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The conversion of CO2 to syngas (H2 and CO) via electrochemical reduction has been considered a

promising strategy to mitigate the greenhouse effect. However, it is a great challenge to control H2/CO

ratios over a wide voltage window. Herein, a new method of fabricating Ni–N co-doped carbon

nanosheets by molten salt-assisted pyrolysis, impregnation and re-carbonization is proposed. Benefiting

from their ultrathin structure and tunable Ni–Nx active site content, the H2/CO ratios can be adjusted

from 1/2 to 2/1 within a wide applied voltage range (−0.7 to −1.3 V vs. RHE). After electrochemical stability

testing for 10 h, the current density and H2/CO ratios remained almost constant, revealing robust long-

term stability. This work may benefit the construction of efficient and low-budget electrocatalysts for the

production of tunable syngas.

Introduction

With the acceleration of industrialization, the excessive con-
sumption of fossil fuels has caused an energy and environ-
mental crisis.1,2 To alleviate this problem, many emerging
technologies such as capture and sequestration, chemical fix-
ation, and electro/photochemical reduction have been
proposed.3,4 Of the above technologies, the electrochemical
CO2 reduction reaction (CO2RR) has been regarded as a prom-
ising strategy for producing fuels and chemicals from renew-
able energy sources.5 In recent years, considerable advances
have been made in the CO2RR, in which the reduction of CO2

to low-carbon hydrocarbons is an intermediate step in the
further production of high-value-added products.6,7 Among
them, syngas (H2 and CO) is key feedstock for many important
chemicals; for example, when the ratio of H2/CO is 2/1, it is an
ideal choice for methanol production while the optimal ratio
for dimethyl ether production is 1/1.8,9 Therefore, the realiz-
ation of adjustable syngas production is very promising and
also urgently needed.

In recent years, many attempts have been made to produce
syngas via the CO2RR. For instance, Kim et al. used Ag/TiO2 as
catalysts to produce tunable syngas.10 These catalysts could
regulate H2/CO ratios from 0.1 to 1.5 by controlling oxygen
vacancy contents in the range of applied potentials from −0.35
to −0.65 V (vs. RHE). He et al. developed Pd–SnO2 nanosheet
catalysts for syngas production with controllable H2/CO
ratios.11 The large specific surface area of these catalysts
exposes abundant active interfaces that can modulate the H2/
CO ratios from 0.28 to 4.2, when the potential is varied from
−0.5 to −1.1 V (vs. RHE). However, precious metal catalysts
have the disadvantages of high cost and scarce raw materials,
which limit their large-scale application. Therefore, transition
metal catalysts for electrosynthesis of syngas were also studied.
Maeng et al. fabricated ZnO nanorod-based catalysts to
prepare syngas.12 By the surface modification of the employed
catalysts, the H2/CO ratios can be adjusted in the range of
0.25–4.5 within the applied potential range of −1.2 to −2.0 V
(vs. Ag/AgCl). Chen et al. synthesized oxide-derived Cu nano-
wires with two-phase CuO heterostructures for syngas pro-
duction.13 Misfit dislocation sites on the surface of Cu nano-
wires promote the selectivity of CO, so that the H2/CO ratios
can be regulated from 1 to 3 within a certain potential window
(−0.28 to −0.649 V vs. RHE). To further improve the stability of
catalysts and reduce the cost, some researchers have developed
carbon-based catalysts. Han et al. prepared BPNC catalysts
for producing syngas via the CO2RR.

14 By changing the precur-
sor ratio of tetraphenylphosphonium tetraphenylborate
(C48H40BP) to melamine, the H2/CO ratios can be adjusted
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from 0.2 to 6.8 in a potential window from −0.5 to −1.0 V (vs.
RHE). Li et al. designed a series of nitrogen-doped carbon
foam tubular electrodes to prepare syngas with controllable
H2/CO ratios.15 These electrodes exhibit adjustable H2/CO
ratios (1/3 to 2/1) over a potential range from −0.5 to −1.3 V
(vs. RHE). Inspired by the above research, the syngas ratio can
be adjusted by regulating the number of active sites for CO
production. Compared with the heteroatom-doped carbon cat-
alysts, Ni–N-doped carbon materials have the advantages of
higher atomic utilization, higher intrinsic activity and control-
lable active sites.16–22 Benefiting from those merits, it is poss-
ible to control the amount of CO by regulating the number of
Ni–N active sites, thereby adjusting the proportion of syngas.

Recently, Leverett et al. synthesized undercoordinated
Ni–Nx catalysts with a holey graphene framework to adjust the
H2/CO ratio by altering the coordination of Ni and N.23

He et al. prepared N-doped carbon-supported single-atom cata-
lysts CoNi-NC and regulated the syngas composition by con-
trolling the doping ratio of Co to Ni.24 Although the above
studies have realized the regulation of the syngas ratios to
some extent, the process of large-scale application of such cat-
alysts is limited by the narrow adjustment ratio range or high
cost of raw materials.

Herein, we synthesized Ni–N co-doped ultrathin carbon
nanosheets by a molten salt-assisted pyrolysis, impregnation
and re-carbonization strategy. The ultrathin structure of Ni–N
co-doped carbon nanosheets can shorten the mass transfer
path and provide a sufficient three-phase reaction interface for
the CO2RR. The number of Ni–N active sites can be adjusted
by varying the carbonization temperature, thus enabling the
adjustment of the CO yield and the regulation of the resulting
syngas ratios. Therefore, the ratio of H2/CO can be effectively
regulated from 1/2 to 2/1 within a wide potential range (−0.70
to −1.30 V vs. RHE), which shows great promise for practical
electrosynthesis of tunable syngas.

Results and discussion

The synthetic procedure of Ni/N–C is illustrated in Fig. 1a. In a
typical process, coal tar pitch (carbon source) was mixed with
salts (NaCl and KCl) and ground uniformly, followed by pyrol-
ysis under an Ar atmosphere. During pyrolysis, the strong
sheer force of the molten salts converted the pitch precursors
into ultrathin carbon nanosheets. Subsequently, the as-pre-
pared carbon nanosheets were treated with concentrated nitric
acid to introduce nitro groups to facilitate Ni2+ adsorption.
Then, Ni2+ was introduced into the carbon nanosheets by
impregnation. The carbon nanosheets, after adsorption of
Ni2+, were then carbonized together with N sources under an
Ar atmosphere. The product obtained after acid leaching and
drying was labelled Ni/N–C. The Ni–C sample without the N
source and the N–C sample without the Ni source were pre-
pared by a similar route to demonstrate the significance of the
interaction between N and Ni species. The structural character-
istics of the obtained Ni/N–C-900 were examined by scanning

electron microscopy (SEM) (Fig. 1b–d) and transmission elec-
tron microscopy (TEM) (Fig. 1e–g). Ni/N–C-900 clearly shows
an ultrathin lamellar structure, which reduces the ion trans-
port resistance and increases the accessible area of the active
sites. Meanwhile, there was no metal aggregation in Ni/
N–C-900. The N–C and Ni–C samples exhibit similar sheet-like
structures to that of Ni/N–C-900 (Fig. S1†); the influence of
material morphology on the catalytic performance can be
excluded. Energy dispersive spectroscopy (EDS) mapping dis-
plays that N, O and Ni atoms were dispersed uniformly in the
carbon nanosheets (Fig. 1h).

The microstructures of the Ni/N–C catalysts were further
investigated by X-ray diffraction (XRD) (Fig. 2a). The XRD pat-
terns of the Ni/N–C catalysts exhibit only two broad peaks
located at around 26° and 44°, attributed to the (002) and
(101) facets of graphite,25 further suggesting the absence of
metallic Ni nanoparticles in these catalysts. The crystal struc-
ture and defects of the prepared catalysts were evaluated with
the Raman spectra. All the Ni/N–C catalysts show two charac-
teristic bands at around 1340 cm−1 (D band) and 1580 cm−1 (G
band) (Fig. 2b).26–28

Specifically, the ID/IG values of Ni/N–C-700, 800, 900 and
1000 are 0.94, 0.95, 0.97 and 0.96, respectively. The close ID/IG
values of these four samples indicate that they all have similar
graphitized structures, but these values are significantly
higher than those of Ni–C (0.91) and N–C (0.93) (Fig. S2†),
proving that the introduction of Ni–N active sites leads to an
increase of disorder in carbon and thus more defects are
obtained.29

To further reveal the elemental composition and coordi-
nation environment of Ni/N–C catalysts, X-ray photoelectron
spectroscopy (XPS) measurements were carried out. The XPS
wide-survey spectra of the Ni/N–C catalysts indicate the pres-
ence of C, N, O and Ni elements (Fig. S3†), which is in accord-
ance with the EDS mapping. The C 1s spectra can be fitted
into C–C (∼284.6 eV), C–N (∼285.6 eV) and CvO (∼287.8 eV)
(Fig. S4†), demonstrating that the N species are successfully
doped into the carbon nanosheets.30–32 As shown in Fig. 2c,
the N 1s spectra can be deconvoluted into four peaks centered
at 398.3 eV (pyridinic-N), 399.5 eV (Ni–N), 400.5 eV (pyrrolic-N)
and 401.3 eV (graphitic-N).33,34 The contents of various N
species are shown in Fig. S5;† the pyridinic-N was dominant in
all samples. More importantly, pyridinic-N has strong adsorp-
tion capacity for acidic CO2 molecules, thus enhancing the
CO2RR rate.14

The Ni contents of the various samples characterized by
XPS are 0.09 at% (Ni/N–C-700), 0.10 at% (Ni/N–C-800), 0.16
at% (Ni/N–C-900), and 0.13 at% (Ni/N–C-1000) (Table S1†),
respectively, indicating that 900 °C is a potentially ideal temp-
erature for preparing the Ni/N–C catalysts with relatively high
Ni content. Meanwhile, we calculated the relative contents of
nitrogen species in various Ni/N–C catalysts. Fig. S5† shows
that the relative contents of pyridinic-N are 35.7, 33.3, 27.6 and
25.9%, when the carbonization temperature is 700, 800, 900
and 1000 °C, respectively. Meanwhile, the corresponding rela-
tive contents of pyrrolic-N are 21.3, 20.0, 17.6 and 17.3%,
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respectively. Obviously, the contents of both pyridinic-N and
pyrrolic-N in the samples decrease by increasing the carboniz-
ation temperature. In contrast, the relative contents of graphi-
tic-N in Ni/N–C-700, 800, 900 and 1000 are 21.2, 22.3, 24.2 and
31.7%, respectively. The possible reason is that the graphitic-N
is more stable and is lost at a lower rate with the increasing
temperature than the unstable pyridinic and pyrrolic-N. It is
noteworthy that the relative content of Ni–Nx reaches its
maximum at 900 °C (30.6%), while higher carbonization temp-
erature will reduce the number of Ni–Nx species (1000 °C,
25.1%). All these results show that 900 °C is an optimum
temperature for the formation of Ni–Nx species (1.18 at%) and
the maintenance of a high total nitrogen content (3.85 at%),
which are beneficial for improving the catalytic performance.
Thus, the number of Ni–Nx active sites can be modulated by
changing the carbonization temperature, thus further adjust-
ing the H2/CO ratios.35,36 Although the main active sites in
Ni/N–C catalysts are Ni–Nx coordinated structures, graphitic-N,

pyridinic-N and pyrrolic-N also play important roles in the
CO2RR, in which pyridinic-N is a dominant factor. Therefore,
the Ni–Nx active sites and N species have synergistic effects on
the CO2RR activity in the Ni/N–C electrocatalysts.37,38

The high-resolution spectra of Ni 2p are displayed in
Fig. 2d, where the Ni 2p3/2 peak at 855.5 eV is between those of
Ni0 (852.5–853.0 eV) and Ni2+ (856 eV),39–41 revealing that the
Ni species are in an unsaturated chemical state and the poten-
tial presence of coordinated Ni–N sites in the catalysts. In
addition, the Ni contents were also detected by inductively
coupled plasma-optical emission spectroscopy (ICP-OES),
where the Ni/N–C-900 catalyst (0.00936 wt%) possesses higher
Ni content than those of Ni/N–C-700 (0.00230 wt%), Ni/N–
C-800 (0.00283 wt%) and Ni/N–C-1000 (0.00381 wt%)
(Table S2†), which agrees well with the XPS results. The high-
resolution N 1s and Ni 2p spectra of N–C and Ni–C samples
are shown in Fig. S6,† demonstrating the absence of Ni–Nx

active sites. The trace amount of N species (0.00188 wt%) in

Fig. 1 (a) Schematic diagram of the synthetic procedure of the Ni/N–C catalysts. (b–d) SEM, (e–g) TEM and (h) EDS mapping images of Ni/
N–C-900.
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the Ni–C sample comes from coal tar pitch, which is insuffi-
cient to form Ni–Nx active sites with Ni sources.

The electrochemical activities of various electrocatalysts
were investigated in an H-type cell. As revealed by linear sweep
voltammetry (LSV) curves in Fig. 3a, the current densities of
various catalysts under a CO2 atmosphere are significantly
higher than those of catalysts under an Ar atmosphere,
proving their preference towards the CO2RR. Compared with
N–C (1.25 mA cm−2) and Ni–C (1.47 mA cm−2), Ni/N–C-900

exhibits higher current density (8.37 mA cm−2) (Fig. S7a†),
demonstrating that the ultrathin carbon nanosheets can
promote the performance of the CO2RR.

42 To determine the
composition of the resulting syngas, the H2/CO ratios of
various samples are calculated at different potentials (Fig. 3b).
Obviously, the controllable ratios of H2/CO vary from 1/2 to
2/1, providing an opportunity for tunable syngas production.
Notably, most of the H2/CO ratios of each sample at different
potentials are distributed in the optimal region (0.5–2), and
the syngas contents in this interval are the key feedstocks for
preparing multiple chemical products.24,43–47 The H2/CO ratios
of N–C and Ni–C (Fig. S7b†) show that most of the ratios
deviated from the optimal syngas region, further demonstrat-
ing that the presence of Ni–Nx active sites can improve the
selectivity for CO and thereby modulate the H2/CO ratios.

The CO partial current densities ( jCO) of various samples
are 0.51 mA cm−2 (Ni/N–C-700), 0.68 mA cm−2 (Ni/N–C-800),
2.36 mA cm−2 (Ni/N–C-900), and 1.27 mA cm−2 (Ni/N–C-1000)
(Fig. 3c). The jCO of Ni/N–C catalysts is higher than that of N–C
(0.24 mA cm−2) and Ni–C (0.44 mA cm−2) (Fig. S7†), suggesting
that the Ni–Nx coordination structure plays a vital role in the
CO2RR. Meanwhile, the H2 partial current densities ( jH2

)
(Fig. 3d) and jCO increase with the applied voltage; however,
there are some differences in the magnitude of jH2

and jCO
growth, indicating that the H2/CO ratios of various Ni/N–C cat-
alysts can also be modulated by changing the applied poten-
tial. The syngas production rate is also a key parameter for esti-
mating the catalytic performance.

The production rates of CO and H2 can vary with applied
potentials (Fig. 4a and b). As predicted, the generation rates of
CO and H2 gradually increase in a wide potential window (−0.7
to −1.1 V vs. RHE). Ni/N–C-900 displays the maximum CO pro-

Fig. 2 (a) XRD patterns and (b) Raman spectra of various Ni/N–C catalysts. High-resolution XPS spectra of (c) N 1s and (d) Ni 2p in Ni/N–C-700,
800, 900 and 1000.

Fig. 3 (a) Linear sweep voltammetric (LSV) curves of various samples in
CO2 and Ar-saturated 0.1 M KHCO3 solution. (b) Dependence of the H2/
CO ratio on the applied potentials of Ni/N–C-700, 800, 900 and 1000.
Partial current densities of CO (c) and H2 (d).
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duction rate (19.96 mmol g−1 h−1) compared with those of
Ni/N–C-700 (6.68 mmol g−1 h−1), Ni/N–C-800 (9.83 mmol g−1 h−1)
and Ni/N–C-1000 (12.55 mmol g−1 h−1), demonstrating that
the production rates of CO are consistent with the number of
Ni–Nx active sites. From 700 to 900 °C, the number of Ni–Nx

active sites in the catalysts gradually increases, the reactions
are mainly based on the CO2RR, and the HER is inhibited,
resulting in a gradual decrease of production rates for H2. As
the temperature continued to rise to 1000 °C, the decrease in
the number of Ni–Nx active sites caused a gradually enhanced
HER. To further reveal the reaction kinetics of the catalysts,
the Tafel slopes for CO production over Ni/N–C catalysts are
presented in Fig. 4c. The Tafel slope of Ni/N–C-900 is
243.08 mV dec−1, which is lower than those of Ni/N–C-700
(315.23 mV dec−1), Ni/N–C-800 (258.51 mV dec−1) and Ni/N–
C-1000 (257.05 mV dec−1), implying that the increased number
of Ni–Nx active sites accelerates the reaction kinetics.48

Meanwhile, the Tafel slopes of Ni/N–C catalysts are signifi-
cantly lower than those of N–C (322.85 mV dec−1) and Ni–C
(319.59 mV dec−1) (Fig. S8†), further proving that the Ni–Nx

active sites can accelerate the reaction kinetics of Ni/N–C cata-
lysts in the CO2RR.

49,50

In addition, Fig. S9 and S10† show the electrochemically
active surface areas (ECSAs) and the double-layer capacitances
(Cdl) of all samples. The Cdl of Ni/N–C-900 (1.08 mF cm−2) is
obviously larger than the Cdl of Ni/N–C-700 (0.613 mF cm−2),
Ni/N–C-800 (0.842 mF cm−2), Ni/N–C-1000 (0.863 mF cm−2),
N–C (0.365 mF cm−2) and Ni–C (0.426 mF cm−2). The results
show that the ESCA of Ni/N–C-900 is the largest among the
above samples, which is conducive to increasing the contact
area between active sites and CO2. The jCO of different catalysts
is normalized to the ECSA to fairly compare the catalytic
activity of Ni/N–C-900 with other samples. As shown in
Fig. S11,† Ni/N–C-900 displays a significantly larger ESCA-nor-

malized CO current density than the N–C and Ni–C samples.
Thus, the higher intrinsic activity of Ni/N–C-900 is attributed
to its unique Ni–Nx sites. An isotope tracer measurement for
the electroreduction of 13CO2 was carried out to trace the
origin of the products, where 12CO2 was used as a reference. As
shown in Fig. S12,† the dominant peak of 13CO (m/z = 29) was
observed at m/z = 29, which was assigned to 13CO produced
during the MS measurement. The results verify that CO
detected upon the Ni/N–C materials comes from the electrore-
duction of the CO2 source instead of any organic impurities
from the catalyst. Furthermore, Ni/N–C-900 exhibits significant
electrochemical stability in a long-term electrolysis test. When
the reaction continues for 10 h at −0.8 V vs. RHE, the H2/CO
ratio remains basically stable and the current density
decreases only slightly at the beginning (Fig. 4d). At the begin-
ning of the reaction, sufficient CO2 is adsorbed on the elec-
trode and a large amount of CO2 is consumed instantaneously
after applying the potential. However, as the reaction proceeds,
the insufficient supply of CO2 leads to a decrease in the
current density. To verify the reason for the decrease of FEco

after 10 h of electrolysis, we investigated the chemical states of
N species. The relative contents of various N dopants show no
obvious differences compared with the fresh Ni/N–C-900
sample. However, the atomic concentration of total N
decreases from 3.85 to 3.02 at% (Fig. S13†), which may be the
cause of deactivation.

In order to highlight the advantages of the stable and con-
trolled syngas production within a wide potential window over
the Ni–N co-doped ultrathin carbon nanosheet electrodes, a
comparison between H2/CO ratios in this work and those in
recent representative literature reports is presented in Fig. 5.

Fig. 4 (a) CO and (b) H2 production rates of Ni/N–C catalysts at
different applied potentials. (c) Tafel plots based on jCO of the Ni/N–C
catalysts in CO2-saturated 0.1 M KHCO3 solution. (d) Long-term stability
test of Ni/N–C-900 at −0.8 V vs. RHE for 10 h.

Fig. 5 Recently reported H2/CO ratios of various catalysts used for
syngas production at different applied potentials. (a) Heteroatom-doped
carbon catalysts (N-CNTs,42 BPNC,14 NCSP-70,51 UNCNs-900,52

NCN-6,53 and NBC54), (b) metal catalysts (OD-Cu NA,55 ZnOCNT,56

I-Ag,57 AuCu2/CNT,58Au ΘCu ∼ 3/3,59 and Co rate-aligened60), (c) M–N–
C single-atom catalysts (Ni-hG,23 CoNi-NC,24 Co–N–C–Ph,61 Fe–N–
C,33 P/Ni-4@Ni-NC,62 and Co@CoNC-900 63) and (d) Ni–N co-doped
ultrathin carbon nanosheet electrodes. The shaded regions are the areas
with the optimal syngas ratios.
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The H2/CO ratios over heteroatom-doped carbon catalysts
and metal catalysts could be regulated in the range of 0–3.5,
but it is far from the optimal range. Meanwhile, the weak
intrinsic activity of heteroatom-doped carbon and the scarcity
or cost disadvantages of metal catalysts still limit their large-
scale application. Compared with the M–N–C catalysts in the
literature, our Ni/N–C catalysts showed obvious advantages in
the regulatory range, that is, it covered all the optimal syngas
regions. Furthermore, the ratio of syngas on our catalysts can
be controlled simultaneously by adjusting the active site
content and applied potential. The unique and convenient
regulation strategy of this work enables the H2/CO ratio to be
adjusted between 1/2 and 2/1 within a wide voltage window,
highlighting excellent intrinsic activity and economy.

Conclusions

In summary, this work presented Ni–N co-doped carbon
nanosheets as promising catalysts for the electrochemical con-
version of CO2 to tunable syngas. The number of Ni–N active
sites in the catalysts is varied by adjusting the carbonization
temperature of the synthesis process, enabling the effective
regulation of H2/CO ratios to the optimal range (1/2–2/1) over a
wide potential window (from −0.7 to −1.3 V vs. RHE). The
scheme of modulating the H2/CO ratios by changing the
number of Ni–Nx active sites shows great potential and may
provide a valuable reference for future syngas production.
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