The discovery of microbial degradation pathways enables
modern developments such as metabolic or genetic engineering
and immobilisation to significantly increase pharmaceutical
biodegradation. A few numbers of kinetic investigations on
pharmaceutical biodegradation have been conducted. As
a result, additional research incorporating other process
parameters is required for a better prediction of degradation
rate and kinetic mechanism.

7. Conclusion

Substantial progress in the field of microbial remediation has
been the focus in recent years. The presence of microbial
communities determines the capacity and efficiency with which
medicinal substances can be destroyed. Persistent pharmaceu-
tical pollutants in the environment can be minimised via several
metabolic and co-metabolic transformation processes. Hydro-
lysis and bio-oxidation are the two major degradation pathways
for the microbe-mediated pharmaceutical remediation. The use
of mixed microbial cultures is desirable for improving THE
biodegradation activity. Advanced statistical and bioinformatics
tools have been used to optimize the factors impacting the
microbial degradation process. The advancement of immobili-
zation techniques with various solid supports improves the
reusability of materials used in the remediation processes. The
ideal support systems should overcome the mass transfer
constraint in the immobilised system. The field of metabolic and
genetic engineering is a recent development in the microbial
breakdown of pharmaceutical contaminants. Metabolic engi-
neering approaches aid in developing new degradation pathways
of metabolism, which enhance the ecological pharmaceutical
removal. Of the different kinetic models facilitating the selection
of several optimum techniques for polluted sites, the pseudo-
first-order model is the best suited due to its better coherence
with the process conditions. The future prospects for enzyme
engineering improve the aspect of pharmaceutical degradation.
Novel in silico techniques in the metabolic engineering field
could enhance the contaminant removal from the ecosystem.
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