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Introduction

Highly luminescent dual-phase CsPbBrs;/Cs;PbBrg
microcrystals for a wide color gamut for backlight
displays¥

V. Naresh,*® Taehyung Jang,? Yoonsoo Pang {2 ® and Nohyun Lee*®

Cesium lead bromide perovskite nanocrystals (NCs) embedded in Cs4PbBrg or CsPb,Brs matrices forming
core/shell structures are promising luminescent materials that exhibit remarkable photoluminescence
properties meeting the need in a wide range of applications while overcoming stability challenges. Here,
we report the large-scale, ligand-free synthesis of dual-phase Cs;PbBrg/CsPbBrs microcrystals (MCs)
using ultrasonication at room temperature, exhibiting a high photoluminescence quantum yield (PLQY) of
82.7% and good stability. High-resolution transmission electron microscopy and X-ray photoelectron
characterization confirm that CsPbBr; NCs are embedded in the Cs4PbBrg matrix-forming CsPbBrs/
Cs4PbBrg dual-phase structure. The evolution of the luminescence properties with temperature suggests
that the strong green emission results from direct exciton recombination in the isolated [PbBrel*~ octahe-
dra, which possess a large exciton binding energy of 283.6 meV. As revealed from their emission intensi-
ties, the dual-phase CsPbBr3/Cs4PbBrg MCs demonstrate excellent stability against ultraviolet irradiation
(76%), good moisture resistance (42.7%), and good thermal tolerance (51%). It is understood that such
excellent PLQY and stability are due to the surface passivation of the CsPbBrs NCs attributed to the large
bandgap as well as the isolated [PbBrg]*~ octahedra separated by Cs* ions in the Cs4PbBrg crystal lattice.
Finally, the suitability of the green-emitting CsPbBr3z/Cs4PbBrg material for achieving white-light emission
and a wide color gamut is evaluated by constructing a prototype white light-emitting diode (w-LED)
using CsPbBrs/Cs4PbBrg and red-emitting KZSIFG:Mn4+ materials taken in different weight ratios and com-
bined with a blue light-emitting InGaN LED chip (4 = 455 nm). The constructed w-LED device exhibits the
color coordinates (0.3315, 0.3289), an efficacy of 68 Im W™, a color rendering index of 87%, a color
temperature of 5564 K, and a wide color gamut of ~118.78% (NTSC) and ~88.69% (Rec. 2020) with RGB
color filters in the CIE 1931 color space. Therefore, based on our present findings, we strongly believe that
the dual-phase CsPbBrs/Cs4PbBrg material is a promising green-emitting phosphor for use in w-LEDs as
the backlight of display systems.

devices,” photovoltaics,® laser gain media, and X-ray scintillat-
ing materials, and for anti-counterfeiting applications.”

All-inorganic PNCs (CsPbX;, X = Cl, Br, and I) have gained con-
siderable attention due to their narrow emission bandwidth
and tunable bandgap, high-defect tolerance, large absorption
cross-section, and near-unity photoluminescence quantum
yield (PLQY),"? which have enabled them to be used in a
variety of promising applications, including color conversion
and electroluminescent materials in light-emitting and display
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Despite their unique optical and photophysical properties,
CsPbX; materials suffer from structural instability when
exposed to ultraviolet (UV) radiation, moisture, and heat.
They are affected by their inherent phase transformation when
directly used in practical applications, such as white light-
emitting devices. Additionally, their unsuitability for large-
scale industrial synthesis requirements is another setback. To
circumvent these challenges, several approaches have been
proposed, such as encapsulation in inorganic shells, including
ZnS,® CdSs,’ TiO,,'° Al,0;,"" PbSO,,"” and mesoporous silica,?
and embedding in polymer'* and glass'> matrices as well as
heteroepitaxial structures, including CsPbBr;/Cs,PbBrg '® and
CsPbBr,/CsPb,Brs core/shell structures.'” Nevertheless, since
these integration and incorporation methods are expensive,
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labor-intensive, and complex, they can only be performed in
the laboratory and are difficult for synthesis and optimization
for large-scale production. Therefore, these challenges have
triggered an extensive exploration for highly luminescent
CsPbX;-related structures that are structurally stable in
different environments, such as two-dimensional (2D;
CsPb,X5) and zero-dimensional (0D; Cs,PbX,) perovskites.'*°

CsPbBr; has a three-dimensional (3D) structure character-
ized by corner-sharing [PbBre|* octahedra with Cs* cations
filling the spaces created by four neighboring [PbBr]*~ octahe-
dra.>' Although the CsPbBr; material has been extensively
explored from an application perspective, its structural
instability has been a hindrance. Unlike the 3D CsPbBr; struc-
ture, the [PbBre]*~ octahedra are decoupled from the halide
ions, without sharing any corners or edges and are surrounded
by isolated Cs* cations in the 0D Cs,PbBrg structure.”’?* The
unique 0D structure characterized by decoupled [PbBr]*~ octa-
hedra displays significant quantum confinement and exciton-
phonon interactions, which lead to exciton localization,
self-trapping, polaron generation, and intrinsic Pb*" ion
emission.”>?** Due to their stability and photoluminescence
(PL) capabilities, 0D Cs,PbBrs perovskite materials have
attracted exceptional interest from the scientific community
over the last decade as green phosphors for realizing white-
light emission.”>*' However, the origin of the strong green
luminescence remains a subject of debate. Several research
groups have demonstrated possible luminescence mechanisms
for the intense green PL from Cs,PbBrs, which include (i)
emission from CsPbBr; NCs (as impurities, inclusions, or
CsPbBr;/Cs,PbBrg interfaces) and (ii) defect-induced emission
(such as Br vacancies, interstitial hydroxyl, polybromide, and
self-trapped excitation).?*® The absence of traces related to
CsPbBr; NC impurities in the X-ray diffraction (XRD) pattern,
transmission electron microscopy (TEM) images, and scanning
electron microscopy (SEM) images has prompted concerns
regarding the accuracy of the former theory. Although the
latter theory is supported by density functional theory (DFT)
simulations, it faces the problem of reproducing the calculated
deep-level defect states through other DFT simulations and
rarely agrees with the experimental results obtained for lead
halide perovskites.>® However, many research groups have
provided credible and compelling evidence for the green
luminescence being caused by the presence of CsPbBr; NCs
as an impurity in the Cs,PbBr, structure. Zou et al. conducted
high-pressure experiments and DFT calculations to demon-
strate that the green luminescence in Cs,PbBrs originates
from the CsPbBr; impurities embedded in it.*' Bao et al
identified the presence of CsPbBr; NCs in emissive Cs,PbBrg
using correlated Raman-PL measurements as a passive struc-
ture-property method.** Riesen et al. employed a cathodolu-
minescence imaging technique to demonstrate the presence
of low impurity levels of CsPbBr; in Cs,PbBrs synthesized
mechanochemically through ball milling.>* Zhong et al
reported that centimeter-sized Cs,PbBrs crystals with
embedded CsPbBr; NCs exhibited green
luminescence.®*

superior
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To date, all-inorganic PNCs have been synthesized using
chemical vapor deposition (CVD) and solution-based synthesis
methods like hot-injection, solvothermal methods, room
temperature-based ligand-mediated precipitation and super-
saturated recrystallization.®® The hot-injection method has
been widely used to synthesize PNCs; however, it is expensive
and time-consuming, and requires certain reaction conditions
to synthesize PNCs, such as high temperature, vacuum, inert
atmospheres, and pre-synthesized precursors, resulting in
limited yield and repeatability. To synthesize PNCs using room
temperature-based approaches, the precursors must be mixed
with large quantities of polar solvents, such as dimethyl sulf-
oxide (DMSO) and N,N-dimethylformamide (DMF), followed by
treatment with nonpolar solvents, such as toluene or hexane.
Despite the high yield of PNCs obtained using these
approaches, they are sensitive to polar solvents, resulting in
the formation of defects.>®?® Therefore, considering these
above shortcomings to produce PNCs with high quality and
excellent stability, ultrasonication-assisted synthesis is con-
sidered to be a promising method due to factors such as a
rapid reaction rate, controllable reaction conditions, quality
and quantity of the yield, less labor-intensive synthesis pro-
cesses, optimization for large-scale production, low cost and
safety.**?7*% The ultrasonication method is widely used to syn-
thesize high-quality nano- and micro-sized particles on a large
scale. In contrast to the hot-injection method," precursors do
not have to be pre-treated or degassed before the reaction
occurs. Instead, ultrasonication allows the reaction to occur in
an ambient environment. Additionally, it accelerates the
nucleation and growth of NCs and can reduce the reaction
time.

Herein, we present a facile and eco-friendly ultrasonication
approach for the large-scale synthesis of ligand-free lead
halide perovskite (LHP) MCs at room temperature. We demon-
strated that this approach could generate both single-phase
(CsPbBr;, Cs,PbBrg) and dual-phase (CsPbBr;/Cs,PbBrs) MCs
at a rapid pace by varying the precursor (CsBr, PbBr,) content
in mixed solvents of DMF and DMSO taken in low quantities
(Fig. 1). Our investigation sheds light on the phase transitions
between the Cs-Pb-Br compounds, their formation kinetics at
different stages, and microstructure. DMF and DMSO have an
effect on the solubility of CsBr and PbBr, in the solvent as they
can control the growth of dual-phase CsPbBr;/Cs,PbBrs MCs
precisely. We also discussed the role of the dual-phase for-
mation in generating green emission, which is caused by the
presence of CsPbBr; NCs as an impurity in the Cs,PbBrg struc-
ture. Additionally, this facile synthesis method reduces the
reaction time and production cost. The MCs synthesized
through this approach exhibit a high PLQY without using anti-
solvents, such as toluene and chloroform. Considering the
high PLQY and stability of green-emitting dual-phase CsPbBr5/
Cs,PbBrg microcrystals (MCs), we developed a prototype white
LED (w-LED) using optimized contents of the as-synthesized
dual-phase CsPbBr;/Cs,PbBrs MCs with K,SiFg:Mn'" (1 =
628 nm) phosphors coupled to a blue light-emitting InGaN
LED chip (4 = 455 nm).

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Scheme for the synthesis of dual-phase CsPbBrs/Cs4PbBrg MCs using ultrasonication process.

Results and discussion

As shown in Fig. 1, the synthesis of the dual-phase CsPbBr;/
Cs,PbBrs MCs involves a single step at room temperature.
CsBr: PbBr, was taken in various molar ratios and ultrasoni-
cated in a 1:1 ratio of DMF and DMSO to synthesize the dual-
phase MCs. Due to the different solubilities of precursors in
DMF and DMSO, initially CsPbBr;, then Cs,PbBrg, and finally,
dual-phase CsPbBr;/Cs,PbBrs MCs with a lemon-yellow color
are formed at different reaction times. The sample was centri-
fuged, and the precipitate was dried at 70 °C to obtain the
dual-phase CsPbBr;/Cs,PbBrs MCs. The details of the syn-
thesis methodology of the dual-phase CsPbBr;/Cs,PbBrs MCs
depending on the ultrasonication time are described in the
Experimental section provided in the ESL.{

The XRD pattern of the Cs,PbBrs microcrystals (MCs) syn-
thesized with the assistance of ultrasonication for 30 min,
shown in Fig. 2a, exhibits strong diffraction peaks, which can
be well indexed to the rhombohedral crystal structure (JCPDS#
73-2478) with the R3¢ (167) phase group, lattice parameters a =
b=13.73 A and ¢ = 17.31 A, and corresponding angles a = f§ =
90° and y = 120°. In addition, no diffraction peaks attributed
to CsPbBr; are noticed in the XRD pattern of the synthesized
powder. Transmission electron microscopy (TEM) images of
the samples synthesized at 3, 10 and 30 min are shown in
Fig. S1a, b} and Fig. 2b, to understand the evolution of mor-
phology based on time. The sample synthesized at 3 min
exhibited micrometer sized cube-like CsPbBr; structure seen
in Fig. S1a,t and on further increasing the reaction time to
10 min, the particle shape was transformed to soft edges exhi-
biting the CsPbBr;/Cs,PbBrs matrix shown in Fig. S1bf (inset
shows the corresponding high-resolution TEM (HR-TEM)
images). Further increasing of the reaction time to 30 min
resulted in rhombohedral particles with sharp edges as shown
in Fig. 2b. As shown in Fig. 2¢, a large number of small par-
ticles with an average diameter of 10.28 nm are embedded on
the edges and outer surface of the Cs,PbBrs material. This
suggests the formation of the dual-phase CsPbBr;/Cs,PbBrg

This journal is © The Royal Society of Chemistry 2022
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Fig. 2 (a) Powder XRD pattern of the Cs,PbBrg microcrystals (MCs), (b
and c) TEM and (d) HR-TEM images of the Cs4PbBrg MCs embedded
with CsPbBrz nanocrystals (NCs).

MC structure, which is similar to the previously reported TEM
results for the Cs,PbBrs material.>**" The crystal lattice of
Cs,PbBrs comprises closely packed anions with cations fixed
at the interstitial positions; the smaller ionic radius of Pb**
(119 pm) compared with those of Cs" (169 pm) and Br~ (195
pm), as well as the existence of ionic dislocation and displace-
ment, is beneficial for the embedding of the CsPbBr; NCs into
the Cs,PbBrs MCs. Therefore, a high-resolution TEM
(HR-TEM) image was acquired to identify the coexistence of
these phases. Fig. 2d shows a HR-TEM image exhibiting two

Nanoscale, 2022,14,17789-17801 | 17791
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different sets of lattice fringes, which can be attributed to the
CsPbBr; and Cs,PbBrs phases. The region circled in green in
Fig. 2d exhibited a lattice spacing of 0.29 nm, which is consist-
ent with the (002) crystal plane, confirming the monoclinic
CsPbBr; structure. The region inside the yellow square in
Fig. 2d exhibits a lattice spacing of 0.39 nm, corresponding
to the (113) crystal plane, confirming the rhombohedral
Cs,PbBrg structure. Therefore, the HR-TEM results demon-
strate that CsPbBr; NCs are incorporated into the solid-rhom-
bohedral prism of the Cs,PbBrs structure, forming dual-phase
CsPbBr;/Cs,PbBrs MCs. The dual-phase CsPbBr;/Cs,PbBrg
MCs have a rhombohedral shape with a smooth outer surface
and almost sharp edges, as shown in the low- and high-magni-
fication field-emission scanning electron microscopy (FE-SEM)
images (Fig. S2a and b¥). The element mapping (cesium (Cs)
in green, lead (Pb) in blue, and bromide (Br) in yellow)
(Fig. S2c-f}) and energy-dispersive spectroscopy (EDS) profiles
(Fig. S2g¥) confirm the presence of Cs, Pb, and Br elements
in the dual-phase MCs, with atomic percentages of 35.45%,
9.68%, and 54.87%, respectively. The molar ratio of CsPbBr; to
Cs4PbBrg is determined to be approximately 1:8. Moreover,
the EDS maps provide the homogeneous distribution of the
elements in the dual-phase MCs, represented by colored dots.

The X-ray photoelectron spectroscopy (XPS) measurement
was performed for the pure CsPbBrz, dual-phase CsPbBr;/
Cs,PbBrg, and pure Cs,PbBrs MCs to quantify the number of
elements as well as characterize their chemical states, chemi-
cal shifts, and the bonding between them. Fig. 3a shows the
wide-scan XPS profiles of the emissive CsPbBr;, dual-phase
CsPbBr;/Cs,PbBrg, and non-emissive Cs,PbBrs MCs exhibiting
the presence of Cs 3d, Pb 4f, and Br 3d peaks in the syn-
thesized materials.

The high-resolution (HR) core-level spectra of the Cs 3d, Pb
4f, and Br 3d orbitals are shown in Fig. S3a, b, and Fig. 3b.
The HR-XPS spectra of the Cs 3d and Pb 4f orbitals of the
three materials displayed two distinct peaks assigned to 3ds),,
3dsp, and 4fs),, 4f;),, respectively, due to the spin-orbit split-
ting. The CsPbBr;/Cs,PbBrs XPS peaks are shifted to the
higher binding energies (BEs) compared to CsPbBr; and
Cs,PbBrg, indicating lower electron density (Fig. S3a and bf¥).

(a)[CsPbBr, (b)[csPbBr, Br3d

5 |CsPbBr,/Cs,PbBrg

Intensity (a.u.)
Cs3p3 O
Cs 4s
Intensity (a.u.)

T
200 0 71 70 69 68 67 66 65
Binding energy (eV)

Fig. 3 (a) Wide-scan X-ray photoelectron spectrum of emissive
CsPbBrs, dual-phase CsPbBrz/Cs4PbBrg and non-emissive Cs4PbBre. (b)
High-resolution X-ray photoelectron spectra of Br (3d).

17792 | Nanoscale, 2022, 14,17789-17801

View Article Online

Nanoscale

Fig. 3b shows the deconvoluted Gaussian fitting of the HR-XPS
profiles of Br 3d orbitals for emissive CsPbBr;, dual-phase
CsPbBr;/Cs,PbBrg, and non-emissive Cs,PbBrs. The Br 3d
peak of Cs,PbBrs exhibited a single broad peak with a BE of
67.86 €V, which is consistent with a previous report,>* while
the Br 3d peaks of CsPbBr; and CsPbBr;/Cs,PbBrg exhibited
two peaks, which are assigned to the 3ds/, and 3d;/,, doublets
due to the spin-orbit splitting. The doublets with BEs of 67.43
and 68.54 eV for CsPbBr; and 67.93 and 69.03 eV for CsPbBr;/
Cs,PbBrg are attributed to the 3ds, and 3d;, components,
respectively, of the Br atoms in the interior and on the outer
surface. Interestingly, from Fig. 3b, we noticed that the
Gaussian peak with a BE of 67.93 eV of CsPbBr;/Cs,PbBr; lies
very much close to 67.86 eV of Cs,PbBr, corresponding to the
Br atoms in the isolated [PbBre]*~ units of Cs,PbBr, MCs.*?
The Gaussian peak at 69.03 eV of CsPbBr;/Cs,PbBre, which is
close to 68.54 eV of CsPbBr;, corresponds to the Br atoms of
the CsBr impurities or corner-sharing [PbBre]*~ octahedra of
CsPbBr; when the CsPbBr; NCs are present in the green color-
emitting MCs.>*** Therefore, the XPS analysis supports the
existence of a small quantity of CsPbBr; impurities in the
Cs,PbBrg MCs. The Cs: Pb: Br compositional ratio determined
from the XPS measurements is consistent with the EDS result.
Therefore, based on the HR-TEM and XPS results, it is evident
that small impurities of CsPbBr; NCs are present in Cs,PbBrg
forming a dual-phase CsPbBr;/Cs,PbBr, microstructure.
Considering the structural results, we initially explored the
effect of the CsBr:PbBr, molar ratio on the structure and
optical properties of the dual-phase CsPbBr;/Cs,PbBrs MCs by
performing XRD, absorption, and PL measurements for
different CsBr : PbBr, molar ratios (1:1,2:1,4:1,and 6:1) in
a mixed solution of DMF-DMSO. For a CsBr:PbBr, ratio of
1:1, the CsPbBr; peaks observed in the XRD pattern
(Fig. S4at) can be well indexed to the JCPDS# 18-0364 standard
card (monoclinic CsPbBr;), and the strong absorption onset in
the green region (Fig. S4bf) suggests the formation of the
CsPbBr; structure. However, no emission is observed under
UV excitation (Fig. S4ct), indicating the bulk nature of the
formed compound.”** Therefore, as the CsBr:PbBr, molar
ratio is increased to 2:1, diffraction peaks attributed to
Cs,PbBrg are noticed alongside the CsPbBr; diffraction peaks,
suggesting CsPbBr; phase transformation to Cs,PbBre with
excess CsBr. Furthermore, the sample displays a moderately
strong band at 315 nm in the UV region and a strong onset
absorption at 528 nm with weak green luminescence under UV
light. As the CsBr: PbBr, molar ratio is increased to 4:1, no
traces of CsPbBr; are noticed in the XRD pattern (Fig. S4at).
Moreover, the appearance of a strong band at 315 nm and a
weak onset at 528 nm in the absorption spectrum suggests the
presence of small traces of CsPbBr; in the Cs PbBrg structure
(Fig. S4bt). The appearance of intense green luminescence
under UV excitation (Fig. S4ct) confirms the formation of the
dual-phase CsPbBr;/Cs,PbBrs MCs. Therefore, considering
this outcome, the CsBr:PbBr, molar ratio was further
increased to 6:1. In this case, the XRD pattern (Fig. S4aft)
shows no impurity peaks related to CsPbBrz; however, an

This journal is © The Royal Society of Chemistry 2022
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impurity peak attributable to CsBr (JCPDS# 05-0588) is noticed
at @ = 29.5°, which could be due to the excessive CsBr loading.
The absorption spectrum displays a strong band at 315 nm
and a further weakened onset at 528 nm in the absorption
spectrum, suggesting that small traces of CsPbBr; are still
present in the Cs,PbBr structure (Fig. S4bt). The PL spectrum
displays a slightly less intense green emission spectrum than
that observed for the 4 : 1 molar ratio (Fig. S4ct). The emission
intensity increases until the CsBr:PbBr, molar ratio is 4:1,
above which a slight decrease in the emission intensity is
noticed in the PL spectrum, which could be attributed to the
low Pb>* concentration. The photographs of the sample syn-
thesized at different CsBr : PbBr, molar ratios (=1:1,2:1,4:1,
and 6 : 1) under day and UV light are shown in Fig. S4d.t
Furthermore, to better understand the formation of the
dual-phase CsPbBr;/Cs,PbBrs MCs, CsBr and PbBr, in a molar
ratio of 0.4:0.1 were placed in a vial, and DMF (0.5 ml) and
DMSO (0.5 ml) solutions were added for the ultrasonication
treatment. Fig. 4a shows the photographs of the ultra-
sonication process and the as-synthesized samples under day-
light and UV light. CsBr is insoluble in DMF, whereas the solu-
bility of PbBr, is higher even at room temperature; as a result,
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the formation of CsPbBr; is accelerated. Since CsBr dissolves
easily in DMSO, it induces a higher concentration of Cs' ions,
which is beneficial for accelerating the phase transformation
from CsPbBr; to Cs,PbBrg during the synthesis of the dual-
phase CsPbBr;/Cs,PbBrg MCs.***> Here, we investigated the
different intermediate steps involved in the formation of the
dual-phase CsPbBr;/Cs,PbBrs MCs because the color change
in the precursor salts depends on the ultrasonication time.
The formation of the dual-phase CsPbBr;/Cs,PbBrs MCs with
the assistance of ultrasonication occurs in four stages: (i) inter-
facial conversion, (ii) formation of orange-colored CsPbBr;
MCs, (iii) formation of white-colored Cs,PbBrs MCs, and (iv)
formation of lemon-yellow colored dual-phase CsPbBr;/
Cs,PbBrs MCs. The photographs of the products exhibiting
different colors at different stages (time intervals ¢ = 0, 3, 10,
and 30 min) during ultrasonication are shown in Fig. 4b-e,
and changes in their structure are identified from the corres-
ponding XRD patterns (Fig. 4f). In the first stage (Fig. 4b),
when the DMF-DMSO solution is added to the CsBr and PbBr,
precursor salts, a CsPbBr; (orange color) layer is immediately
formed through the interfacial conversion of the undissolved
salts on the surface. In the second stage (Fig. 4c), when the

eveen 0 g
e90aveiy

ultrasonication Interfacial Microcrystallization  CsPbBr, dissolved Conversion of
processor and conversion of CsPbBr, and Cs,PbBr; to
as-synthesized (@t=0) (@t =3 min) microcrystallization ~ CsPbBry/Cs,PbBr;
samples under day of Cs,PbBrg (@ t =30 min)
and UV-light (@ t =10 min)
= LS 7 b P et i —t=3min
(f) I Cs4PbBrg I JCPDS# 73-2478 9 e
t=30 mi Pt
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=1 A i l 1 ‘LJ.I ad o SR ;
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(a) The photographs of the ultrasonication processor and as-synthesized samples taken during day and under UV light. Time-dependent

changes in the precursors (CsBr, and PbBr;) during the ultrasonication process and the formation mechanism of dual-phase CsPbBr3/Cs4PbBrg
microcrystals at different reaction time intervals (b) t = 0 min, (c) t = 3 min, (d) t = 10 min, and (e) t = 30 min, (f) XRD profiles of the final products at
different reaction time intervals t = 3, 10, and 30 min indexed to JCPDS# 05-0588 (CsBr), JCPDS# 18-0364 (CsPbBrz), and JCPDS# 73-2478
(Cs4PbBrg), and (g) PL profiles of the obtained products at t = 3, 10, and 30 min (inset photographs of their luminescence under UV light).
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salts are ultrasonicated for 3 min, the reactants form an inter-
mediate compound, ie., a Pb-rich phase of CsPbBr; (orange
color) in the clear DMF-DMSO solution. The spontaneous
nucleation and growth of CsPbBr; occur because of the higher
concentration of Pb*>* than Cs* in the solution due to the low
solubility of CsBr in DMF. Cs* + Pb®>" + 3Br~ — CsPbBr; is the
crystallization reaction. The XRD analysis of the orange
product shows that the diffraction peaks agree well with the
JCPDS# 18-0364 standard card. This shows that the structure
of the orange product is monoclinic CsPbBr; (Fig. 4f).
However, an impurity peak at around 29.5° that can be attribu-
ted to CsBr (JCPDS# 05-0588) is noticed due to the undissolved
CsBr. The third stage (Fig. 4d) is governed by the dissolution-
crystallization mechanism; when the reactants are ultrasoni-
cated for 10 min, with the depletion of Pb>* (i.e., PbBr,), the
gradual dissolution of Cs" (CsBr) occurs in the DMF-DMSO
solution. During this crystallization process, the reactive
amount of Cs" is larger than that of Pb**, which contributes to
the Cs™-rich reaction condition. Due to the high solubility of
the CsPbBr; crystals in DMSO, they begin to dissolve and react
with CsBr, resulting in the Cs,PbBrs MCs (white). The crystalli-
zation and dissolution processes are described by the follow-
ing equations: 4Cs* + Pb*>" + 6Br~ — Cs,PbBrg, and CsPbBr; —
Cs" + Pb>" + 3Br™, respectively. The XRD pattern of the white-
colored product obtained after ultrasonication for 30 min is in
good agreement with the JCPDS# 73-2478 standard card,
which corresponds to the Cs,PbBry structure. However, small
impurity peaks attributed to CsBr and CsPbBr; are present in
the XRD pattern of the white product (Fig. 4f). In the fourth
stage (10-30 min ultrasonication) (Fig. 4e), the Cs,PbBrs
matrix grows on the surface of the CsPbBr; NCs, which are pro-
duced at this stage. The XRD pattern of the product with
lemon yellow color obtained after ultrasonication for 30 min
matches well with the JCPDS# 73-2478 standard card, which
corresponds to the rhombohedral Cs,PbBrs structure.
However, no peaks attributable to CsPbBr; are present in the
XRD pattern of the final product (Fig. 4f). The dual-phase
CsPbBr;/Cs,PbBrs MCs are generated by the ripening of the
CsPbBr;/Cs,PbBrs matrix (lemon-yellow color). The PL trends
were also recorded for the products at time intervals of ¢ = 3,
10, and 30 min (Fig. 4f), and their photographs under UV light
are shown in Fig. 4g. After 3 min of the ultrasonication
process, the products do not show emission under UV exci-
tation. After 10 min, the products exhibit very weak emission
under UV excitation, which indicates the initial stage of the
formation of CsPbBr; within the Cs,PbBrs microstructure.
After 30 min of ultrasonication, the products yield an intense
green emission under UV light, suggesting the formation of a
stable dual-phase CsPbBr;/Cs,PbBrs microstructure.

To gain a clear insight into the photophysical properties of
the dual-phase CsPbBr;/Cs,PbBrs MCs prepared using the
ultrasonication process, the photophysical properties of the
CsPbBr;/Cs,PbBrs were compared with those of the pure
Cs,PbBry and CsPbBr; NCs (Fig. 5a-c) synthesized via the hot-
injection method. The pure Cs,PbBrs NCs display a strong
absorption peak in the deep-UV region at around 315 nm,
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Fig. 5 (a) Absorption and photoluminescence spectra of pure
Cs4PbBrg, (b) absorption, photoluminescence, and excitation spectra of
pure CsPbBrz, (c) absorption, photoluminescence, and excitation
spectra of dual-phase CsPbBrz/Cs;PbBrs, and (d) time-resolved photo-
luminescence decay curves of CsPbBrs;, and CsPbBr3/Cs4PbBrg at dexci =
365 nm.

which is assigned to the 'S, — *P; transition, and the PL spec-
trum exhibits a broad band in the range of 350-520 nm, with a
peak maximum at around 372 nm, which is assigned to the
Pb>":’P; — 'S, transition in the isolated [PbBrs]*~ octahedral
units in Cs,PbBre.*® However, no emission occurs in the green
region (Fig. 5a). The CsPbBr; NCs exhibits an absorption band
edge at 505 nm with an optical bandgap of 3.44 eV and a
strong PL band at 514 nm (Fig. 5b). The optical absorption, PL
excitation (PLE), and PL bands of the emissive Cs,PbBrs MCs
are shown in Fig. 5c. The optical absorption spectrum is com-
posed of a couple of absorption bands, one at 315 nm in the
UV region (which corresponds to the absorption band of pure
Cs4PbBrg) and the other one located at 510 nm in the green
region (which corresponds to the absorption band of pure
CsPbBr;). The strong peak at 315 nm is due to the optical tran-
sitions between the localized states within the decoupled
[PbBrg]*~ octahedral units of Cs,PbBrg (i.e., it arises from the
'Sy — *P, transition of the Pb*" centers).*>*® The other band at
510 nm matches the band at 505 nm of CsPbBr;. Additionally,
a strong PL band is observed at around 522 nm, which is
similar to that of CsPbBr; (@514 nm) and is absent in the case
of pure Cs,PbBrs. The small red-shift in the absorption and PL
spectra of dual-phase CsPbBr;/Cs,PbBrs MCs but not in those
of CsPbBr; is attributed to the quantum size effect caused by
the increase of the particle size.*”*® It is noteworthy to
mention that, shell growth reduces the amount of surface dan-
gling bonds, which enhances fluorescence intensity; however,
this does not always result in a blue shift of the
luminescence.*®*® Furthermore, the overlap between the
absorption spectrum of the pure Cs,PbBrs and the PL spec-
trum of CsPbBr; provides evidence for the possibility of energy
transfer from Cs,PbBre to CsPbBr; in the dual-phase CsPbBr;/
Cs,PbBrg MCs (Fig. S5at). Therefore, upon monitoring the
CsPbBr;/Cs,PbBrg with CsPbBr; emission, the resultant PLE
spectrum exhibits excitation features of pure Cs,PbBrs and
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Pb>" ions. This indicates that the green PL observed in the
dual-phase CsPbBr;/Cs,PbBrs MCs is due to the embedded
CsPbBr; NCs (Fig. S5bf). The above results show that the
green PL and absorption bands observed in the dual-phase
CsPbBr;/Cs,PbBrs MCs originate from the coexistence of the
Cs,PbBrg and CsPbBr; structures.

The above speculation is further supported by analyzing the
absorption and PLE spectra of CsPbBr;/Cs,PbBr, (Fig. 5¢). For
this purpose, the absorption spectrum is classified into three
regions labelled as I, II, and III. In the absorption spectrum,
regions I and II represent the intrinsic absorption of Cs,PbBrg
in the absorption spectrum, while region III necessitates
further clarification because it deviates from the Urbach
tail.>">> However, the steep absorption in region II suggests
that the mid-bandgap states are suppressed in Cs,;PbBre.
Despite this, the sample still exhibits a noticeable absorption
onset in the green region, which appears too strong to be
caused by the suppressed intraband states, as shown in the
figure (Fig. 5c). Based on this finding, the origin of the bright
green luminescence can be decoupled from the intraband
defect states. Furthermore, the absorption and emission
spectra trends are consistent with each other in region III; they
display enhanced absorption, which leads to an intensified
PLE signal. In contrast to region III, the absorption and PLE
signals in regions I and II are symmetric approximately at the
same wavelengths (~297 nm and ~315 nm), displaying a wea-
kened absorption, which results in an enhanced PLE signal.
The dip in the absorption signals indicates the absence of
states to accommodate electrons in Cs,PbBrg. Therefore, when
Cs4PbBr; is excited with photons in this region, the PL inten-
sity remains the same due to weak absorption; however, a
sharp green PL is observed in the green region, contradicting
the above conjecture. Furthermore, the characteristic sharp
absorption onset at around 510 nm in the dual-phase
CsPbBr;/Cs,PbBrs MCs (Fig. 5c¢) contradicts the long Urbach
tail reported by Wang et al., ruling out the possibility that the
green PL originates from intraband defect-states of the Br
vacancies.”® Moreover, the band edge located at 510 nm in
CsPbBr;/Cs,PbBry suggests a direct exciton recombination PL.
If defect-related states exist in the gap between the valence and
conduction bands, they will capture the electrons from the
conduction band and generate defect-related emissions. The
fact that the emission band measured in the range of
450-650 nm under different excitation wavelengths in the
range of 350-500 nm (Fig. S61) is independent of position and
shape implies the absence of defect-related emitting states in
the synthesized MCs. Therefore, the absorption and PLE ana-
lyses support the theory of the green PL originating from small
CsPbBr; impurities embedded in Cs,PbBrs. These photo-
physical properties confirm that CsPbBr; NCs impurities are
present in the Cs,PbBrg MCs, enabling them to exhibit a
strong green luminescence. Fig. 5d shows the time-resolved PL
spectra of the CsPbBr; and fits the time-resolved PL profiles:

t t
I(t) = Ay exp 4 + A, exp -4 )
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where I is the PL intensity at time (¢), 7; and 7, are the short
(fast) and long (slow) decay component lifetimes, respectively,
and A; and A, are the amplitudes (fitting parameters). The
average lifetime is evaluated from rg = (A171” + Ay7,7)/(Ay7y +
A,7,) (Table S1t). The bi-exponential fitting gives a short (z)
lifetime of 6.47 ns and a longer (z,) lifetime of 31.31 ns. Since
the dual-phase CsPbBr;/Cs,PbBrs behaves as a core/shell
material, from the decay components presented in Table S1,f
the shorter (7;) decay component, which can be attributed to
interior CsPbBr; state recombination, and the longer (z,) decay
component, which can be attributed to surface defects radia-
tive recombination (surface passivation of CsPbBr; NCs) can
be understood.**** The contribution of the short (z,) and long
(72) components to the total emission decay profile was calcu-
lated using the amplitudes A; and A, for the dual-phase
CsPbBr3;/Cs,PbBrs, MCs. The contribution percentage of a
shorter lifetime (z,) 