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While hydrogen plays an ever-increasing role in modern society, nature has utilized hydrogen since
a very long time as an energy carrier and storage molecule. Among the enzymatic systems that
metabolise hydrogen, [FeFe]-hydrogenases are one of the most powerful systems to perform this
conversion. In this light, we will herein present an overview on developments in [FeFe]-hydrogenase
research with a strong focus on synthetic mimics and their application within the native enzymatic
environment. This review spans from the biological assembly of the natural enzyme and the highly
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| Introduction

Hydrogen plays an ever-increasing role in our modern society
and is anticipated to serve as a green and sustainable energy
carrier as well as storage in future. While already produced on
a large scale, current production of hydrogen is industrially
realized by reforming of fossil fuels. Notably, only a small
fraction is currently generated by water splitting.
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platforms as well as their electrochemical behaviour.

Contrary to the industrial generation of hydrogen and the
political as well as societal demands to use more hydrogen,
nature has almost perfected the handling of this small molecule.
In a small number of eukaryotes (green algae) but more impor-
tantly in specialised anaerobe microorganisms (bacteria as well as
archaea) hydrogen can act as the primary energy carrier. Among
the enzymes that allow for hydrogen transformation, [FeFe]-
hydrogenases are the most competent. The active site of
these enzymes commonly comprises a hexanuclear Fe-cofactor,
consisting of a [4Fe-4S]- and a [2Fe-2S]-cluster. The most
commonly investigated [FeFe]-hydrogenases are from Clostridium
pasteurianum (Cp), Desulfovibrio desulfuricans (Dd) and Chlamy-
domonas reinhardtii (Cr)."”> Notably, these enzymes can be
regarded as “fuel and electrolysis cells” and allow for the
reversible interchange of protons to hydrogen with a turnover
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frequency of up to over 10 000 pmol (H,) min mg~ " (enzyme)
under mild conditions (—0.413 V vs. standard hydrogen
electrode, pH 7). It is thus very plausible that this enzyme
system received increased attention and scientists all over the
world have taken the active centres of hydrogenases as a
template to design mimetics which display a comparable
activity for the hydrogen evolution reaction. We will herein
attempt to provide a complete picture on developments in this
field in the last two decades since the structure of the active
site of [FeFe]-hydrogenases was revealed. Starting out from
recent advances in artificial maturation of fully functional
enzymes, we will continue in describing the reactivity of the
natural H-cluster. Going further, we will present synthetic
pathways towards [FeFe]-hydrogenase mimics, show the
plentiful chemical alterations and their impact on the struc-
ture as well as their electrochemical properties. As a subject of
growing interest, our discussion will furthermore shed light
on the possibility of photocatalytic hydrogen evolution using
hydrogenase mimics.
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Part A: the chemistry of
[FeFe]-hydrogenases

Il Maturation of natural and
semi-artificial [FeFe]-hydrogenases
2.1 Native in vivo maturation

The biosynthesis and assembly of the complete active site of
[FeFe]-hydrogenases, called H-cluster, requires the interaction
of several maturase proteins HydG, HydE and HydF (see Fig. 1
for an overview). Its whole structure is rather uncommon in
biology and consist of two individual iron-sulphur clusters,
which are linked by a cysteine sidechain. The first is a [4Fe-4S]-
cluster, herein abbreviated with [4Fe]y, which is responsible for
electron delivery and serves as electron reservoir by switching
between an oxidized and reduced state during the catalytic
cycle. The second iron-sulphur cluster is a [2Fe-2S]-cluster. This
subsite will be abbreviated [2Fe]y and represents the actual
active centre, being the site of catalytic turnover. Depending on
the position relative to [4Fe]y, the single iron atoms are termed
proximal iron (Fe,) and distal iron (Feq), respectively. Fe, is
octahedrally coordinated by the cysteine’s thiolate, a terminal
CO and CN™ ligand each, two bridging sulphides that form the
[2Fe-2S]-cluster and an additional p-CO ligand, which is in a
bridging binding mode between both iron atoms. Feq shows
identical ligands but lacks the thiolate of the cysteine therefore
showing a square-pyramidal coordination sphere. At the open
binding site substrates, e.g. H' in the Hpyq state and H, in the
Hox—H, state, as well as inhibiting diatomic gases like CO (Hox-
CO) and O, (Hx—0,) may bind. [2Fe]y is further coordinated by
a secondary amine via the bridging sulphides, why this ligand
is mostly called adt (azadithiolate, precisely: bis(sulfido-
methyl)amine). The whole [2Fe]y cluster, bearing the adt
ligand, is therefore casually called ADT. For a complete graphical
representation of the H-cluster see Fig. 1, red box.
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Fig.1 Overview of biological maturase machinery of [FeFe]-hydrogenases. White: N-terminal radical SAM functionality in HydG to initiate the
degradation of tyrosine. Grey: reactions performed by HydG yielding a Fe;S,(CO)4(CN), core or a FeS(CO),CN synthon. Yellow: putative PLP dependent
conversion of serine by serine dehydratase and serine hydroxymethyltransferase to ammonia and 5,10-methylene tetrahydrofolate. Blue: putative
reactivity of HydE. Green: possible substrates of HydF and assembled [2Fe]y-precursor on HydF. Red: completely maturated HydA. PDB entries: HydA:

4XDC, apo-HydF: 3QQ5.2.

In 2010, Mulder and coworkers showed that without HydG,
HydE and HydF, the H-cluster contains only the [4Fe]y-cluster
(apo-HydA) leading to a change of the quaternary structure of
the enzyme. This change results in a positively charged channel
leading directly to the active centre, which is used to incorpo-
rate [2Fe]y and is closed in the presence of the complete
H-cluster.* HydG is part of the radical S-adenosyl-1-methionine
(SAM) enzyme superfamily and accordingly has the usual
reactivity:> SAM chelates an iron atom of a [4Fe-4S]"-cluster
via the carboxy and amine function of methionine. The
remaining iron atoms are bound to the protein environment
by cysteine residues. The Fe-S cluster induces a reductive
cleavage of the bound SAM by an inner-sphere electron transfer,
resulting in a highly reactive 5’-deoxyadenosyl radical (5'-DA*) and
methionine remains on the now oxidised [4Fe-4S]**-cluster.
5'-DA* abstracts a hydrogen radical of an enzyme specific
substrate, forming 5-DAH and enabling various downstream
reactions. In the case of HydG, 5'-DA*® abstracts one of the
hydrogens of a tyrosine amine group.® The resulting tyrosine
radical (Tyr*) undergoes a homolytic bond cleavage between

1670 | Chem. Soc. Rev, 2021, 50, 16681784

C, and Cg and decomposes into a 4-hydroxybenzyl radical
(4-HOB*) and dehydroglycine (DHG). DHG can subsequently
undergo a base-assisted decomposition to form CO as well as
CN™ and thus serves as a potential source of the biologically
unusual ligands for [2Fe]y.””®

Besides the N-terminal radical SAM functionality, HydG
has another Fe-S cluster in C-terminal position: An auxiliary
[5Fe-5S]-cluster, which was investigated by EPR spectroscopy
and X-ray crystallography.'® The g-values of 9.5, 4.7, 4.1, and
3.7, which are unusual for biological Fe-S clusters, represent an
S = 5/2 spin. This unusual observation is caused by a ferro-
magnetic coupling between a [4Fe-4S]'-cluster (S = 1/2) and
an additional high-spin Fe** (S = 2). Both are connected by a
bridging sulphide of a nonproteinic cysteine (Cys). The addi-
tional iron is further coordinated by a histidine (His) residue
and two water molecules.”

The CO and CN ligands obtained by the radical SAM
functionality first substitute the aqua ligands of the additional
iron resulting in a [4Fe-4S][(Cys)Fe(CO)(CN)(His)]” complex.
Subsequently, histidine can also be exchanged by a further CO

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Synthesis of Fe,(adt)(CO)e (2) and Fe,(adt)(CO)4(CN), (3) presented by Li and Rauchfuss in 2002.

with the remaining second cyanide binding to the [4Fe-4S]"-
cluster and liberating the [(Cys)Fe(CO),(CN)]~ complex which
serves as a synthon for [2Fe]y. This cyanide-induced release
mechanism explains the 4:2 CO:CN ratio of the putative
[2Fe]y-precursor. Four tyrosine molecules are required to
assemble the putative [2Fe]y-precursor and converted into four
CO and four CN ™, two of which are cyanides responsible for the
release of the synthon [(Cys)Fe(CO),(CN)]~.%"

The role of the synthon has recently been further investi-
gated by Britt and Rauchfuss.'? Therein, a biomimetic synthon
[FeI,(CO);CN]~ together with cysteine was added to a HydA
maturation solution consisting of apo-HydA, HydE and HydF
only. In the absence of HydG, this mixture was able to
completely activate HydA. Furthermore, with *C and "N labels
and by using selenocysteine, cysteine was unequivocally shown
to be the source of the bridging sulphides within the [2Fe-2S]-
cluster but does not provide the NH(CH,), bridge."*

Like HydG, HydE is an enzyme of the radical SAM family
with two [4Fe-4S]-clusters, as demonstrated by EPR spectro-
scopy,"” or one [4Fe-4S]- and one [2Fe-2S]-cluster, according to
X-ray studies."* Notably, due to the one-week duration of crystal
growth in the X-ray study conducted by Fontecilla-Camps, a
degradation of the C-terminal [4Fe-4S]-cluster may have
occurred and potentially results in the observed [2Fe-2S]-
cluster. However, the [4Fe-4S]-cluster can be removed by muta-
tion without loss of maturase-specific activity and is therefore
considered functionally irrelevant for in vivo maturation.**

Notably, the role of HydE in the HydA maturase machinery
has not yet been finally clarified.” However, due to its C-S bond
formation activity' it is assumed that the enzyme is involved
in the biosynthesis of the adt ligand." Serine has recently
been identified as the source of the NH(CH,), moiety. More
specifically, "*C and "N labels in combination with EPR,
HYSCORE- and ENDOR spectroscopy showed that the NH,
and B-CH, groups are incorporated into the adt bridge.'®
It could, however, not be clarified if a further substrate is
involved, since possibly only one of the CH, groups is derived
from serine, or whether two serine molecules are needed for the
complete construction of the bridge. HydE might therefore use
serine to assemble the adt bridge. Here, the serine dehydratase
and serine hydroxymethyltransferase were also considered as
potentially involved enzymes that convert serine to pyruvate
and NH," and subsequently with tetrahydrofolate (Hyfolate) to
glycine and 5,10-methylene-H,folate, respectively. Glycine and
pyruvate were excluded as possible building blocks of the
H-cluster.">'® However, NH,;" and 5,10-methylene-H,folate,
a biological methyl group donor, came into consideration as
potential intermediates. With NH," and 5,10-methylene-H,folate as
reagents, the adt moiety could potentially be introduced into the

This journal is © The Royal Society of Chemistry 2021

precursor, [Fe,S,(CO),(CN),]>”, comparable to the artificial
establishment of the [2Fe]y-cluster by Li and Rauchfuss in
2002 (Fig. 2)."”

Furthermore, apo-HydA is activated by HydF, if the latter was
expressed together with HydE and HydG.'®'® As EPR and IR
spectroscopy as well as XRD and XAS studies have shown, HydF
already contains a [2Fe-2S]-cluster alike [2Fe]y. Thus, this
maturase enzyme is at the end of the activation chain and
passes along the almost completed cluster to HydA.”® HydF
serves as a scaffold for the iron-sulphur synthon, which was
inferred from co-purification of HydE and HydG with HydF and
confirmed in vitro through a combination of surface plasmon
resonance and co-purification experiments using recombinant
proteins of C. acetobutylicum.'®>'~>°

2.2 In vitro maturation with artificial H-clusters

In 2013, the groups of Happe, Lubitz and Fontecave showed
that chemically synthesised [2Fe-2S]-models with modified
bridging dithiols can replace the native [2Fe]y; and were
successfully incorporated into the apo-enzyme (Fig. 3).>%%’
In contrast to the biological process (see above), maturation
was achieved utilising a mixture of apo-CrHydAl and HydF
from T. maritima, which was first incubated with the synthetic
cluster [Fe,(SCH,XCH,S) (CO)4(CN),]*” (X = NH (adt), CH,
(pdt), O (odt)). The successful incorporation into HydAl of
Chlamydomonas reinhardtii was demonstrated by the specific
CO and CN™ bands in the enzyme’s IR spectrum. Notably, only
the variant with X = NH revealed enzyme-specific hydrogen
evolution in the presence of methyl viologen and sodium
dithionite at 37 °C.?” With this study, two major uncertainties
in [FeFe]-hydrogenases were finally resolved. First, X equals NH
in the native [FeFe]-hydrogenase. Previous XRD studies were
only capable to narrow down the options to adt, pdt and odt
due to the identical electron count.®*® Thus, early suggestions
by Fontecilla and coworkers from 2001 and results obtained
from "“N-HYSCORE measurements by the group of Lubitz in
2009 were once and for all proven right.”>*® Second, it was
shown that although the [FeFe]-hydrogenases were obtained
from different organisms, 7. maritima and C. reinhardtii, the
maturase enzymes are identical in function.

Even more remarkable - the very same groups showed that
CrHydA1 can be activated without the use of the maturase HydF
and is spectroscopically indistinguishable from naturally produced
enzymes.”® Herein, the apo-hydrogenase itself is incubated with
the synthetic [2Fe]y-precursor (Fig. 4).

This completely artificial process further simplifies the
complicated biological maturation process and enables the
production and isolation of significantly larger amounts of
mature enzymes.”?® Especially for spectroscopic applications,
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Fig. 4 Schematic representation of the artificial maturation of HydA. PDB entries: Apo-HydA: 4XDD, HydA: 4XDC.

large quantities of high-purity and fully matured enzymes are
required. The development of semi-artificial hydrogenases
therefore enabled the deciphering of the catalytic mechanism
and mode of action of [FeFe]-hydrogenases and thus the
possibility to gain information for a new generation of bio-
mimetic [FeFe]-hydrogenase catalysts.

Using this artificial approach, however, only 14 different
non-native diiron sites were tested so far for their ability to
mature apo-HydA1 from C. reinhardtii.*" Although mimics of
the binuclear subcluster with an altered bridging dithiolate
ligand (propanedithiolate, oxadithiolate, thiadithiolate, N-methyl-
azadithiolate (adt™®), dimethyl-azadithiolate) and three variants
containing only one CN™ ligand were successfully inserted into
the apo-enzyme, the activity of those semi-artificial enzymes was
below 1% of the native enzyme. In all cases, the insertion process
was followed by IR-spectroscopy and the incorporation of the
[2Fe]y-mimics is visible by significant line narrowing of the
CO/CN" bands compared to measurements of the sole cluster-
mimics in solution. This narrowing indicates a loss of vibra-
tional freedom of the ligands and also implies interaction with
the protein backbone. This effect was likewise observed for
apo-HydA1 maturated with adt-loaded HydF or solely adt.>®*’
Upon isolation of the corresponding adt maturated enzyme,
multiple signals in the CO region are present indicating a mix
of Hox, Hrea’y Hred) Hsrea and minor amounts of Hyyg. Contrary,
enzymes maturated with odt, adt™® and sdt show only H,, and
odt is present in Hpyq directly indicating varied H-cluster
reactivities of the respective semi-artificial enzymes.

Using the same approach, artificial active sites that were
modified at the metal or chalcogenide positions were intro-
duced to apo-CrHydA1 and apo-Cp1.>** In 2017, Kertess et al.
presented the semi-artificial enzymes CrHydA1 and Cpl that
were maturated with the selenium derivative of the native
cluster, ADSe (4). Remarkably, these enzymes showed up to
native-like activity regarding proton reduction, but less stability

1672 | Chem. Soc. Rev., 2021, 50, 1668—-1784

against O,-degradation and cannibalisation. Thus, significant
amounts of He,-CO were found directly after maturation, which
influenced the activity in F-cluster bearing CplI (see Section 3.9)
more than in HydA1.??

Later in 2018, Sommer et al. presented a hybrid-enzyme with
a [RuRu]-analogue of ADT, which was investigated due to the
interesting reactivity of the noble metal towards hydrogen. Both
versions, [Ru,(adt)(CO)4(CN),]*~ (5) and the protonated species
bearing a bridging hydride (5-pH) were found to be in the same
state, namely Hyyg, after incorporation into the protein
environment.*® Especially the isomerization of the hydride
shows the remarkable influence of the protein backbone on
the structure of the diiron subsite, stabilizing the thermodyna-
mically less stable terminal hydride (Fig. 5).

2.3 In vivo maturation with artificial H-clusters

A more recent approach regarding [FeFe]-hydrogenase matura-
tion and, especially, its modification and in vivo investigation
was presented by Berggren and coworkers in 2017.°* The
researches transferred the results of the in vitro maturation
experiments (Section 2.2) to an in vivo system consisting of
apo-CrHydA1 that was heterologously overexpressed in E. coli
(Fig. 6). In opposition to former experiments, the hydrogenase
was not extracted from its host but left inside the living cells.
Since E. coli lacks the maturation machinery HydEFG, the
hydrogenases inside the cells remain inactive. However, in
analogy to the in vitro experiments, addition of 1 mg 3 to the
cell cultures (O.D. = 0.2 + 0.02) resulted in a 35- to 40-fold
increase over the background H, evolution activity, indicating
successful activation of the apo-enzymes.** The described
results represent the first intracellular activation of an apo-
enzyme not including improved cellular import functions and
opens up the field for in vivo spectroscopic investigation
of [FeFe]-hydrogenases by e.g. EPR and FTIR.>>*® Even more
remarkable is the follow-up study as a joint research of the

This journal is © The Royal Society of Chemistry 2021
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Fig. 6 Graphical representation of the artificial in vivo maturation of bacteria e.g. E. coli.

groups of Berggren and Lindblad, who targeted the modification
of the photoautotrophic cyanobacterium Synechocystis PCC 6803.
This bacterium harbours a bidirectional [NiFe]-hydrogenase
for energy household. However, for biotechnological energy
applications, high rates of hydrogen evolution are wanted. Here,
the [NiFe]-hydrogenase is by far surpassed by [FeFe]-hydrogenases.
Therefore, the hydrogenase CrHydA1l was expressed in a hydro-
genase deficient mutant of Synechocystis PCC 6803 (4hox) as well as
in the wild type (WT) organism, containing the native [NiFe]- and
the additional [FeFe]-hydrogenase. Upon addition of compound 3,
Synechocystis Ahox CrHydA1 and WT-CrHydA1 showed a hydrogen
evolution activity of approx. 62 and 48 (nmol O.D.”' mL™"),
respectively, whereas the organisms without 3 showed almost zero
activity (Synechocystis Ahox CrHydA1) and 17 (nmol O.D.”" mL ™)
for WT-CrHydA1. This nice work of bio-engineering underlines that
the hydrogen production rates of Synechocystis can be increased by
enzyme optimization and opens a new field of artificially improved
enzymes for biotechnological hydrogen production.®”

lIl Reactivity of the H-cluster within
the enzyme

The hydrogenase activity of green algae was investigated already
80 years ago by Gaffron and coworkers, who found S. obliguus to
metabolize H, upon reduction of CO, in photosynthesis.**"°
Among all algae, C. reinhardtii with an in vitro activity of 200 nmol
H, (ug Cr a h)™' bears by far the most investigated [FeFe]-
hydrogenase HydA1.“>™** This hydrogenase contains solely one
Fe-S cluster assembly, called H-cluster, and no additional acces-
sory Fe-S cluster for e.g. electron transport as in hydrogenases
from D. desulfuricans and C. pasteurianum.***” Its simplicity thus
makes HydAl most convenient for researching the molecular
proceedings of H, turnover during catalysis.

The H-cluster consists of a [4Fe-4S]- and a [2Fe-2S]-cluster,
which are linked and electronically coupled via a cysteinyl

This journal is © The Royal Society of Chemistry 2021

thiolate.’*?%%%4% The cubic iron cluster, embedded into the

protein by three additional cysteine residues, is part of the
electron chain and, more importantly, is the midpoint of a
proton coupled electron transfer (PCET) at the beginning of the
catalytic cycle.’®> The diiron subsite conducts the catalytic
proton reduction and is the focal point on mimics of the [FeFe]-
hydrogenases as we will discuss in Section IV. The diiron site
consists of a proximal iron that has an octahedral ligand
environment and a distal iron in a square pyramidal coordina-
tion with an open binding site for substrates (H'/H,) and
exogenous ligands such as CO and O, (Fig. 8). This geometry
of the H-cluster in its Hy, state is called ‘““rotated state”, which
refers to the rotation of the distal iron relative to the C,,
symmetric Fe,S,(CO)s core. This special geometry opens a
vacant binding site for catalytic turnover and is a unique
feature of this active site and was a dominant motif for the
design of H-cluster mimics for hydrogen evolution (Fig. 8,
Section 5.1).>

We now want to review the reactivity of the H-cluster within
the native protein environment. This will include the natural
[FeFe]-hydrogenase HydAl from C. reinhardtii, but also
hydrogenases from other organisms like C. pasteurianum,
D. desulfuricans, the sensory hydrogenase HydS from T. maritima
as well as the half-synthetically obtained hydrogenases. Besides
different organisms, we will especially highlight the man-made
alterations within the [FeFe]-hydrogenases, ranging from
different [2Fe-2S]-cluster to mutants, for spectroscopic or
stability reasons.

3.1 ADT-bridged [FeFe]-hydrogenase from C. reinhardtii

CrHydA1(ADT) is the active enzyme version of the [FeFe]-
hydrogenase from C. reinhardtii (therefore denoted Cr), in
which all intermediates of the catalytic cycle are generally
available. Note that more than ten different redox states of
the enzyme are nowadays accessible, in which protonation and
reduction may occur at different moieties of the H-cluster
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during catalysis (Fig. 7). As shown in the experiments on
CrHydA1(ADT) with NaDT (sodium dithionite) or H,, selective
enrichment of the intermediate states is challenging, often
resulting in blurred spectroscopic results, which impede the
exact determination of the nature of each redox state. Using
difference spectra is one potential option to handle this problem
in IR-spectroscopy. However, for this approach specific equip-
ment is required, which is not accessible in all laboratories.
Therefore, hybrid enzymes, having a bridgehead moiety that
differs from adt, as well as mutants providing selectively
exchanged amino acids within the peptide backbone are
promising options to influence the activity of the enzyme and
therefore the accessibility of the H-clusters’ redox states. In the
next section, we therefore discuss those modifications and
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highlight the differences towards CrHydA1(ADT) and their
opportunities for spectroscopic applications.

3.2 Reactivity of CrHydA1(ADT) towards oxidising conditions

H,, is the oxidised resting state of the H-cluster and therefore
starting point of most conducted experiments. This state can be
enriched by treating the enzyme with mildly oxidising reagents
such as thionine buffered at pH 8 (E° = 60 mV vs. SHE at pH 7).
However, due to cannibalisation under these conditions,
a mixture of Ho, and He-CO (Section 3.3) is achieved.’*>*
The cannibalisation process is based on the degradation of a
fraction of the enzyme sample under influence of e.g. light or
oxygen.”**®>” Thereby, the released CO binds to the intact
H-cluster from a non-degraded enzyme and blocks the active site
while forming He,-CO.>® Therefore, Hy, can be better enriched by
auto-oxidation under inert conditions (e.g. N,), which results in a
near quantitative enrichment of this state.>>>°

The electronic structure of the enzymes resting state Hoy
from CrHydA1l was investigated by different techniques. EPR
spectroscopy (Table 1) on native CrHydA1l which was not
treated with any oxidant or reductant (termed “as-isolated”)
shows a rhombic 2.1 signal (g =2.100, 2.037, 1.996) and an axial
2.05 signal (g = 2.052, 2.007).>>°”% The former signal resembles
the EPR signal of H,, that is known from measurements on
hydrogenases from D. desulfuricans (DAH).*>** The axial signal
accounts for the presence of H,,-CO in the as-isolated samples,
likewise known from DdH,*®°*%® and is absent in auto-oxidised
samples.”> ENDOR-spectroscopy (ENDOR = electron nuclear
double resonance) on native DdH in combination with
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Table 1 EPR values of known H-cluster states in different organisms

View Article Online

Chem Soc Rev

CrHydA1 DdH Cpl Cpll TmHydS

state g-Value Ref. g-Value Ref. g-Value Ref. g-Value Ref. g-Value Ref.
Hox 2.10, 2.037, 1.996 60  2.100, 2.040,1,999 49  2.10, 2.04,2.00 49  2.078,2.027,1.999 49  2.113, 2.045,2.001 61
H,-CO 2.052, 2.007 60  2.065,2.007,2.001 49  2.07,2.01,2.01 49  2.032,2.017,1.997 49  2.045, 2.918, 2.007 61
Hieq Silent Silent Silent Silent Silent

Hgea  2.076,1.943, 1.868 60 ¢ a a a

Heq Silent Silent Silent Silent Silent

Hpya Broad signal centred 55 @ @ @ @

between 2.3 and 2.07
¢ Not reported.

Mossbauer spectroscopy on hydrogenase II from C. pasteurianum
(Cp)*® concluded that Hy, is best described as a mixed-valent
paramagnetic [4Fe-4S]**~[Fe,''Fe4*"] complex with the net spin
density on the proximal iron atom.”>*° Due to close similarity
of EPR signals from DdH and CrHydA1, H,, was assigned to a
[4Fe-4S]*'[Fe,''Feq”'] state.®* The development of artificial
H-cluster maturation (Section 2.2) enabled access to higher
amounts of pure CrHydAl, which is especially advantageous
for spectroscopic applications and crystallisation experiments.
Likewise, the site-selective labelling with *’Fe, i.e. labelling either
[4Fe]y; or [2Fe]y, became possible with the in vitro approach for
the first time. Based on this artificially maturated CrHydA1, recent
studies using site-selective X-ray absorption and emission spectro-
scopy (XAE-spectroscopy) came to opposing results as compared
to ENDOR spectroscopy and suggested a [4Fe-4S]'-[Fe,*"Feq'"]
cluster with the net spin density at the distal instead of the
proximal iron.** As a result, XAE- and EPR spectroscopy remain
inconclusive regarding the oxidation states of iron within the
diiron site. However, it cannot be concluded, if this discrepancy is
a result of technical insufficiencies or is even related to the
different enzymes used (DdH and Cpl/II exhibit additional
Fe-clusters besides the H-cluster that might account for the
inconclusive results).

Since the ligand environment of H,, is build up from three
CO and two CN~ ligands,>?® IR spectroscopy is yet another
strong method for its characterisation and the exact position of
ligand vibrations is very sensitive to the electron density and
cluster geometry.”®*”>%% Typically, vibrations of terminally
bound carbonyl ligands are found between 2020 cm ' and
1940 cm™ ', whereas their bridging relatives show less intense
signals between 1850 cm ' and 1750 cm '. In addition,
terminally bound cyanide ligands characteristically reveal
bands between 2120 em™" and 2020 em ™.

For example, Ho,x has a very characteristic IR-spectrum
revealing two cyanide bands at 2088 cm ' and 2072 cm?,
two terminal CO bands at 1964 cm ' and 1940 cm™ ' and the
bridging carbonyl at 1800 cm™'.%>°%%%-64%¢ 1 2016, Stripp and
coworkers presented a method to selectively label the H-cluster
with *CO by controlling the hydration of a protein film and
exposing it to "*CO gas under light irradiation.>**® This enabled
the CO band assignment to the specific ligands. Furthermore,
DFT calculations on all isotope labelled H-cluster variants further
suggested largely uncoupled CO vibrations of the Fe-Fe bridging
carbonyl (u-CO, band o, 1800 cm ™ ') as well as the terminal ligands

This journal is © The Royal Society of Chemistry 2021
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Fig. 9 Conceivable isomers of Hox. Out of two structural isomers of the
active-ready oxidised state, “"Hoxa" represents the crystallized geometry
while "Hoxb” is characterized by a partly rotated, distal CN™ ligand.
Reprinted from ref. 67 with permission from the American Chemical
Society, Copyright 2019.

at the distal (4CO, band B, 1940 cm ") and proximal (pCO, band v,
1964 cm™ ') iron atoms.>

While the experimentally supported DFT-model and the
observed structure from protein crystallography are well in
line,>*® a second structure with an apical CN~ was likewise
found to be a suitable state (Fig. 9, Hycb).?>®” However, while
H,xa was obtained based on XRD measurements at low tem-
perature (approx. 80 K),>?® the structure Hocb stems from a DFT
calculation/IR spectra analysis conducted at room temperature.
Thus, Hexb might be a higher energy state of H,. While the
reason for this discrepancy is not known, H-cluster flexibility
might be an important feature in order to stabilise redox states
with additional ligands at the distal iron (i.e. Hox-CO and Hpyaq,
Section 3.5).°7°® The exact assignment of the spectroscopic
bands furthermore enabled insight into the electronic structure
as well and allowed to resolve the discrepancy from EPR and
XAE-spectroscopy, which remained inconclusive regarding the
oxidation states of the diiron site. According to IR-spectroscopy,
the [Fe,”'Feq'"] configuration should be favoured, since the CO
band of the proximal ligand is shifted to higher wavenumbers
compared to the signal of 4CO thus supporting the EPR analysis
and hints towards a decreased electron density at the proximal
iron centre.

3.3 Reactivity of CrHydA1(ADT) towards CO

As mentioned in the previous section, cannibalisation by treat-
ment with thionine leads to He-CO besides Hoy. Intentionally,
this state can be enriched by treatment of Hex with exogenous
CO gas.®”*® Hammerstrom, Lubitz and coworkers reported that
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the additional carbonyl within H,,-CO can be released by a
laser pulse with an energy of 355 nm. Using time-resolved FTIR
spectroscopy, a half-life of ¢;,, =13 £ 5 ms of the dissociated CO
could be determined, before rebinding occurs.®® The molecular
structure of the H-cluster in its H,-CO state was likewise
investigated by X-ray crystallography of the CO inhibited hydro-
genase I from C. pasteurianum (Cpl). As expected, electron
density that arises from a diatomic ligand was found in apical
position of the distal iron, which is accompanied by an elonga-
tion of the Fe-Fe distance from 2.56 A in Hyy to 2.71 A in
H,,-CO.**%> The IR spectrum of H,,-CO likewise accounts for
the extra CO by an additional band in the region of terminal
carbonyl ligands (Table 2, 4,CO, band 3, 2012 cm’l), while
bands B and vy shift to 1962 cm™' and 1968 cm™,
respectively.”®>® %5470 Thege band positions reveal a vibrational
coupling of the carbonyl ligands, as already reported by Albracht
and coworkers.’® A pronounced vibrational coupling between all
terminal CO ligands was later uncovered by DFT calculations.”
The nature of the diatomic apical ligand, however, cannot be
determined by XRD analyses due to the close geometric and
electronic resemblance of CO and CN™. While an apical CO is
favoured by most research groups, IR spectroscopy accompanied
by DFT analysis suggested a rotation of the distal iron, enabled by
the cluster flexibility (see above) and resulting in an apical CN™
instead of an apical CO.”>** The electronic structure of Ho-CO is
thus still under rigorous debate. The [4Fe-4S]-cluster, consisting
of two antiferromagnetically coupled hs-Fe"Fe™ (S = 9/2) sub-
clusters, is overall in a +2 (S = 0) state, similar to H,,. Interestingly,
although for singlet spin states such as observed for [4Fe]y
no hyperfine coupling (hfc) should be observed, a pronounced
spin exchange between [4Fe]y and [2Fe]y results in a strong hfc
that differentiates Ho-CO from H,,, where no hfc is observed.
Mossbauer,*®”"”> EPR,*>”" and X-ray spectroscopy®>”* as well as
computational studies,*”* agree well with this finding and
suggest a S # 0 state for [2Fe];;. However, the electronic structure
has to be different than in Hy, due to the observed hfc of [4Fe]y.
Here, early Mossbauer studies by Popescu and Miinck favoured a
paramagnetic Fe"Fe™ state, whereas a Fe'Fe" could not be
excluded.”® The latter description was, however, favoured by
Lubitz and coworkers performing ENDOR measurements on
*’Fe enriched DdH and suggesting an electronic configuration

Table 2 IR band frequencies of CO and CN™ ligands in CrHydAl

State Y(CN")/em™* Y(CO)/em ™" Ref.
H,, 2088, 2070 1964, 1940, 1802 75
HoH 2092, 2074 1970, 1946, 1812 75
H,-CO 2091, 2081 2012, 1968, 1962, 1808 51
H,,H-CO 2094, 2086 2006, 1972, 1966, 1816 51
Hiea! 2084, 2066 1962, 1933, 1792 51
H,.’H 2086, 2068 1966, 1938, 1800 51
Hyeq’'-CO 2086, 2076 2002, 1967, 1951, 1793 70
Hieqd 2070, 2033 1961, 1915, 1891 75
H,.H' 2071, 2032 1968, 1917, 1891 76
HyeqH'lt 2079, 2041 1916, 1894, 1810 77
Hared 2068, 2026 1953, 1918, 1882 75
H,eqH' 2067, 2027 1953, 1917, 1881 76
HgegH'lt 2070, 2026 1919, 1882, 1803 77
Hnya 2082, 2068 1978, 1960, 1860 75
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with a paramagnetic Fe' in proximal position.** Although most of
the spin density is at Feq, a substantial spin delocalisation over
the whole cluster was reported as well, which is induced by the
binding of the additional CO.%* Due to the spin coupling between
[4Fe]y and [2Fe]y and the resulting spin distribution, the EPR
spectrum of H,,-CO differs from H,, although the redox state
seems to be the same. This coupling results in an axial 2.07 signal
(g = 2.065, 2.007, 2.001).*>°*% The strong spin distribution was
also detected by XAE spectroscopy on HydA1l from C. reinhardtii
that assigned H,,-CO as [4Fe-4S]**-[Fe">*Fe">']’~, corroborated
by DFT calculations.®*

3.4 Reactivity of CrHydA1(ADT) towards reducing
reagents — A: sodium dithionite (NaDT)

Relative to Hyx, multiple single and double reduced H-cluster
redox states are known. These can be accessed by treatment of
the as isolated or Hy enriched species with chemical reducing
agents. At first, we want to consider treatment of H,, with
sodium dithionite (NaDT), which has a potential of —660 mV
vs. SHE at pH 7 and is one of the most frequently used reducing
agents in the hydrogenase community. In these assays, NaDT
compensates the lack of a physiological electron donor and
enables the formation of hydrogen.

Treatment of as-isolated CrHydA1 with a 17-fold concen-
tration of NaDT at pH 8, followed by direct freeze quenching of
the samples in liquid N, results in the loss of Hg, specific
IR bands in favour of multiple signals (Fig. 10, entry A).*°
Those signals were originally attributed to the single reduced
[4Fe-4S]**[Fe'Fe'] complex and a double reduced species that
is called Hgeq (= “super reduced”). However, due to the
presence of a second bridging CO signal, the existence of Hyy
in this assembly cannot be excluded. Especially the corres-
ponding EPR spectrum (Q-band, FID detected) points to the
presence of unreacted Hyy, showing the characteristic rhombic
2.1 signal. In addition, a broad signal with lower g values
(g = 2.076, 1.943, 1.868) is present in the resulting spectrum.
This signal resembles a reduced [4Fe-4S]-cluster, which has to
stem from a double reduced H-cluster, since [4Fe-4S]**~[Fe'Fe']
(Hyeq) and [4Fe-4S]"~[Fe""Fe'] (Hyeq') are EPR silent.”* Therefore,
the double reduced Hgeq has to be denoted as [4Fe-4S]'-
[Fe'Fe'] rather than a [4Fe-4S])**-[Fe'Fe®].*®°

Contrary, King and coworkers observed different results in
their IR and EPR spectroscopic investigation under reducing
conditions. While a 2-fold NaDT concentration and incubation
at 4 °C overnight led to the same states as observed by Lubitz
and coworkers (Fig. 10, entry B), a 10- to 20-fold NaDT concen-
tration and incubation at room temperature for one minute led
to decreasing bands at 1933 cm ™', 1883 cm™ ' and emerging
bands at 1979 cm™ ', 1803 cm™ " as well as 1861 cm ™" (Fig. 10,
entry C), which were not observed in the spectra of Lubitz and
coworkers.”®

Subsequently, EPR spectroscopy was used to disentangle the
mixture of states found by IR spectroscopy. Samples reduced
with 2 equiv. NaDT at 4 °C afford the Hyed, Hrea’ and Hgeq States
according to IR spectroscopy. The corresponding EPR spectrum
shows a broad signal between g = 2.3 and 2.07. Since Hgreq
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Fig. 10 Schematic representation of IR band positions of NaDT reduced
CrHydA1 (colored background) in comparison with currently known states
(grey background). The concentration factor (x) of NaDT is related to the
protein concentration. IR signatures of known states are taken from
Table 3. References for entries A-G: A,°° B.and C,°* D,°* E,”® F and G.””

should be the only EPR active state, this broad signal must
occur from this double reduced species. In addition, the
temperature and power properties of the broad EPR signal
was found to fit best to a reduced [4Fe-4S]-cluster consistent
with the findings of Lubitz and coworkers for Hgeq. Contrary,
utilizing 10- to 20-fold concentrated NaDT reduced samples
(Fig. 10, entry C), signals of a hitherto unknown state were
observed. The EPR spectrum shows a 90% contribution of a
broad rhombic signal of g = 2.077, 1.935, 1.880 and minor
contributions from rhombic 2.1 signal (Hex). Again, a reduced
[4Fe-4S]-cluster was suggested to be the origin of this signal.
Notably, according to a post hoc IR analysis, the dominant
species in this sample is Hyyq, which was postulated as an
intermediate species within the native reaction cycle, e.g. a
[4Fe-4S]"-[Fe'Fe']-H" or a [4Fe-4S]*-[Fe""Fe"]-H .>> Therefore,
Hpyq seems to accumulate under strongly reducing conditions,
whereas H;eq' cannot be found. Both possible Hyyq species are
uncharacterized intermediates at the beginning of the H,
splitting cycle or at the very end of the H' reduction cycle,
respectively.

The experiments described so far were all performed at
pH 8. However, the interconversion of protons and molecular
hydrogen is according to the law of mass action always depen-
dent on the pH. Therefore, accumulation of intermediate states
was thought to be easier when increasing or decreasing the

This journal is © The Royal Society of Chemistry 2021
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proton concentration and thus, shifting the equilibrium to a
specific H-cluster state. Following this approach, treatment of
CrHydA1 in its H,y state with a 4-fold concentration of NaDT at
pH 4 resulted in an unknown species with upshifted CO/CN™
frequencies by 4 to 6 cm™' vs. Hyy instead of accumulation
of a reduced species that would have been accompanied with
downshifted CO and CN™~ frequencies (Fig. 10, entry D). The
formation of this species was shown to be reversible when
switching back to pH 8.°' This new species was denoted as
H,H, indicating a tentative protonation event at the H-cluster
but an overall similar redox state as H,,. Interestingly, no
change in the IR pattern could be observed in the absence of
NaDT, which points to the necessity of reducing (‘‘turn-over”)
conditions. Although the transition from H,y to HyH is not a
PCET, since both, [4Fe]y; and [2Fe]y; remain in the same
oxidation state according to IR-supported DFT calculations,
the pH and NaDT dependent formation of H,H suggests
involvement of a PCET in its formation. Potentially, HoH is
the endpoint of the catalytic cycle, which is PCET based.’
Deprotonation of H,,H is thus the last step of the H, formation
cycle and results in the regain of H,,. DFT calculations along
with IR spectroscopy were performed to investigate the
presence of an additional proton within HyH. The band
correlation agreed best with a protonation at the cysteine S9
at [4Fe]y, whereas protonation at one of the four bridging
sulphides of the [4Fe-4S]-cluster led to strong cluster distor-
tions and protonation at the first ligand sphere or at [2Fe]y led
to substantial stronger shifts of the CO and CN™~ frequencies.>
Experiments at pH 8 show that Hyyq can be found alongside
with Hey, Hreq and Hgeq under strongly reducing conditions.””
Drastically increasing the concentration of NaDT (20- to 30-fold)
while simultaneously increasing the proton concentration to
pH 6 yields almost pure Hpyg with minor amounts of H,.q and
H,, (Fig. 10, entry E).”® This sample was further analysed by
NRVS (nuclear resonance vibrational spectroscopy), providing
vibrational information only for Mdssbauer active elements,
e.g. iron. The resulting spectrum shows two high energy bands
at 675 cm™ " and 744 cm ™, characteristic for a terminal bound
hydride. Upon changing the medium from H,O to D,O both
signals are replaced by a new signal at lower energy (629 cm ™),
in line with H/D exchange of this terminal hydride.”® The NRVS
spectra were taken as basis for sophisticated DFT calculations
to determine a possible structure for Hyyg. The best overall
agreement between calculated and measured spectra was
obtained for a [4Fe-4S]"-[Fe"Fe'"]-H™ species, in which the
amine is neutral and with the amine proton pointing towards
the hydride forming an internal hydrogen bond.”® Another
hydrogen bond is formed between the lone pair of the amine
and the adjacent thiol group of Cys169, which is believed to be
the last amino acid in a proton channel towards the H-cluster.”
Besides the proposed Hyyq structure, arrangements with
a protonated bridge structure (R,NH,") were tested as well
with very low agreement between the calculated and observed
spectra. However, such a state was not completely ruled out but
considered as potential intermediate species between Hyyq and
the H, releasing/uptaking state.”®
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Besides the influence of the pH value, the relevance of the
temperature at which the experiments are performed was high-
lighted as well. Incubation with an approx. 10- to 20-fold
concentration of NaDT (a 20 mM solution NaDT was used for
reduction of CrHydAl; however the concentration of the
enzyme is not stated) gave a mixture of Hpya, Hgred, Hrea and
in minor amounts Hyeq: and Hgy both, at 280 K and 40 K.””
However, at 40 K the intensity of the signal at 1803 em™"
increases strongly. This signal was assigned to a double
reduced H-cluster state, which bears a bridging CO that is not
detected in Hgq®*®° (bridging hydride) or HgeqH'7® (semi-
bridging CO and adt-H"). This assignment is based on the
concomitant increase of Hgeeq signals at 40 K. We therefore
denote this species as HgeqH It that is claimed as [4Fe-4S]'-
[Fe'Fe'] with protonation at the amine, to distinguish between
low- and high-temperature states. The low-temperature IR
measurements were further strengthened by NRVS measure-
ments and DFT calculations in which both a p-CO and a p-H
were considered. Models including p-H produced a high-energy
signal around 740 cm ! which was observed in synthetic p-H
models and experiments of [NiFe]-hydrogenases as well,®" but
not found in experiments on [FeFe]-hydrogenases.”” A p-H
ligand under these conditions was therefore rendered unlikely,
while in conclusion a p-CO ligand was favoured. However, the
unchanged frequency of n-CO compared to Hey is not explained
and remains inconclusive from our point of view. The reduction
of [4Fe]y within the Hyx <> H,eq' transition results in a down-
shift of the p-CO frequency of 8 em™".>"7*7%%* The same IR
band in HgqH -1t does not shift compared to H,,, although it
should result in a larger shift of the p-CO frequency vs. Hyy due
to the reduction of [2Fe]y. However, it must be considered that
the measurements at 40 K are under non-physiological conditions,
which shows that the temperature at which [FeFe]-hydrogenases
are investigated, indeed can influence the outcome of the
experiment by means of trapping the H-cluster in different
states compared to measurements at room temperature.

3.5 Reactivity of CrHydA1(ADT) towards reducing
reagents - B: hydrogen (H,)
Notably, comparable reactivity alterations were observed upon
exchange of the reducing agent - e.g. substituting NaDT as
reductant with H,. Under physiological conditions, the former
results in formation of H, and oxidation of an external electron
donor, while the latter variant results in the final reduction of
an electron acceptor and formation of protons. This interplay is
of utmost importance for balancing energy levels of hydro-
genases in living organisms. As an additional benefit from
changing to H, as reducing agent is the determination of the
reversibility of catalytic states. If the respective states are
accessible from both approaches, H, formation and oxidation,
theses states are most likely part of a catalytic cycle, while
states that are accessible only by one method might lead to
biologically less-relevant resting states or artificial, naturally
non-appearing states.

According to IR spectroscopy, flushing of CrHydA1l with
100% H, for 15 minutes at 4-24 °C and pH 8 yields Hgreq With
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Fig. 11 Schematic representation of IR band positions of H, reduced
CrHydAl (coloured background) in comparison with currently known
states (grey background). IR signatures of known states are taken from

Table 2. References for entries: A,°* B,°°* Cand D,®2 Eand F,°* G to 1,”> J and
K,67 |_.72

minor amounts of Hpeq, Hreqr and eventually very small
amounts of Hy, (Fig. 11, entries A, B).>>® All reduced states
can also be accessed by reduction with NaDT, rendering
these three states potential intermediate candidates for a H,
formation cycle. It seems that, depending on the applied
temperature, either Hgeq (higher temperatures, entry B) or Hyeq
(lower temperatures, entry A) are favoured. However, due to the
opposed measurement temperatures, i.e. 100 K for samples
flushed with H, at 24 °C and 294 K for samples prepared at 4 °C,
a qualitative analysis of this trend cannot be deduced.

It is worth mentioning that under 100% H,, all single and
double reduced species are observed. Here, lower amounts of
reducing agents, i.e. 10% H, in N,, result in formation of the
single reduced species Hyeq and Hieq: at the expanse of Hoy,
while Hg,eq seems to be absent in those samples according to IR
spectroscopy (Fig. 11, entries E, F).>!

The absence of Hgeq in 10% H, treated samples is an
advantage compared to all NaDT reduced species. Herein,
persistent contributions from Hg,eq crowding the IR spectrum
were reported, impeding an evaluation of the resulting spectra.
Moving from alkaline pH 8 to more acidic pH 6 (Fig. 11, entries
E, F)®' at constant H, concentrations (10%) favoured the
formation of Hyeq, Hox and minor amounts of Hyyq over Hyeqr
and Hg.eq and vice versa.”>”? This behaviour was also observed
in a redox titration experiment of CrHydA1(ADT) at different
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pH values (Section 3.6) and was accounted to a “non-classical”
intra H-cluster PCET, .e. as transition from a [4Fe-4S]"~[Fe'Fe"]
(Hpeq’) to a [4Fe-4S]**~[Fe'Fe'] (Hyeq) cluster.”® Simultaneously
to the decrease of the H,eq' marker band at 1933 cm™?, switch-
ing from alkaline to acidic pH decreases the signal of the
bridging carbonyl at 1972 c¢cm™ ' with the same rate and
indicates that H,eq' most likely bears a p-CO, ligand as opposed
to Hyeq.”"’® Therefore, the PCET from Hyeq' to Hpeq Was sug-
gested to be coupled to a ligand rearrangement, which has been
considered challenging to merge with the large hydrogen turn-
over rates of [FeFe]-hydrogenases.’°%%

The previously described conditions used by Stripp and
coworkers gave small amounts of Hpyq upon increasing the
proton concentration to pH 6. This work was later revisited by
Winkler and coworkers: upon changing the pH from 8 to 4
while purging a sample of HydA1 with 100% H, led to IR bands
at 1978 cm ™%, 1960 cm ™, 1891 ecm ™! and 1860 cm™.”> While
the signal at 1891 cm™! stems most likely from Hyeq, the
remaining bands were assigned to Hpyq (Fig. 11, entries G, H).
This example shows, how Le Chatelier’s principle can be
applied to enrich specific catalytic states of [FeFe]-hydro-
genases within the complex biological environment.®”””> The
simultaneous increase of starting material (H,) and proton
concentration (ie. pH < 6) prevents deprotonation of the
H-cluster and traps Hyyq. The deprotonation step is therefore
presumably involved in the Hyya — Hyeq OF Hyya — HgreaH'
conversion.

However, there is an ongoing discussion about the impor-
tance and the assignment of specific states leading to some-
times severe alterations of suggested mechanistic schemes.
Nevertheless, and independent of the preferred reaction
scheme, Hyyq was unequivocally suggested to be a key inter-
mediate in the hydrogen cycle.

Identical results were observed using a dry H, stream
(Fig. 11, entry I) explained by the loss of proton acceptors,
i.e. the aqueous medium, and therefore accumulation of H"
within the enzyme. It was suggested that the lost proton
acceptors are equivalent to an increase of the proton concen-
tration by lowering the pH, which yields Hpyq as well.”
A similar effect was observed upon impairing the proton
transfer path by e.g. disrupting it vie mutagenesis or exchan-
ging the bridgehead of [2Fe]y; (Sections 3.7 and 3.8).%%7>78:84585

3.6 FTIR spectroelectrochemistry of CrHydA1(ADT)

As shown in the previous section, treatment of CrHydA1(ADT)
with reducing agents generally results in a mix of various redox
states depending on the redox potential of the used reductants
(Fig. 10 and 11). Importantly, preparing specific desired redox
states can be controlled by using electrochemical approaches.
In addition, since the redox potentials can be selectively
adjusted, each redox state of the H-cluster can be enriched to
almost complete purity. Especially in combination with IR
or EPR spectroscopy (spectroelectrochemistry, SEC), electro-
chemical measurements become a powerful tool to investigate

e.g. proton coupled electron transfers or the redox states in
general‘52,58,70,74,76,80,86
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At —300 mV vs. NHE or more anodic potentials and broadly
independent of pH, Hex is populated according to SEC-IR
experiments (Fig. 12, entries A, E, L).”*”*% First experiments
on CrHydA1 at open circuit potential (OCP) and pH 8 (Fig. 12,
entry J) afforded H,,-CO from the cannibalisation process
besides Hyx. The amount of H,,-CO increased upon switching
to —260 mV indicating additional enzyme damage, while the
concentration of H,, decreases. Interestingly, going to even
more cathodic potentials (—430 mV) led to a complete loss of
H,,-CO, while H,.q was enriched to almost purity with only
minor impurities (Fig. 12, entry N).”® This behaviour shows that
inactive Ho-CO can be reactivated by applying a sufficient
reducing potential as long as no exogenous CO is added to
the sample. Applying a potential of —300 mV at pH 8 in the
presence of exogenous CO yields H,,-CO instead of Hyy (Fig. 12,
entries Q, T) as well as H,eq-CO if more reducing conditions are
applied (Fig. 12, entries R, S, U).”%”* Nevertheless, Hq,-CO can
be found at potentials as low as —600 mV (Fig. 12, entry U). The
midpoint potential of the Hy,CO — H,q:-CO conversion was
determined to be —360 + 10 mV at pH 5 (Fig. 12, entries V, W)
and —530 + 30 mV at pH 8 (Fig. 12, entries T, U),”® which is in
line with earlier experiments determining a midpoint
potential.”* A similar pH dependent behaviour was likewise
found for the Hyx — Hpeqr couple in CrHydA1(PDT) (Section
3.7). A shift of 60 mV per pH unit indicates a proton dependent
formation of H,q-CO according to the Nernst equation
(PCET).”® This protonation event was also assigned to the
H,x — HoH transition. It was claimed that the proton herein
is located at the [4Fe]y stabilizing cysteine $9.>' This protona-
tion decreases the electron density of [4Fe];; and facilitates the
reduction of the [4Fe-4S]-cluster, which is in line with the more
anodic midpoint potential at pH 5 (protonated Cys S9) vs. pH 8
(unprotonated Cys S9). Supposedly, the electronic structure
of Hyeq-CO is therefore best described as [4Fe-4S]"-[Fe'Fe"']
comparable to the electronic state of Hyeq.”” The molecular
structure of H,eq-CO is comparable to H,,-CO with an apical
vacancy, blocked by CO.”° According to a DFT-FTIR correlation,
rotational freedom of the diiron site can lead to an apical CN™
ligand stabilised by the adjacent NH bridgehead. Notably, no
CO-inhibited form of a reduced [2Fe]y; state (Hyeq OF Hgrea) Was
found under the tested conditions, i.e. 100% CO, pH 5 or 8 and
—100 to —800 mV vs. NHE, which was attributed to a saturated
coordination sphere of Fey.”® Therefore, the coordination
sphere of the double reduced diiron sites has to be saturated
by another ligand, such as a hydride.

Another transition of interest iS Hyeqr — Hyeq, Which was
addressed via H, reduction experiments at different pH
values by Stripp>! as well as Lubitz and coworkers.”® In these
experiments, protein films of CrHydA1(ADT) were investigated
for their IR band signatures at different pH values upon
scanning the potential from —200 mV to —600 mV (Fig. 12,
entries E to I). The IR signals at 1933 cm ™ and 1891 cm ™' were
both found to have a maximum at —380 mV at pH 7, while
being absent at —210 mV and —540 mV, respectively (Fig. 12,
entries E, G, I). Originally, both IR bands were assigned to
the same intermediate.*®*%’* However, at pH 10 the band at
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Fig. 12 Schematic representation of IR band positions of electrochemi-
cally reduced CrHydAl (coloured background) in comparison with
currently known states (grey background). IR signatures of known states
are taken from Table 2. References to entries: (A to D)%% (E to 1),7®
(3, K N, 0)8 (L, M, P to S),7* (T to W).”°

1891 ecm~' cannot be found in the IR spectra during the

potential scan, while the band at 1933 ¢m™" occurs upon
shifting to more reducing potentials (Fig. 12, entry F) and
indicates a pH dependency of these IR bands. On the other
hand, acidic conditions were shown to favour the species
responsible for the band at 1891 em ™" (Fig. 12, entry H). Due
to the acidic conditions at which the latter species was
observed, it was subsequently attributed to a reduced proto-
nated form HpgH'. (Note: HyqH" and H,.q show the same IR
band signature. We herein use both abbreviations to account
for their different protonation state, which is not finally clarified
and under severe debate within the community; for additional
discussion see Section 3.10 ‘The catalytic cycle’ at the end of this
section). Consequently, the band at 1933 cm ™~ * was assigned to an
unprotonated reduced form, Hpq (called H,q in the original
literature). As a result of this study, the IR signatures of the single
reduced H-cluster states Heeq' and Hpeq/HqH' were assigned as
2084, 2066, 1962, 1933 and 1792 cm ™! for Hyeq' and 2070, 2033,
1961, 1915 and 1891 cm ' for Hyq, respectively.”® Hpq, the
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species assembling at alkaline pH, exhibits very small downshifts
within the IR spectrum (3 to 7 em™ ') of the CO and CN~
vibrations compared to Hey. A reduction of [4Fely; in Hpeq: is
therefore more feasible than a reduced diiron site and is asso-
ciated with higher shifts of the CO/CN™ frequencies compared to
Hox and Heq. Thus, transition from Heq' to Heeq iS seemingly
coupled to an electron transfer from [4Fe]y; to [2Fe]y, which is
orchestrated by the pH. If the proton pressure is sufficiently high
to protonate the diiron site of Hpq ([4Fe-4S]'-[Fe'Fe"]), the
electron migrates from [4Fely to [2Fely, resulting in [4Fe-4S]*'-
[Fe'Fe']. According to Sommer et al., this value is pH 6, whereas
H,.qr dominates already at pH 8 and both are equally present at
pH 7.7° This delicate behaviour might be suitable for pH sensing,
inducing subtle changes within the protein backbone upon going
from Heq (alkaline) to Hyeq (acidic).”>”® The midpoint potential
of the Hyy — H,eq' transition was found to be —375 + 10 mV vs.
SHE with a strong pH-dependency determined by the protonation
event at [2Fe]y. The latter event results in a plateau of the
midpoint potential for high or low pH. For lower pH, the mid-
point potential shifts by —50 mV from pH 7 to 6. This observation
is also in line with the Hy,-CO — H,q-CO transition, which
shows a linear behaviour with a potential shift of 55 mv pH ™"
between pH 5 and 8. Both processes are consistent with a PCET
from Hgy to Hiq. While the molecular structure of Hpq is
thoroughly discussed in literature, up to now its structure was
not finally confirmed.>*®"7%77,80:87,88

If the potential is swept to more reducing conditions as
required for the Hyeqr — Hieq transition, a set of IR bands at
2068, 2026, 1953, 1918 and 1882 cm ' that is similar to the
pattern of H,.q is observed. However, this set is slightly down-
shifted and better resembles the Hgq State that is known from
NaDT and H, reduction experiments.>>®® The small average
downshift of about 5 cm ™" of the CO/CN~ frequencies is in line
with a reduction of [4Fe]y, as was observed for the Hox — Hyea’
transition. The electronic structure of Hg.eq is therefore most
likely a [4Fe-4S]"~[Fe'Fe'] state, which was already found by EPR
spectroscopy as well (Section 3.4).°>®° The potential needed to
accumulate Hg,eq is likewise pH dependent. At pH 7 and 8, Hgrea
is obtained as the major species at potentials <—510 mV vs.
NHE (Fig. 12, entries O, P). Notably, at less cathodic potentials
minor Hg.q amounts are still present next to Hyy and the single
reduced species Hyeqr and Hyeq (Fig. 12, entries G, I, M). If the
proton concentration is increased to pH 5, i.e. conditions that
favour the formation of Hyeq, Hgrea i accessed more easily and
found already at potentials of —480 mV. However, at pH 10,
i.e. conditions that favour Hi.q over Hyeq, Hgreqa cannot be
found.”® This behaviour of Hyeq indicates that it is potentially
formed from H,.q in the reaction cycle, whereas it cannot be
accessed from Hieq'-

3.7 Influence of alternative dithiolate bridges on the reactivity
of the H-cluster

One of the most striking advantages of the (semi-)artificial
maturation process (Section 2.2) is the possibility to implement
H-cluster mimics that are different from native CrHydA1(ADT)
enabling altered reactivity patterns of the hybrid-enzymes.**
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These differences in reactivity can then be utilised to target
specific H-cluster states and transitions that are otherwise not
observable within the native enzymes due to rival reaction
pathways, e.g. Hreq' — Hreqa VS. Hrear — Hpyq Or the simulta-
neous enrichment of multiple states. Such an enrichment of
multiple states severely hampers a precise analysis and leads to
discrepancies when putting together all the mechanistic puzzle
pieces. However, only in case of a similar electronic structures
of both, native ADT and the semiartificial enzymes, respec-
tively, proper statements on the various pathways and inter-
mediates are valid. Otherwise the spectroscopically obtained
results cannot be transferred from the semiartificial enzyme to
the native ADT containing enzyme. For example, a comparable
electronic structure of CrHydA1(PDT) compared to the native
enzyme can be anticipated due to the similar IR band positions
of their CO stretching frequencies, e.g. in the H,, resting
state.”* Likewise, the molecular structures of the semiartificial
enzyme variants PDT, EDT, ODT and SDT with a propanedithio-
late, ethanedithiolate, oxadithiolate and a thiadithiolate bridge
are presented in Fig. 13. In all cases, the artificial H-clusters
closely resemble the native [FeFe]-hydrogenase with a bridging
carbonyl and an open binding site at the distal iron atom under
cryogenic conditions of the XRD experiments.®® The principle
of CO-ligand rearrangement that occurs upon artificial
maturation, i.e. loss of one carbonyl and adopting the rotated
structure, is therefore independent of the bridging moiety and
seems to be a general feature of [2Fe]y mimics - at least as long
as the steric bulk within the mimic does not prevent accessing
the maturation channel.*

One of the most frequent alteration of [FeFe]-hydrogenases
in literature concerning bridgehead variations in the enzyme
and likewise in biomimetic catalysts (see Section 4) is the
utilization of the PDT variant (Fig. 13A). Depending on the
maturation conditions, it exclusively adopts either Hox Or Hyeq’
upon maturation. Notably, the PDT variants lack the possibility
to enter the Hyeq, Hgrea as well as Hyyq states due to the missing
amine functionality and therefore the possibility to undergo an

Fig. 13 Molecular structures of the H-cluster from C. pasteurianum
artificially maturated with (A) propanedithiolate (PDT), (B) ethanedithiolate
(EDT), (C) thiadithiolate (SDT) and (D) oxadithiolate (ODT) containing [2Fe]
clusters. PDB entries 5BYR (PDT), 6H63 (EDT), 5BYQ (ODT), 5BYS (SDT).
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intramolecular PCET from H,eq' to H,eq Or a classical PCET to
thd‘31,51,76,90

The H,y state of PDT shows an IR spectrum that is equal to
that of HoY" showing overall similar electronic situations as
well as symmetry and thus support the identical structural
features found by XRD experiments in their solid
state,”*>7*%° Likewise, the EPR spectrum of Hiy " resembles
that of Hoy'", showing a rhombic signal centred at 2.1 (g = 2.094,
2.039, 1.998) further supporting the anticipated [4Fe-4S]**-
[Fe''Fe'] state already deduced from FTIR/DFT studies.”* Under
100% H, at pH 8, HEDT undergoes a one-electron reduction and
fully converts a single product, namely Hiay '. This observation
is in stark contrast to the ADT samples, in which Hyeq and Hgpeq
are found as well.>>**%%% Furthermore, the IR spectrum of
Hiy"' shows CN™ vibrations at 2084 cm ' and 2065 cm™ ' as
well as vibrations of the CO ligands at 1962, 1934 cm ™' and
1798 cm™ ' which are comparable to those of the Hiy''
spectrum.’® Increasing the proton concentration from pH 8
to 4 while keeping H, reducing conditions led in case of ADT to
the formation of Hpyq.”” However, since the PDT analogue is
not capable to adopt the Hyyq state, another state accumulates
under these conditions that shows minor upshifted IR frequen-
cies of all CN"/CO vibrations as compared to Hyeq, i.e. 2084,
2068, 1966, 1938 and 1802 cm ™. A similar shift was observed
for ADT upon reducing HydA1 at pH 4 with 2 equiv. NaDT and
was denoted to a protonation of cysteine S9 at the [4Fe]y. This
state was called H,H accounting for the additional protonation
(Fig. 7). According to DFT calculations, the same protonation
was suggested for Hyeq'. The new upshifted band pattern found
in PDT is therefore best explained by a second protonation at
one of the [4Fe]y binding cysteines. According to DFT studies,
cysteine S9 is highly favoured as potential protonation site.>!
Due to the additional proton, the new double protonated state
is called H,eq'H. Notably, this state cannot be found in ADT,
since then only Hyyg is found under otherwise identical
conditions as reported for HyeqH.””

Furthermore, H, reduction experiments on CrHydA1(PDT)
show that the Hox and H,.q analogues can be very easily
enriched to purity. While high purity He, samples can also be
obtained in case of HydA1(ADT), H,eq' commonly comes along
with Hieq and Hgreq, especially at pH < 7. Nevertheless, Lubitz
and coworkers were capable to determine the potential of the
Hox — Hiea' transition of HydA1(ADT) to be —375 £+ 10 mV vs.
SHE.”® A linear correlation between H,, and H,.q was found for
the CO inhibited species, which are not able to form a reduced
[2Fe]y-cluster species.” Contrary, utilising PDT enzyme deriva-
tives enables a direct investigation of the Hyx — Hyeq transition
e.g. by SEC-IR techniques without the need of CO inhibition
and without side reactions.

Fig. 14 presents the Pourbaix diagram of the transition
potentials for Hyy — Hyeq' (black) and HoH — H,eg'H (blue)
as function of pH value following the peak intensity of the
respective marker bands at 1941 cm™ " (Hoy), 1934 cm™* (Hyea'),
1945 cm™' (HeH) and 1938 cm™ ' (HpaH) as well as
subsequent lowering the applied potential from —100 mV
to —800 mV vs. NHE.*® The E/pH-slopes of 55 + 5 mV pH "
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Fig. 14 Pourbaix diagram showing the transition potentials for Hox —
Hieq’ (black) and HoxH — H,eq’H (blue) as function of pH value. The slopes
are 55 + 5 mV pH™ (black) and 50 & 3 mV pH™? (blue) with an approximate
off-set of 50 mV that elevates the HoxH — H,eq’H potential above the
H/H, reference (red traces, 59 mV pH™Y). Error bars illustrate the quality of
the Nernstian fit. Figure and caption are adopted with permission from
reference. Reprinted from ref. 52 with permission from John Wiley and
Sons, Copyright 2017.

(Hox = Hyea:, black) and 50 = 3 mV pH ' (HeyH — Hpeg'H,
blue) indicate a proton coupled reduction of the H-cluster
(PCET). Furthermore, the 50 mV lowered reduction potential
required for the H,,H — H,eq’'H transition suggests a protona-
tion of [4Fe]y directly affecting the transition potential. This pH
dependent transition from HeH to Hi.q'H is clearly located
above the H/H, reference line (red), which also explains the
spontaneous reduction of HyH in the presence of H,.>? These
results are in contrast to the earlier results on the Hox — Hyeq
transition in CrHydA1(PDT) revealing a midpoint potential of
—345 mV at pH 8.”* The respective transition potentials deviate
by approximately 130 mV. This discrepancy was, however,
hitherto not addressed in the literature afterwards and remains
undissolved so far.

The results of these spectroelectrochemical experiments on
CrHydA1(PDT) support the assumption of a proton dependent

Table 3 IR band frequencies of CO and CN™~ ligands in hybrid-CrHydAl
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reduction of the [4Fe-4S]-cluster in Hyeq.”' Whereas the for-
mation of H,eq requires the protonation of the native adt
bridge, the very same protonation is inhibited due to the
absence of the amine in PDT samples.”® In both cases, a PCET
step directs the additional charge either to the [4Fe]y or [2Fe]y.
The results on CrHydA1(PDT) are in line with the findings for a
CO inhibited species of CrHydA1(ADT), which shows a 60 mV
pH ! linear correlation between the Hgx-CO — Hpeq-CO
midpoint potential and pH. However, the transition to Hyeq,
in case of the CO inhibited species, is overall 70 mV more
cathodic, showing the influence of the additional CO ligand
substitution and leads to an increased electron density at
[4Fe]y and therefore an inhibited reducibility.*" The Hoy —
H,eq' transition in non-inhibited CrHydA1(ADT) was deter-
mined to be —353 £ 10 mV vs. SHE at pH 7. Compared to the
results of CrHydA1(PDT), the midpoint potential of the native
enzyme is approx. 50 mV more anodic.”® The selective conver-
sion from Hyyx to H,qr was further utilized to address the
concentration dependency of the formation rate of H,eq. Diluting
the enzyme within bovine serum albumin (BSA) results in a
severe drop of the Hyy — Hyeq' conversion rate.>' This behaviour
was explained by an intermolecular electron transfer (dispropor-
tionation) between different [FeFe]-hydrogenase enzymes via
two-electron reduced species formed upon treatment with H,.
Likewise, a comparable behaviour was found in whole cell
experiments utilising CrHydA1 expressed in E. coli. Monitoring
the IR signatures of the H-cluster while purging E. coli cells with
1% H, (99% N,), did neither reveal the specific marker band of
Hpeqr (1933 cm ™) nor Hgeq (1882 cm ™). Both states possess a
reduced [4Fe-4S]-cluster, which obviously is hardly trappable in
living cells.*

Contrary to such reduced states, CrHydA1(PDT) and other
hybrids (e.g CrHydA1(SDT), CrHydA1(EDT) and CrHydA1(ODT))
enabled the selective formation of H, upon prolonged exposure
to N, at pH > 8 (auto-oxidation). The CN™ and CO frequencies
(Table 3) of EDT and SDT resemble those of the ADT and PDT
variants, indicating an equal electron density at the Fe-centres.
According to quantum chemical calculations at QM/MM and

State Y(CN7)/em™" 1(CO)/em™! Ref. State Y(CN7)/em™* ¥(CO)/em™! Ref.
PDT EDT
Hox 2090, 2073 1965, 1941, 1810 52 Ho, 2090, 2074 1965, 1941, 1809 67
H,,-CO 2094, 2083 2014, 1972, 1965, 1812 H,,-CO 2094, 2081 2019, 1975, 1967, 1812 67
H,H 2090, 2075 1969, 1945, 1814 52 H, H 2094, 2076 1969, 1945, 1814 67
H,H-CO 2095, 2086 2013, 1974, 1968, 1816 H,,H-CO 2098, 2087 2071, 1974, 1968, 1819 67
Hieq’ 2084, 2066 1963, 1934, 1798 52 Hiea’ 2085, 2067 1961, 1933, 1798 67
H,.q-CO Not observed H,eq-CO 2091, 2080 2015, 1971, 1956, 1807 67
H,.oH 2084, 2068 1966, 1938, 1802 52
oDT SDT
Hox 2086, 2070 1972, 1948, 1812 75 Hox 2088, 2070 1969, 1942, 1810 67
H,,-CO 2096, 2085 2038, 1979, 1967, 1811 67 H,,-CO 2094, 2081 2019, 1975, 1967, 1812 67
HoH 2093, 2078 1974, 1950, 1813 67 HoH 2091, 2076 1974, 1950, 1814 67
H,H-CO 2096, 2087 2032, 1980, 1971, 1815 67 H,H-CO 2096, 2085 2020, 1978, 1971, 1816 67
H,ea' 2083, 2070 1964, 1943, 1804 67 Hyeqr Not observed 67
H,.q-CO 2095, 2081 2011, 1978, 1930, 1806 67 Hyeq'-CO Not attempted 67
Hnya 2081, 2076 1978, 1962, 1862 75
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DFT levels of theory, the overall electronic configuration of all
hybrid-enzymes was likewise suggested to be equal to ADT.*”

Under an atmosphere of 1% CO, all hybrid-enzymes in their
oxidised forms adopt the H,,-CO state with the known IR band
signature. However, while ADT, ODT and EDT immediately
form Hy-CO with near quantitative yields, SDT and PDT
revealed slower kinetics and adopt the H,,-CO state only in
65% and 20% yield, respectively. Even in an atmosphere of
100% CO, those two hybrids do not fully convert to the CO
inhibited form. In line with those CO inhibition experiments,
the decay of H,,-CO to Hyy is very fast for SDT and PDT, while it
is slow for EDT and very slow and incomplete for ODT and the
native ADT forms. In Section 3.3, we already discussed the CO
inhibition of CrHydA1 and mentioned the possibility of an
apical CN™ ligand in Hy,-CO based on a partial rotation of 4CN—
in H,,.”® The rotation of Fey to an apical cyanide ligand in its
CO inhibited form might explain the different reactivity of the
hybrid enzymes towards CO: While ADT stabilises negatively
charged ligands in apical position such as CN~ or H 7%
and thus explains the fast CO inhibition and slow decay of
H,,-CO*"", the other hybrids lack the possibility to form this
hydrogen bond. Instead, destabilisation of an apical cyanide
leading to an altered kinetic was suggested. Further influences
of the non-ADT bridgeheads are the steric repulsion in case of
SDT and PDT or electrostatic attractions for ODT and likewise
SDT. EDT seems to be unbiased due to the missing bridgehead.
Therefore, no stabilising or destabilising effects occur resulting
in fast CO inhibition and decelerated Ho,-CO decay.®” Although
obvious differences regarding the distal cyanide ligand between
native ADT and the hybrid enzymes are present, the CN—
frequencies within their IR spectra do not change. This obser-
vation cannot be explained from inner sphere ligand coordina-
tion and supports the necessity to also discuss outer sphere
coordination, ie. towards the protein environment. This
potential influence will be discussed in a separate section
concerning the proton transfer pathway (Section 3.8).

Like for CrHydA1(PDT), hybrid enzymes containing ODT,
EDT and SDT bridgeheads were tested for their ability to oxidise
H,, thereby adopting the reduced H-cluster states. We already
discussed, that PDT does not adopt a diiron-site-reduced form
(Hyed, Hrea, Hiya) but is trapped in Hieq: upon reduction with
H,.*""%%7 Whereas SDT stays in the H,, state, indicating no
reaction with H,, EDT accumulates the Hyyq state after initial
formation of H,q but returns to H,, very fast in case of
dwindling H,. Contrary, the ODT version accumulates Hpyq
under H, at a very low reaction rate, which was explained by the
diminished ability of the ether headgroup to heterolytically
support cleavage of H,, while for ADT Hyyq was accumulated at
low pH and simultaneous H, or NaDT reduction.”>”® Likewise,
the regain of Hyx from ODT upon switching from H, to N,, is
slower compared to ADT, but faster compared to EDT.
In retrospect, it was shown that the amine base of the native
H-cluster is of substantial importance, not only for the H,
development, but also for H, oxidation, by stabilising the apical
hydride via a hydrogen bond between NH and H™.”>”® As in
H,,-CO, with a proposed apical CN™ ligand, this stabilisation is
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the reason for the different formation and decay rates of ADT
vs. hybrid-enzymes, in which an outer-sphere coordination was
suggested to stabilise Hpyg and Hey-CO.

The IR spectrum of Hpyy' (2081, 2068, 1978, 1962 and
1868 cm ') shows blue shifted CO bands compared to HoY ",
which indicates a decreased electron density within the [2Fe]y-
cluster. A Fe"'Fe" configuration and a reduced [4Fe-4S]"-cluster
most accurately explains this finding and is further supported
by the characteristic EPR signal of reduced [4Fe-4S]-clusters
adopting the same redox state as found in Hpyq."" The Hpyq
state is best described with a terminal H™ at the apical position
of Feq and was indirectly observed by the different kinetics of
hybrid-enzymes and further exploited from H/D exchange
experiments revealing the bridging CO in trans position to
the apical ligand of Feyq. Due to the trans effect, an H/D
exchange trans to p-CO, results in a downshifted frequency of
the bridging CO and indeed this shift is observed in FTIR
experiments performed on CrHydA1(ODT). The bands of the
terminal CO and CN~ did not shift upon the H/D exchange.”*%*
Likewise, NRVS measurements on CrHydA1(ODT) displayed
high energy bands at 670 cm ™" and 727 cm ™ for the bending
of a terminally bound hydride (Feq-H), which shifts towards
lower energy (564 cm™ " and 625 cm ') in case of a D,0/D,
environment.** Notably, the results from nuclear resonance
vibrational spectroscopy (NRVS) experiments on CrHydA1(ODT)
differ from those on ADT, which gave significantly different
bands for Feq—H at 675 cm ™' and 744 cm ™, respectively.”® The
DFT based model of Hyyq from the NRVS measurements on
CrHydA1(ADT) suggests a hydrogen bond between the terminal
hydride and the amine headgroup, which cannot be formed in
case of the ether moiety of ODT. Although serving as good
model for the terminal hydride due to the accumulation of
Hpyq, the ODT variant of the H-cluster is not able to correctly
mimic the hydrogen bonding network between Cys169, NH and
Feq—H, which is of eminent importance for the reactivity of
[FeFe]-hydrogenases.”® A further possibility to enrich pure Hpyq
is to impair the proton transfer activity within the enzyme. This
can be performed by site directed mutagenesis (SDM) of amino
acids within the proton transfer pathway (PTP).%*7>-84-86,92

3.8 Influence of the proton transfer pathway and mutations
thereof on the reactivity of the H-cluster

The main trajectory for protons between bulk water and the
H-cluster is formed by an H-bond network between the side
chains of the five amino acids R286, E282, S319, E279 and C299
(from the surface to the H-cluster, numbering corresponds to
Cpl), two water molecules Wat826 and Wat1120 (cumulated as
W1 in Fig. 15, PDB-ID 4XDC, chain B) and the secondary amine
of [2Fe]y.””?>** In order to address all amino acids to an
individually adequate extend, we will start discussing the most
inner located amino acid C299 (C169 in CrHydA1) and its
mutants and continue going outwards residue by residue.
The first amino acid that undergoes a weak hydrogen bond
to the NH moiety of the H-cluster is cysteine C299/C169
(Cp1/CrHydA1). This side chain is 3.5 A away from the amine
based on the crystal structure 4XDC of Cpl. A second hydrogen
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solvent

R286

Fig. 15 Proton Transfer Pathway (PTP) of [FeFe]-hydrogenase | from
Clostridium pasteurianum between bulk water and the H-cluster via
R286(R148), E282(E144), S319(5189), E279(E141), water complex W1 and
C299(C169). Amino acid codes in parentheses are the respective residues
in CrHydA1l. Protein structure from PDB entry 4XDC.

bond (3.2 A) is formed between the thiol moiety of C299/C169
and W1.”° This inner core of the H-bond network stays rigid
during proton uptake and release independent of the H-cluster
redox state as shown by IR spectrocopy.””

Due to the direct interaction of C299/C169 and the amine of
[2Fe]y, this amino acid was the target of numerous mutagen-
esis studies.®*°7:79:8%:86:92.96 A]] performed modifications result
in a diminished hydrogenase specific activity, which reflects
the importance of the interplay between the cysteine’s thiol
group, the adjacent water complex and the amine bridge. Most
modifications at this position were performed to enrich the
H-cluster redox state Hyyq. Since it was found that a lack of the
proton shuttling ability of the [FeFe]-hydrogenases, e.g. by
changing ADT to ODT”>®* or blocking the proton transfer
pathway Hpyq can be enriched, C299A/C169A°%® and C299S/
C1695%%°%°¢ mutants of Cpl or CrHydA1 were used to trap the
enzyme in Hyyq for further spectroscopic investigations of this
state. Remarkably, the crystal structure of the C299A,; mutant
(Fig. 16A, green) shows an additional water molecule W¢pg9a
occupying the vacant space of the cysteine’s thiol. However,
this water molecule is not capable to restore the complete

C299A % %Eng;\
native nativ
® >
W1 O &
Y 729 g E279
. W1

Fig. 16 Native Cpl(ADT) in comparison with its mutants Cpl-C299A
(A, green) and Cpl-E279A (B, magenta). In case of the C299A mutant,

water W* adopts the position of the absent thiol. Protein structures from
PDB entries 4XDC (native), 6GLY (C299A) and 51A3 (E279A).
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enzymatic activity of the mutant but accepts a proton from
the H-cluster upon H, oxidation also leading to an enrichment
of the Hyyq state.”® In contrast to alanine and serine mutants,
which show less than 0.2% of the hydrogenase specific activity,
the C299D/C169D mutants show 25% and 65% remaining
activity, respectively (Table 4). The pH-dependent activity
optimum of C299Dc,;, however, is shifted from pH 8 (native)
to pH 6.5 and shows an altered but intact protonation equili-
brium within the PTP.”

The next amino acid of the proton transfer path is glutamic
acid E279/E141, which strongly interacts with W1 (2.5 A) via a
stable trans complex.””?® Furthermore, it only weakly interacts
with $319/S189 (3.6 A), indicating a discontinued proton transfer
in the H,, state. Stripp and coworkers determined E279/E141 as
the key residue upon switching from proton release to its
uptake.”® Adjusting the CrHydA1 to Hyq requires a proton from
the PTP to enter the H-cluster, i.e. proton uptake reactivity.>"”®
According to IR spectroscopy, E141 of CrHydA1 thereby forms an
H-bond to S189 closing the gap between the inner and outer core
of the PTP and enables a more continuous proton transport.
In line with these results, E141D1yqa1 loses 90% of its activity
due to the longer distances between D141 and W1 and S189,
respectively (Table 4).”° The remaining activity of glutamine and
alanine mutants at this position is below 1%, indicating the
complete loss of the proton transfer ability. In contrast to C299A,
the crystal structure of E279A does not show an additional water
molecule rescuing the proton transport (Fig. 16B), which explains
the low residual remaining activity. In line, the mutant E279A
adopts the Hypyq state under H, oxidising conditions, since the
proton transport pathway is interrupted at this position.”

$319/5189 is the first residue of the outer PTP and its side
chain is 3.6 A apart from E279/E141 and serves as H-bond
acceptor during proton uptake. It further tightly interacts with
E282/E144, which is only 2.8 A apart, as H-bond acceptor and
donor during proton release and uptake, respectively.”® Both
mutants, S319A of CpI and S189A of CrHydA1 show approx. 5%
activity regarding H, evolution at pH 6.8 relative to the respec-
tive native enzymes (Table 4). The crystal structure of S319A
from CplI (Fig. 17A) shows an additional water molecule Wg3194,

Table 4 H, production activity of SDM variants targeting the putative PT
pathway in Cpl and HydAl. H, production activities of PT pathway variants
determined at pH 6.8 are presented in % relative to the respective
wild-type activity”®

Cpl H,-Production CrHydA1 H,-Production
mutant activity/% mutant activity/%
C299A 0 C169A 0

C299D 30 C169D 65

C299S 0.05 C169S 0.1
E279Q 0.65 E279Q 0.2
E279A 0.06 E279A 0.1
E279D 30 E279D 5

S319A 5 S189A 10

E282Q 5 E144Q 0.45
E282A 60 E144A 45

E282D 80 E144D 50

R286A 90 R148A 55

R286L 300
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Fig. 17 Native Cpl(ADT) in comparison with its mutants Cpl-S319A
(A, yellow) and Cpl-E282A (B, grey). In case of the S319A mutant, water
Ws3104 @adopts a position near the serine vacancy, closing the PTP. The
crystal structure of E282A shows to invaded water molecules Weogona1 and
WEe2g242, ONe at the vacancy of the carboxylic acid and one more out-
wards, forming a makeshift proton pathway between bulk solvent and
S319. Protein structures from PDB entries 4XDC (native), 6GM4 (S319A)
and 6GM1 (E282A).

which does not exactly occupy the vacant ~OH site of serine but
is in proximity to E279 and E282 and closes the proton transfer
path. As seen before in C299A, the makeshift water molecule
changes the pH-dependent activity of the mutant to the highest
activity between pH 6.5 and 7. However, in contrast to the
C299A mutant, this modification does not lead to the accumu-
lation of Hypyq under H, oxidizing conditions but shows the
reduced species Hyed, Hgrea and Hyeq' besides Hoy.

Due to the missing possibility of S319A to form H-bonds
to its neighbours, the next amino acid residue in the PTP,
glutamic acid E282, points more towards the arginine residue
R286 at the edge between enzyme and solvent. In native [FeFe]-
hydrogenases, E282/E144 and S319/S189 interact via a hydrogen
bond of 2.8 A length. The deprotonated side chain might further
form a salt bridge to the guanidine moiety of arginine R286.%
Mutants of E282/E144 show overall diminished activity regarding
H, evolution, which is, however, less pronounced as observed for
e.g. E279/E141. Like for the more inwards positioned glutamic
acid, E282Q/E144Q show only 5% and 0.5% remaining H, release
activity and a pH-dependent activity maximum between pH 6 and
6.5 according to the altered pK, value of the glutamine residue
(Table 4). Remarkably, the aspartic acid mutants E282D/E144D
show 80% and 50% remaining activity, respectively (Table 4).
This contrasts the respective E279D/E141D mutants, which show
significantly less activity. This discrepancy demonstrates the
significance of the distinct amino acid residues for the catalytic
PTP. However, the importance of proper amino acids within PTP
appears to decrease from the H-cluster to the enzyme’s surface.
Interestingly, the E282A/E144A mutants show 60% and 50%
residual activity, which again drastically differentiates E282/
E144 from the inner laying E279/E144 (Table 4). The remark-
able activity of these mutants most likely stems from two water
molecules invading from the bulk solvent into the PTP (Fig. 17B).
One is located directly at the vacancy of native E282, 2.5 A away
from the hydroxyl moiety of S319, and another one is placed
more outwards in proximity to the bulk solvent, as revealed by
XRD studies of E282A from Cpl. Therefore, those water molecules
build up an H-bond network from the solvent to S319, taking care
of proton transfer in the outer core of the PTP. However, as

This journal is © The Royal Society of Chemistry 2021

View Article Online

Chem Soc Rev

previously described for other mutants, this is well in line with a
slight shift of the maximal activity from pH 8 to pH 7.”° Besides
its H-bond towards S319/S189, the side chain of the glutamic acid
residue E282/E144 interacts with R286/R148, which is positively
charged/protonated under physiological conditions and there-
fore forms a salt bridge with negatively charged/deprotonated
E282/E144 of 2.8-3.1 A.”>°® IR spectroscopic investigations on the
R148 from CrHydA1 propose a neutral side chain during proton
uptake (formation of Hyeq), which renders the arginine residue
the first proton donor.”> A permanently neutral charge at the
position of R286/R148 was achieved by the R286L mutant.”?
Surprisingly, under conditions of non-rate limiting electron
transport, ie. using methyl viologen as mediator, the R286L
mutant from Cpl surpasses its native counterpart by the factor
of three and is therefore the only mutant with increased activity
in comparison to the native enzyme. This interesting finding was
explained by the absence of the salt bridge between R286
and E282 that neutralises the negative charge of the carboxylic
acid. In R286L, this charge is still present increasing the driving
force for protons to enter the PTP.’*°° Furthermore, E282
is more exposed to the bulk solvent in R286L, as seen from
Zn**-inhibition experiments.

3.9 Influence of an additional F-domain on the reactivity of
the H-cluster

The reactivity discussed so far is based on results from [FeFe]-
hydrogenases HydA1 from C. reinhardtii. Especially due to the
possibility to artificially maturate this enzyme, most research
concentrates on this “blueprint” for H-cluster reactivity. The
main difference between HydA1 and other [FeFe]-hydrogenases
is the electron supporting chain of two [4Fe-4S]-clusters, so
called F-clusters, which are absent in eukaryotic CrHydA1 but
present in prokaryotic hydrogenases, e.g. DdH and Cpl. The
F-clusters will be denoted as 4[4Fe]r (distal F-cluster, relative
from the H-cluster) and j[4Fe]r (proximal F-cluster). We will
stress the resulting differences in reactivity after describing the
similarities between HydA1l and prokaryotic hydrogenases.
The H,y state of CrHydAl, i.e. the smallest possible [FeFel]-
hydrogenase, exhibits only the H-domain and is characterized
by a rhombic EPR signal (g = 2.10, 2.037, 1.996), an IR signature
with uncoupled vibrations for each CO/CN™ ligand (2088, 2070,
1964, 1940, 1802 cm ') and an electronic structure with an
oxidised [4Fe-4S]** cluster and a bi-valent diiron site (Fe"'Fe").
Upon CO binding, the IR pattern changes to 2091, 2081, 2012,
1968, 1962 and 1808 cm ™, respectively, accounting for the
additional CO ligand and the EPR spectrum changes from a
rhombic to an axial signal (g = 2.052, 2.007). The IR spectra of
H,x and H,,-CO from DdH (hydrogenase from D. desulfuricans)
show characteristic signatures similar to Hex and He,-CO from
CrHydA1 (see Tables 2 and 3).”° Likewise, the EPR spectrum of
DdH in the oxidised state agrees with the observed spectrum of
HydA1 (see Table 1) but shows additional signals for the
F-cluster.>»®" In case of Hey, a broad rhombic signal (g = 2.059,
1.935,1.877) is present in the spectrum as well. This was assigned
to 4[4Fe] since a spin coupling between the H-cluster and ,[4Fe]g
is expected and would result in an overall EPR silent state if the

Chem. Soc. Rev,, 2021, 50, 1668—1784 | 1685


https://doi.org/10.1039/d0cs01089h

Published on 11 2020. Downloaded on 7/28/2024 5:30:55 PM.

Chem Soc Rev

distal H-cluster is reduced.’” The overall electronic and molecular
structure of the H-cluster in Hyx and He-CO from CrHydA1l and
DdH can therefore considered as identical, which is also in line
with matching *’Fe hyperfine values, examined by HYSCORE
spectroscopy, from both enzymes."®”" However, differences
occur for reduced enzymes.®! Under slightly reducing conditions,
i.e. 50 UM NaDT, the IR spectrum of DdH(PDT) shows a mixture
of HiY" and Higy'. However, the typical rhombic signal of Hoy
in the EPR disappears, whereas the broader rhombic signal
(g = 2.059, 1.935, 1.877) remains in the spectrum and another
broad signal around g = 2.01 appears. This result was explained
by an equilibrium between a state, in which both F-clusters are
reduced and the H-cluster is oxidised (Fyea/Frea/Hox), and a state
in which the H-cluster and q[4Fe]r are reduced while ,[4Fe] is
oxidised (Frea/Fox/Hrea). In the former state, p[4Felr and the
H-cluster combine to an electronically coupled cluster pair,
resulting in an altered EPR spectrum compared H,, (broad g =
2.01), while in the latter state both, the H-cluster and the
proximal F-cluster are EPR silent.”’ To account for this equili-
brium, the respective states are called Fyeq/Hox and Foy/Hyeqr With
both states bearing an EPR active reduced distal F-cluster.
Notably, the IR maxima of e.g. Freq/Hox shift by approx. 1 cm™
compared to Fo/H,y, which was observed in high-res SEC-IR
experiments.”” Based on these EPR results, an effect of the cluster
pairing regarding the transition potentials of the H-cluster is
likely. The apparent midpoint potential of the Hoy — Hiyea
transition in DAH(PDT) is —500 mV vs. SHE at pH 8, which is

F...H

red
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certainly more negative than that observed for CrHydA1(PDT)
(depending on the reference: 25 mV°* or 155 mV’* more
negative). Furthermore, the two-state population, followed
by IR spectroscopy, does not show a Nernstian behaviour.
This is a result of redox anti-cooperativity, which was rationa-
lised by simulating the resulting population curves. Therein,
the extra electron upon reduction of Fo/Hex was allowed to
equilibrate between p[4Felr (Frea/Hox) and [4Fely (Fox/Hyear),
where the ratio was determined by the respective cluster
potential. Taking the small IR band deviation of 1 ecm™" for
reduced ,[4Fe]r into account, the new four-state population
curves became strictly Nernstian. The new model includes
a reduction potential of [4Fe]y, which depends on the redox
state of ,[4Fe]p. If ,[4Fe]; is already reduced, a more negative
potential for [4Fe];; was observed and vice versa, i.e. redox anti-
cooperative behaviour.®!

In CrHydA1, CO inhibition leads to increased electron
density at [4Fe]y and results in a more negative reduction
potential compared to non-inhibited species (Section 3.3).
The same observation was found for DdH(ADT) as well. The
potential shift of [4Fe]y is strong enough to prevent an equili-
brium between Freq/Hox"CO and Fyy/H;eq'-CO due to the much
more positive reduction potential of ,[4Fe]s. Therefore,
Frea/HoxCO is exclusively present. To achieve Hieq-CO,
a second electron is needed to enter the Feq/Heq-CO state,
which is again, as observed for DdH(PDT), formed at much
more negative potential due to anti-cooperativity (Fig. 18).

red*

Fig. 18 Four-state model of the redox-anticooperative effect, which results from the additional F-clusters in [FeFe]-hydrogenases (except HydAl).
Clusters coloured in red are oxidized, clusters coloured in blue are reduced. Model depicted from ref. 91.
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These findings explain why H.q-CO in DdH cannot be
observed under the conditions of CrHydA1.>!

Even more interesting is the comparison of CrHydA1(ADT)
and DdH(ADT) since former shows a fascinating pH-dependent
behaviour regarding single-electron reduced species: at alkaline
pH (i.e. pH > 8) H,eq' is favoured, while at acidic pH Hyeq is
preferred (see Section 3.6).”° Due to the amine bridge, such a
behaviour can be expected for DdH as well but is observed to
another extent. At pH 6, H,,q dominates upon reducing the
potential, while H,eq’ is not observed. This is in line with the
findings from HydA1. Interestingly, Hgreq, Which replaces Hyeq
at even more negative potentials in CrHydA1 cannot be found
in DdH under the same conditions. The hypothesis explaining
the absence of Hgeq in DdH is that the second electron,
required to form Hg.q and finally liberate H, can be stored
in the F-clusters instead of the H-cluster. Due to the anti-
cooperative effect of the additional [4Fe-4S]-cluster, the
H-cluster’s pK, shifts towards a value close to that of Hgeq in
HydA1. Therefore, bacterial hydrogenases may be able to
skip Hgeq (the participation of Hgeq in the catalytic cycle is,
however, anyway under debate) and directly form Hypyg. Hpya
was found in DdH under the same conditions as in CrHydAl,
being low pH and constant H, supply, showing the importance
of this state in both organisms.®*® Decreasing the proton
concentration to pH 8 results in H,eq' being formed in HydA1.
However, in DdH H,q is still the dominant species. Although
the amount of both species in DdH increases simultaneously at
potentials between —200 and —400 mV, H,.q' vanishes beyond
this potential. According to simulations, the proximal F-cluster
is reduced at approximately —400 mV, which results in an anti-
cooperative effect and renders the reduction of [4Fe]y; less likely
to occur. Apparently, the pK, of the amine bridgehead shifts
from ~7.7 for HydAl to ~9.3 in DdH due to the redox anti-
cooperativity.”" However, the influence of a protonation at the
stabilising cysteine residue S9 of the [4Fe]y, which might be
influenced by the reduction of the proximal F-cluster, was
considered as possible explanation. This should be addressed
in an additional study since the formation of HyH under
similar conditions as in CrHydA1 was reported for DdH as well.
H,H is associated with the H-cluster in oxidised form with an
additional proton at cysteine S9, which causes minor (4 to
6 cm™ ') IR band shifts.>" The complex situation of two different
protonation events (cysteine S9 and adt) besides the three
different reducible clusters (,[4Fe]g, [4Fe]y and [2Fely;) makes
the interplay of protons and electrons in DdH a very interesting
topic to study albeit a challenging one.

Like DdH, hydrogenase I from C. acetobutylicum (Cal) bears
two additional F-clusters next to the H-cluster within the
protein frame. Compared to CrHydA1 and DdH, the IR spectrum
from auto-oxidised Cal in the H,y state shows slightly down-
shifted CN~ (2082 cm ' and 2070 ecm™ ') and upshifted CO
stretching frequencies (1969, 1646 and 1800 cm ). The EPR
spectrum, however, closely resembles that of DdH and CrHydA1
showing a rhombic 2.1 signal (g = 2.009, 2.039, 1.999)."% At
acidic pH, the IR bands slightly shift towards higher wavenumbers,
as was observed for CrHydA1 and DdH in the Hy, — HH
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conversion as well, which indicates a similar reactivity at this
point.>**" Due to the accessory F-clusters, the reactivity of Cal
seems to be very close to that of DdH.>* At pH 8, upon reducing the
enzyme by NaDT or by photocatalytic electron supply, Hyeq is
formed indicated by the marker band at 1899 em ™" within the IR
spectrum, whereas Heq' is dominant under these conditions in
HydA1. The reduction is likewise accompanied with a seemingly
broad rhombic signals within the EPR spectrum that can be
assigned to the reduced F-clusters (g = 2.043, 1.941, 1.911 and
g = 2.073, 1.930, 1.868), which was also observed in DdH.”"'*°

At 13 K, the IR spectrum of NaDT reduced Cal shows bands
at 2055, 2040, 1921, 1899 and 1801 cm™'. More interestingly, a
p-CO band is observed under these conditions. As previously
described for CrHydA1, this may arise from the cryogenic
conditions at which the spectrum was recorded.”””'%* Changing
conditions to D,O did not yield any observable shifts, which
renders a terminal bound hydride at Feq unlikely. Unfortu-
nately, no room temperature data are available to discuss the
existence of a bridging CO vs. a bridging H™, which is proposed
as one possible structure of a single-reduced H-cluster inter-
mediate as well.?

Experiments on CrHydA1, in which specific amino acids
were exchanged by site directed mutagenesis showed that
e.g. Hpyq is enriched without the need of increasing both,
proton concentration and H, pressure.”” This is also true for
Cal, whose IR spectrum shows the presence of two formerly
unobserved species at room temperature upon changing C298
to Serine. Decreasing the temperature to 10 K results in
the vanishing of bands at 2042 cm™*, 2022 cm ™", 1892 cm ™,
1978 ecm ' and 1781 ecm™', which were assigned to Hgeq.
The remaining bands at 2083 cm™?, 2067 cm™ ', 1977 cm ™ *,
1964 cm ™' and 1851 cm™ ' were assigned to Hyya. The fact that
both states, Hpyg and Hy.q, are only observed if the proton path
is blocked, renders them possible tautomers and endpoints of
the catalytic H, oxidation. As discussed above for DdH, the
existence of reduced F-clusters can compensate the second
reduction step from a single reduced to a double reduced
H-cluster species before Hyyq is formed. There, Hgeq is not
observed and a proposed transient state in the HyeqH'® — Hpya
transition. Most likely, this is also the case for Cal since the
F-clusters should show the same effect here. Additionally, H/D
exchange experiments showed that the HyegH' — Hyyq transi-
tion is slower in case of D,O, resulting in accumulation of
H,.qH'. The slowed kinetics implicate an intramolecular proton
transfer for the transition from HyeqH' to Hpyq. Both enzymes,
DdH and Cal, exhibit additional F-clusters for electron relay
and most likely changing the H-cluster’s electronics. To determine
the general function of these additional clusters, all enzymes
excluding CrHydA1 should be investigated regarding their redox
anti-cooperativity as performed on DdH. This includes enzymes
from Clostridiae (Cal and CpI) and eventually HydS from
T. maritima, which exhibits F-clusters as well and is known as
sensory [FeFe]-hydrogenase.®® Sensory-type hydrogenases exhibit
a third accessory [4Fe-4S]-cluster at the C-terminus, which is
ligated by a Cx,Cx,4Cx;6C motif. Although the H-cluster of TmHydS
is structurally the same as in CrHydA1, Cal and DdH, the reactivity
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of the sensory-type hydrogenase is dramatically different from the
prototypical-type hydrogenases, which were described above. First
indication of the altered reactivity is the 100-fold and 5-fold lower
activity in H, production and oxidation, respectively, of TmHydS
compared to CrHydA1.°" This can be explained by the altered
amino acid ligation of the H-cluster compared to e.g. Cpl. While
Cysteine (C299) is the endpoint of the PTP in prototypical Cpl,
an alanine (A131) occupies this position in TmHydS. Likewise,
methionine residues M353 and M497, which are part of the
H-cluster’s coordination sphere in Cpl, are replaced by G177
and S267 in TmHydsS, respectively.'®® Mutagenesis experiments
of CpI showed that variants of respective amino acids, i.e. C299S,
353L and M497L, led to diminished activity as well.'** In addition,
upon maturation of apo-HydS with an artificially synthesised
H-cluster (under 2% H,), an IR spectrum with CN~ bands at
2055 and 2022 cm ™' and CO bands at 1894, 1871 and 1763 cm ™'
is observed (Table 5). While this pattern is not changed under
reductive conditions (H, or NaDT), oxidation with thionine led to
an altered spectrum of 2088, 2079, 1971, 1947 and 1806 cm " that
resembles Hy, spectra of e.g. DdH and Cal. In conclusion, HydS
exclusively adopts a reduced state under already minor amounts
of reducing agents, which is not observed for other [FeFe]-
hydrogenases. The latter shows major amounts of Hex upon
maturation under the same conditions. The 30 to 80 cm™"
downshift vs. Hex of IR bands in the reduced state implies a
reduction of [2Fely as in Hyeq of CrHydA1l. However, the observed
CO/CN™ frequencies do not match those from H,q in HydA1l,
especially the observed pCO band in TmHydS cannot be asso-
ciated to an Hyg-like state (compare Tables 2 and 5). Therefore,
the reduced state in TmHydsS is called Hyeg-.

3.10 The catalytic cycle(s) of [FeFe]-hydrogenases

Despite the intensive investigation on the catalytic cycle of
[FeFe]-hydrogenases in the last decades, up to today, not “one
and only” working mechanism of this enzyme family is known.
However, based on the reactivity described in this section, some
cycles were suggested, which will be briefly described in this
section. Especially, we aim at identifying similarities and major
discrepancies of those cycles, which are mainly based on
inconsistent findings on the reduced H-cluster states Hyeq
and Hgeq. It is evident from the results presented in this

View Article Online

Review Article

section that the exact nature of the states involved in the
catalytic cycles is an ongoing matter of a lively debate in the
community and hence we will leave the final judgement to
the reader as we do believe that all of those currently reported
mechanisms have strengths and weaknesses. We anticipate
that future theoretical and experimental insights will lead to
continuous reassessments and changes in the catalytic cycles.

In Fig. 19-21, three proposed catalytic cycles are presented,
which are adapted from a recent joint publication of the groups
of Lubitz, Birrell and Dyer.'®> From sub-turnover time-resolved
IR spectroscopy, the authors derived cycle C, since all contained
states were identified in their experiments. However, mechan-
isms A and B are very similar to C, considering the main
H-cluster states Hox, Hreq and Hpyqg. All cycles start with Hy,
which is the overall accepted entry point of the catalytic cycle.
H,, is characterised by many different techniques (see above) as
a [4Fe-4S]*'—[Fe,”'Feq'']-cluster with a bridging p-CO ligand
and an apical vacancy at the distal iron, with an eventually
slightly apical rotated CN~ ligand.?******%” From here, the first
reduction event occurs at the [4Fe-4S]-cluster, which is espe-
cially plausible in hydrogenases with additional F-clusters as
electron delivery chain but also true for HydA1, which lacks this
chain of [4Fe-4S]-clusters.*">"*”%> However, the exact mechan-
isms of the electron transfer are different in cycles A versus B
and C. While in cycle B and C a simple electron transfer forms
H,eq, 2 PCET is responsible for H,.q' formation in cycle A. Hyeq-
is described similar to Hyeq, as a [4Fe-4S]'"-[Fe,*'Feq']-
complex with an H,y like molecular structure, but with an
additional proton at one of the [4Fe-4S]-cluster stabilising
cysteines (in blue colour in Fig. 20).°"%>58

PCETs are common in nature and advantageous for a multi-
electron process due to the balanced charge of the reduced
moiety."® In all cycles the next state, which could be trapped
and thoroughly investigated by numerous different techniques
is Hpyq. However, the mechanism to get there differentiates the
cycles. While in cycle A a second PCET from H,eq directly
results in Hpyq, cycles B and C follow a successive mechanism
of separate proton- and electron-transfer steps. A proton trans-
fer to Hyeq results in the formation of H,eqH', which electronic
structure was characterized by Lubitz and coworkers as
[4Fe-4S])*'-[Fe,''Fey'"] with a protonated amine bridgehead,

Table 5 IR frequencies of known H-cluster states from hydrogenases with an additional F-domain

State (CN7)/em™" (CO)/em™" Ref. State Y(CN7)/em™" »(CO)/em™* Ref.
DdH TmHydS
H,, 2093, 2079 1965, 1940, 1802 75 H,, 2087, 2079 1971, 1947, 1806 61
HoH 2097, 2082 1965, 1940, 1802 75 Hox-CO 2090 2016, 1973, 1964, 1805 61
H,,-CO 2096, 2089 2017, 1972, 1963, 1812 91 ) 2055, 2022 1894, 1971, 1763 61
Hyeq 2079, 2040 1915, 1892, 1962 75 Hyreds 2047, 2013 1900, 1861, 1751 61
Hiya 2089, 2079 1980, 1963, 1860 75
Cal Cpl
H,, 2082, 2070 1969, 1646, 1800 101 H,, 2082, 2071 1970, 1947, 1800 75
H,eq 2052, 2035 1914, 1894 101 H, H 2084, 2073 1975, 1953, 1809 75
H,.qH' 2055, 2040 1921, 1899, 1801 101 H,eq 2071, 2053 1915, 1899, 1962 75
Hiya 2080, 2063 1975, 1960, 1849 101 H,eq 2065, 2039 1922, 1894, 1958 75
Hyya 2082, 2068 1984, 1968, 1856 75
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which is why the additional electron from the four-iron cluster
has to migrate to the diiron site.”® In cycle C, the following
electron transfer forms HgeqH', that isomerises to Hpya.
In cycle B, the latter state is directly formed upon electron
transfer. Considering the functionality of the amine bridge
within the PTP, an intermediate with a protonated bridgehead

This journal is © The Royal Society of Chemistry 2021

Fig. 21 Schematic representation of the catalytic cycle of [FeFe]-
hydrogenase, based on the states observed under whole-cell conditions
including the protonated hydride species (HnygH*). Figure and caption
from ref. 35.

is feasible - at least as very short-lived transient state — even in
cycle A. This shows the hen-and-egg problem of a PCET, which
may be facilitated via an electron-proton-transfer or an proton-
electron-transfer.'®”
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Starting from Hyyq, the second protonation of the H-cluster
via the catalytic PTP results in the formation of H, and the
regain of Hoy. In cycle A, the H-cluster passes through H,H, an
H,-like state that still holds the non-catalytic proton near the
[4Fe-4S]-cluster. Cycles B and C further contain the intermediate
species Hoy-H, and/or thdH+, which is feasible considering the
role of the amine bridge. The HyyqH' state was recently observed
in in vivo studies on HydAl containing E. coli cells and is a
plausible intermediate in the Hpyq — Hox conversion.*’

Blanking out the non-catalytic proton in cycle A, cycles B and
C can be considered as more detailed mechanisms of cycle A.
All used H-cluster states share the Hy,-like geometry with a
bridging CO, which was supposed to be a prerequisite for fast
turn over. However, in recent literature, structures containing a
bridging hydride instead of a bridging CO were discussed as
well.®%8 Those structures are thermodynamically more stable
and therefore might not justify fast turn-over rates as observed
for [FeFe]-hydrogenases, hence they were placed in a secondary
cycle (Fig. 20) with exclusively bridging hydrides, which was
formerly denoted as “slow cycle”.’” We already discussed that
both single-electron-reduced states Hyqr and Hgq can be
formed upon reducing H,x and that pH dictates whether the
electron resides at the [4Fe-4S]-cluster, stabilising the Hoy-like
structure at more alkaline pH, or migrates to the diiron subsite
forming Hyeq (HregH') at pH < 6. At this point, a problem
regarding the nomenclature of the specific states arises. The
state which is entered as first species in all cycles, i.e. [4Fe-
4S]1+—[Fep2+Fed1+], is called Hred76,77,105 or Hred,’51,72,87,88
depending on the additional proton near the [4Fe-4S]-cluster.
The single-electron-reduced [4Fe-4S]*'[Fe,"'Fey''] state is
called Hyeq®®® or HpeqH',’®771°%'% depending on the
described intermediate and considered mechanism. The same
is true for the double reduced state Hgpeq/HgreaH

Unfortunately, no XRD studies that would give hints towards
the spatial structure of those single reduced states are present.
Therefore, EPR and vibrational spectroscopy in combination
with computational techniques are the methods of choice to
characterise the molecular structure of each Hcluster state.
While EPR spectroscopy can electronically distinguish between
[4Fe-4S]'"~[Fe,*'Feq''] and [4Fe-4S]**-[Fe,''Feq''], the deter-
mination of the actual structure requires better suited techni-
ques. Along this line, Lubitz and coworkers proposed the
structure of HygH" in 2017 based on the pH dependency of
this state (Section 3.6).”° Since the secondary amine is the most
basic site within the H-cluster and simultaneously the endpoint
of the catalytic PTP, a structure with a protonated bridge (NH,")
and a (semi-)bridging CO was justified. Later, this structure was
further strengthened by IR und NRVS measurements. There, a
bridging CO signal at 1810 and 1803 cm™ " was found within the
IR spectrum of HegH" and Hg.qH', respectively. The absence of
a high energy p-H™ band in the respective NRVS supported
the assumption of a protonated amine bridge for these
structures.”” As mentioned in Section 3.4, these measurements
were, however, conducted at 40-70 K, rendering a direct com-
parison with spectroscopic results obtained at room tempera-
ture cumbersome. IR spectroscopy at room temperature did not
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show a bridging or semi-bridging CO ligand.”"”> However, in
models without p-CO ligands, the clear pH-dependent for-
mation of H,eq Was addressed via a bridging hydride for Hyeq
and Hgeq incoming from the catalytic PTP (Fig. 20 left cycle).

Computational simulations on those structures were in
overall good agreement with observed spectra.’® Hoy — Hyeq
NRVS difference spectra revealed major differences at the
[2Fe-2S]-subsite for Hyeq, whereas the [4Fe-4S]-cluster in Hyeq
and H,, is identical. Again, simulations were carried out for a
structure with a p-H™ ligand, which agreed well with the found
spectra.®® Interestingly, a high energy band at approx. 750 cm ™"
for a bridging hydride was absent in these simulation and
present in simulation of Birrell and coworkers.””

The current data situation does not allow to favour one of
the proposed structures for Hea/HreaH™ and Hgreq/HgreaH' in an
unbiased fashion. However, the discussion on these H-cluster
states indeed improved the knowledge on the working mecha-
nism of [FeFe]-hydrogenases - at least, if in vitro measurements
of isolated enzymes are considered. Recently, in vivo measure-
ments on living E. coli cells that were genetically modified to
express the hydrogenase HydA1 and artificially maturated with
a synthetic precursor of the diiron site, were performed.*> Here,
no [4Fe-4S]""-[Fe,*'Feq'}like state was found, instead Hyeq
was enriched under 1% H, (99% N,). Addition of 2 mM
NaDT and acidification of the cells led to formation of H,H.
Additional treatment with H, afforded Hyyq. Increasing the
NaDT concentration to 100 mM enabled the detection of Hpyg
even at pH 8. When the pH was lowered at these conditions,
a new species with approx. 15 ecm ' upshifted CO bands
compared to previously reported CO signals of Hyyq occurred.
These signals were attributed to the HpyqH" species, comprising
a protonated amine bridge, which was hard to enrich in
isolated HydA1 and was therefore not characterised - although
postulated (Fig. 20). This state is the missing link between Hpyq
and H,, (Fig. 21) and provides insight into the H, formation
and cleavage.*®

Part B: structural and functional
models of [FeFe]-hydrogenases

IV Synthesis of H-cluster

models — bridge alterations, metal
exchange and ligand substitution
4.1 From enzymes to biomimetic H-cluster models

The pioneering progress in the analysis of natural systems led
to the identification of the crucial framework and functional
properties of the active site of [FeFe]-hydrogenases. Since the
detailed structural characterisation of the natural system at the
end of the last century,*®'°® synthetic chemists have constantly
devoted efforts towards mimicking the enzyme subsite. These
mimics range from small transition metal dinuclear carbonyl
clusters to elaborate artificial protein replications.*™?
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However, it should herein be mentioned that [2Fe-2S]-mimics
were already described in the early 20th century without the
knowledge of the hydrogenases’ active site but paved the way
towards the fundamental synthetic strategies to assemble these
cluster mimics. It is furthermore noteworthy that with the
exceptional work of Rauchfuss, Darensbourg and Pickett after
the elucidation of the enzyme structure, the iron sulphur
chemistry underwent a renaissance and became a significant
part of bioorganometallic chemistry. The tremendous modifi-
cation efforts to the catalytic subsite are mainly driven to either
achieve ideal catalytic efficiency approaching that of the natural
enzyme or to understand the underlaying catalytic mechanism
which results in a hitherto unmatched proton reduction activity
of the natural system. The diiron subsite can be modified in
multiple ways, including e.g. the modification of the bridging
S-S linker length, exchanging the bridging sulphur-atoms
with other chalcogens or pnictogens, substitution of carbonyl
ligands or even the incorporation of other metals. We herein
attempt to provide a comprehensive overview on the plentiful
modification options.

4.2 H-cluster models with altered dithiolate bridges

4.2.1 Methanedithiolate models. The first synthesis of a
diiron methanedithiolate complex was described by Seyferth
et al. already in 1981 from in situ generated LiFe,S,(CO)s (6)
and CH,l,. This synthesis afforded the desired compound
Fe,(1-SCH,S)(CO)s ((7), Fig. 22) in a yield of 25%. Notably, the
reaction of CH,I, with Fe,(SH),(CO)s (8) resulted in signifi-
cantly improved yields of 84%.'%° In 2012, Liu et al''®
described a facile novel synthetic route towards a -S,C—CR,
linker. Following this route, Fe,(i-S,C—CHPh)(CO)s (9) was
obtained by the reaction of Fe;(CO);, (10) and 2-phenyl-
ethenethione as well as its tautomer (2-phenylethyne-1-thiol).
The low yield (4%) of the model yet remains unexplained due

Ph H
S sl
.S .S .S
OC\F ,/S\\F /CO OC,_ ,/S\\F /CO OC,_ //S\\F /CO
OC“ll e— e{,,CO OCI\-lFe— e(,,Co OCu'lFe— ez\.,,Co
oC CcOo oC CO oC CO

7 9 1

Fig. 22 Structure of exemplary methanedithiolate complexes.
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to the extensive and complicated chemistry of thiols with
Fe,(CO)y».

In that direction, Fe,(CgH;,S3)(CO)s (11, CgH;,S;
dimethyl-4-(propan-2-ylidene)-thietane-2,2-bis(thiolate))
obtained via the reaction of tetramethyl-1,3-cyclobutane-
dithione with Fe;(CO),,. A plausible synthetic mechanism for
the formation of 11 involves the rearrangement of the dithione to a
beta-thiolactone followed by sulphur insertion to yield the respec-
tive thiolene, which upon reacting with Fe;(CO),, yields 11.

Furthermore, Fe,(pu-S,C—CHC(O)CcH,4R)(CO)s (12R, R = F,
OMe) with unsaturated functionalities at the thiolate linker
were described by Zamora and coworkers."''"” While the
reaction of Fe,(CO), (13) and (HS),C—CHC(O)C¢H,R in diethyl
ether gave the respective saturated products (14R), a 1:1 molar
ratio of Fe3(CO),, and corresponding ligand in THF yielded the
unsaturated product (12R) (Fig. 23). Upon further increasing
the ligand amount, a mixture of both products was obtained.
Although these models show structural similarities with the
active site of the enzyme, they generally lack further investiga-
tions on their catalytic activity.

4.2.2 Ethanedithiolate (EDT) models. In the early 1960s,
King et al described the first synthesis of Fe,(edt)(CO)s
(15, Fig. 24) obtained via the reaction of Fe(CO)s; and 1,2-
ethanedithiol.'*® In a later attempt, the complex was also
obtained by reacting Fe,(CO), with ethanedithiol/dithiocarbo-
nates (C,H,S,CO).""*'**> Subsequently, Huttner et al. reported
that complexes of the type Fe,(S,(CH,),)(CO)s (7 = 2, 3) can be
generally synthesised by the reaction of Fe3(CO),, with the
respective thiols under reflux conditions. These modified
synthetic pathways significantly improved the yields of the
respective [2Fe-2S]-complexes from 0.3% to 65% and can thus
be regarded as key achievements towards a modern hydroge-
nase research.''®

With these synthetic possibilities at hand, various modifica-
tions have been carried out. Donovan et al reported the
modified analogues Fe,((SCHR),)(CO)s (16R, R = CH3, CH,OH)
wherein methyl and hydroxymethyl groups were introduced to
the ethanedithiolate linker.'"” In the absence of any acid, the
complexes displayed cathodic shifts in their reduction potential
increasing with the number of methyl groups incorporated
within the thiolate linker. When studied in the presence of
e.g. 4-tert-butylphenol as a proton source, a catalytic peak was
observed at approximately —2.2 V vs. Fc/Fc' for all complexes.
Along this line, Fe,(SCH,CH(CH,OH)S)(CO)s (17) providing an

= 3,3-
was

R R
R
0 . FesCOn2 _ Fe)CO)p 0
’ dry THF, 1h o dry Et,0, 1h
oc. ,S8 co | oc. S8 co
FE N HS” SH FENR
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Fig. 23 Influence of the reaction conditions on the product obtained as described by Toledano et al. 1112
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Fig. 24 Exemplary EDT models.

additional hydroxyl group at the ethane bridge was synthesised
to study the influence of hydrogen bonding within the proto-
nation experiments. It was expected that the hydroxyl group can
act as a proton shuttle. While Pickett and coworkers revealed
a high degree of hydrogen bonding, which results in self-
polymerised cyclic hexamers,''® the model was, however, cata-
Iytically inactive.""” In addition, the edt complex was modified
with a sulfonate moiety to enable catalysis in water. Using
ascorbic acid as a proton donor and [Ru(bpy);]** as photo-
sensitizer, the modified edt-complex was reported to generate
88 equivalents of H, per catalyst equivalent.'"®

Edt-complexes can likewise be obtained by reaction of
Fe,(SH),(CO)s and diketones - here, reactions e.g. with glyoxal
or benzil resulted in the formation of Fe,((SC(OH)R),)(CO)s
(18R, R = H or Ph, Fig. 24). The rigid unsaturated dithiolate
linkers have been broadly known to assist in the facile reduction
of the [2Fe-2S]-models via delocalisation of the charge density from
the iron centres through p-n interaction."’

Likewise, the edt-model Fe,(SCH,C(S)—C—CH,)(CO)s (19,
Fig. 24) was synthesised by the reaction of Li,Fe,S,(CO)s with
excess 1,4-dichloro-2-butyne. Herein, the electron withdrawing
nature of the substituent, reduces the electron density at the
iron centre thereby resulting in slightly milder potentials for
electrochemical reduction (—1.60 V vs. —1.66 V of Fe,(pdt)(CO)s
(20)). The unsubstituted diiron buta-2,3-diene-1,2-dithiolato
model was found to be capable of proton reduction of
CH;COOH with a low overpotential of —0.65 V in MeCN."*'

Since the rotated structure of the complexes bearing a
bridging carbonyl group is a catalytically relevant key inter-
mediate, studies were also conducted to estimate the influence
of steric bulk at the dithiolate linker on stability of the rotated
state. Here, model 21 with a rigid norbornane structure was
synthesised from norbornyltrithiolane (exo-3,4,5-trithiatri-
cyclo[5.2.1.0]decane) and Fe,(CO), and was subsequently studied
using photoelectron spectroscopy in comparison to Fe,(pdt)(CO)s,
Fe,(bdt)(CO)s and 2,3-pyridinedithiolato analogues.'** While the
reorganization energies of the 1,2-benzenedithiolate, 2,3-pyri-
dinedithiolate, and 1,3-propanedithiolate complexes are com-
parable, the norbornane model revealed the largest overall
reorganization energy. However, the reorganization energies
of all models are small compared to the enzymatic active site
and further corroborates the importance of the secondary
coordination sphere on the proton reduction at unmatched
biological rates.'*>

4.2.3 Propanedithiolate (PDT) models. The historical
unambiguity in the exact nature of the bridgehead atoms
led to great efforts in developing models of the active sites.
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One example for such a model system that was thought to
possess biological relevance is Fe,(pdt)(CO)s (20) and numerous
complexes were reported with modifications on the bridgehead
carbon (Fig. 30). In this section, Fe,(pdt)(CO)s models are described
with focus on modified dithiolate linkers.

The PDT model was originally prepared from Fe(CO)s by
a reaction with tetrathiacyclophane in 30% yield.'* Later,
this method was modified, and 1,3-dithianes were employed
leading to an increased yield of 42%.'>* Nowadays, the syn-
thetic methodology of employing Fe3;(CO);, as the starting
material along with propanedithiol enables excellent yields of
up to 92% (Fig. 25)."*°

In general, Fe,(pdt)(CO)s based analogues can be synthe-
sised from the oxidative addition of cyclic disulphides to
Fe,(CO)y or by the reaction of the respective dithiols with
Fe;(CO),, (Fig. 25). These facile pathways usually lead to the
desired complexes in high yields. Alternatively, reaction of
Fe,S,(CO)s with LiEtz;BH, CF;COOH along with a suitable
dihalide compound (R;R,C(CH,X), where X = Cl, Br) can be
carried out as shown in Fig. 25. However, usually this method
gives lower yields as compared to the first two pathways.

Examples of early modified Fe,(pdt)(CO)s complexes date
back to 1982, when Seyferth et al. investigated the reaction of
Fe,(SH),(CO)s with mesityl oxide and o,B-unsaturated ketones
in the presence of amines (e.g. triethylamine or piperidine) to
afford complex 22.'*° Another early report of this class of
complexes described the synthesis of a model bearing valeric
acid and its C;-functionalized derivatives. Comparably, com-
plexes 23 to 25 were obtained upon treating Fe,(CO), with
o-lipoic acid or its ester/amide derivatives in THF.'*® Also, the
unsymmetrical complex 26 bearing a cyclohepta-4,6-diene
unit in the bridge has been reported and was obtained upon
treating Fe,(CO)y with the respective trithiolane compound
(i.e. 2,3,4-trithiabicyclo[4,3,1]deca-6.8-diene) in THF."*”

Likewise, as the nature of the bridging ligands exerts
significant influence on the electrochemical properties of the
models, their systematic study was thought to be essential.
Hereby, models with longer (-S(CH,),S-) (n = 4-8) dithiolate
linkers were reported. Prior to reaction, however, disulphide
formation was performed to suppress the formation of poly-
meric complexes and to favour the formation of the [2Fe-2S]-
mimics. The required cyclic disulphides were obtained upon
reacting the respective dithiols (HS(CH,),SH) (n = 4 to 8) and
iodine in a Et;N solution. Upon refluxing the disulphides with
Fe;(CO),,, the respective sub-site mimics 27 to 31 were
obtained. It was shown that oligomerization can hardly be
suppressed leading to di-, tetra- as well as hexametallic
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Fig. 25 Synthetic pathways to PDT and derivatives.
complexes. Likewise, the increased length of the dithiolate Rq
linker had negligible influence on the electrochemical proper- Ry

ties of the corresponding complexes.'>®

4.2.3.1 PDT models with Cy,-modifications at the dithiolate
linker. Most alkyl chain C,-modifications of the dithiolate linker
were — and still are — performed at the C, position of the pdt-
ligand. Although the general catalytic properties of the resulting
model compounds cannot be altered to a significant extent,
modified bridges do enable the alteration of physical properties,
e.g. solubility, size and adhesive capabilities as well as the introduc-
tion of additional functional groups for the linking to surfaces or
macromolecules.

Solubility is a key issue in HER-catalyst research and espe-
cially in larger scale, solvation in aqueous media is preferred for
environmental reasons along with the parallel use of water as
solvent and substrate. However, Fe,(pdt)(CO)e-like compounds
comprise a bad solubility in water due to their non-polar
character. Addressing this issue, the solubility of models is
usually increased through CO-ligand substitution in favour of
phosphines'®®**® or by encapsulating the models in a water-
soluble framework (e.g. dextrins™' or micelles'*?). The intro-
duction of polar headgroups at the C, position of the dithiolate
linker is a further possibility to improve the solubility of the
[2Fe]y-subsite models.

Weigand and coworkers showed that upon introducing
sugar residues to the C, position of 20 (Fig. 26) and Fe,(pd-
Se)(CO)e (32) the biomimetic catalysts became water soluble.'??
The synthesis of those compounds (33 and 34) followed the
well-established route via reacting Fe3(CO),, with the respective
protected dithiol or diselenolane in tetrahydrofuran under
reflux and a follow up deprotection of the sugar moiety with
sodium methoxide. Interestingly, the selenium version shows
an improved stability as well as activity regarding HER in
aqueous media, which was explained by the increased electron-
donating properties of selenium and therefore stronger

This journal is © The Royal Society of Chemistry 2021
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Fig. 26 Structure of PDT with modifications at the C, position of the
dithiolate linker.

n-backdonation to the CO ligand from the iron centres, resulting
in a stronger Fe-C bond. Both models provided good solubility in
H,0:MeCN (5:1) and acted as proton reducing catalysts using
acetic acid or water as substrate."*?

Besides sugar residues at the pdt-bridge, more simple
models comprising a hydroxy group at the bridge exist as well.
This model (35) was synthesised to gain information on the
influence of the hydrogen bonding network between the single
complexes in solution and to mimic the natural environment of
the H-cluster."** Using 1,3-disulfanylpropan-2-ol, a binuclear
Fe,(pdt)(CO)¢-like structure (35) was obtained, which is
arranged in a helical structure in solid state forming H-bonds
between the single hydroxy groups. For the longer butane linker
1,4-dithiothreitol, however, a cyclic tetranuclear complex (36)
was formed, in which two dithiolate bridges coordinate two
different Fe,(CO)s moieties. In a follow up study, the hydroxy
group in 35 was modified via two ways: (a) masked by a methyl
group to investigate the influence of the oxygen atom without
the hydrogen bonding network to neighbouring complexes (37)
or (b) by adding an additional alkyl group to the C, position of
the pdt-bridge (38)."*°

Notably, such modifications do not alter the catalytic proper-
ties of the resulting cluster compared to the hydroxy derivative
35. These results once again show that derivatisation of the pdt-
linker does not necessarily influence the catalytic mechanism
of [FeFe]-hydrogenase models, unless pK, and electron density
are dramatically changed. A change in reactivity, however, can
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be achieved by elongation of the C,-OH distance e.g. by
implementing an additional methylene group in the bis-
(hydroxymethyl)-functionalised  Fe,((ECH,),C(CH,0H),)(CO)s
(E = S (39), Se (40)) complexes.”*® The solid state structure of
those complexes also revealed a significant intermolecular
H-bonding network, forming a rod-shaped cluster with tetra-
hedrally arranged OH groups. Notably, the reduction potential
determined as Ey = —1.53 V and E,5s = —1.49 V vs. Fc',
respectively, which is significantly anodically shifted due to
facilitated structural changes upon reduction compared to PDT
that exhibits its averaged first reduction at —1.66 V vs. Fc'° (see
Section VI). Furthermore, as the resulting anionic species in
solution is potentially stabilised via intermolecular hydrogen
bonding from the hydroxymethyl moiety to either the Fe or the
chalcogen atom, respectively. The anion was found to be
capable of H, production from CH;COOH via a proposed ECEC
mechanism."*°

Another way to modify OH-functionalized complexes is the
subsequent derivatisation with a carboxylic chloride in
presence of Et;N and offers a wide range of possible alterations.
Song et al. described an alternative synthesis of 35 from Li,Fe,.
S»(CO)e and 1,3-dibromo-2-propanol and further derivatised
the OH-modified bridge (41 to 43R) as described in Fig. 27 to
explore their influence on the catalytic properties.”*” Herein,
model 42 is of special interest, as the pendant phosphine
coordinates to one of the iron centres, thereby resembling a
closer [2Fe-3S] H-cluster model."*®'%° However, electrocatalytic
activity regarding proton reduction was yet solely reported for
model 41 bearing the ketone group."’

The structural features of a headgroup-bound ligand, which
can coordinate to the iron centres as shown in complex 42, was
also addressed by Pickett and coworkers.'*® A series of models
of the type Fe,((SCH,),C(CH;)(CH,S-p-C¢H,X)(CO)s) (X = CN
(44), NO, (45), NH, (46)) and Fe,((SCH,),C(CH;)(Y))(CO)s (Y =
2-pyridine (47), CH,OH (48), CH,NH, (49), CH,SMe (50)) was

Aco_PAC
o \|I’OAC OH
O
S S
oc\F ,/S\\F o N oc\F ,/S\\F co
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oc co oc co
M 35
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subsequently synthesised."***° It is worth mentioning that
models 47 to 50 display a pH dependent CO-binding (‘“on” or
“off’). The labile bridgehead substituent acts either as a
chelating ligand or as a base. Upon protonation under CO-
atmosphere the hexacarbonyl compound is generated, which
can be reversed with addition of bases wherein ligand to CO
displacement occurs. The influence of the coordination of
the pendant thioether on the reactivity of 50 is discussed in
Section 5.2.

Following organometallic advances, the interest to develop
[2Fe]y analogues displaying better catalytic behaviour or which
could be strategically integrated into electrocatalytic systems
gained tremendous popularity."**™** Thus, models with easily
transformable functionalities such as carboxylic acid groups
(51) were introduced to Fe,(pdt)(CO)s-like models by reacting
Fe3(CO);, with e.g 1,2-dithiolane-4-carboxylic acid. The carboxyl
group enables the functional binding of suitable amines via
amide bond formation e.g. with aniline, and therefore allows
the covalent attachment to amino-functionalized pyrolytic
graphite electrode surfaces - interesting candidates for the
design of heterogeneous electrocatalysts.'*"'** The catalytic
mechanisms and potentials after attachment of the
Fe,(pdt)(CO)e-like model to the surface, seem to be unchanged
compared to a “free” complex.

4.2.3.2 Chalcogenide and pnictogenide substituted PDT
models. As mentioned in the previous section, the selenium
version of a sugar-substituted Fe,(pdt)(CO)e-like complex shows
a higher proton reduction activity and improved stability in
aqueous media. To this end, various Se-substituted models (32,
52 to 55) were reported, which can be obtained by refluxing
Fe;(CO),, with either 1,3-diselenocyanatopropane, a modified
diselenolane or 1,3,5-triselanacyclohexane (Fig. 28).'*

In the same manner, models 56 to 58 bearing an oxetane
ring were synthesized.'® The subsequent investigation of these
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S
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Fig. 27 Representative modifications of OH-derivatized complexes.**”
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Fig. 28 Synthesis of selenium modified H-cluster models.

chalcogenide substituted models regarding their proton
reduction capabilities revealed a decreasing activity on moving
from S- to Te-analogues owing to an increased Fe-Fe distance
and hence disfavouring a bridging ligand, e.g. a hydride from
direct protonation or a CO ligand from the so called “rotated
state”.'*>1%® A further trend that can be observed upon chan-
ging sulphur to selenium or even tellurium is a decreasing
reorganization energy for the reduction from a Fe'Fe' to a Fe'Fe’
cluster, which balances the increasing electron density at the
iron centres due to the sulphur exchange with stronger electron
donors.

Along this line, models with additional methylene groups
inside the linker were synthesised via reaction of Fe;(CO);, and
the respective 1,2-thiaselenane or 1,2-thiatellurane (59 and 60).**”
Using these models, likewise the change of the reorganization
energy upon exchange of sulphur by its heavier homologues was
studied and lowered energies were observed.'*®

Additionally, to study the influence of the steric bulk on the
reduction properties, methyl substituents (61 and 62) were
introduced on the bridgehead carbon of the diselenide
linker."*® The altered reduction behaviour along with catalytic
abilities of these complexes will be discussed in Section 6.3.

In addition to the above presented synthesis pathways, the
reaction of dihalides and Fe,E,(CO)s (E = S, Se, Te) is a further
valuable approach (compare with Fig. 25). Following this syn-
thetic scheme, Fe,((TeCH,),CH,)(CO)s (63) was obtained from
the reaction of Fe,Te,(CO)s and Br(CH,);Br."*’

Motivated by a lower acidity of phosphines (R,PH) as
compared to the corresponding thiols, it was likewise postu-
lated that diiron diphosphido models display an enhanced
basicity of the iron centres resulting in stable terminal hydrides
upon protonation.’*»**°*%* To achieve diiron diphosphido
analogues, the diphosphines (CH,),(PPhH), (n = 2, 3) were
refluxed in the presence of Fe;(CO),, affording complexes 64
and 65. Furthermore, these models were transformed to the
diphosphine substituted analogues Fe,{(CH,);(PPh),)}(CO),(k*
dppv) (66a) and Fe,{(CH,);(PPh),)}(CO),(x*-dppbz) (66b). Due
to the increased metal basicity they were predicted to undergo

This journal is © The Royal Society of Chemistry 2021

protonation at the metal centre. However, slow protonation at
the metal centre resulting in a bridging hydride state was
observed in low temperature experiments (—90 °C).'>® For a
detailed discussion of the protonation behaviour of H-cluster
mimics see Section 5.3.

4.2.3.3 H-cluster models with other group 14 elements in the
bridgehead position. The exchange of the C, carbon for its
heavier homologues (Fig. 29) strongly influences the properties
of the resulting complexes. A report by Glass et al., for example,
described the synthesis of a tin substituted hydrogenase
analogue - Fe,((SCH,),SnMe,)(CO)s (67)."°® The complex was
obtained from Fe,(SH),(CO)s, Me,Sn(CH,I), and Et;N. Later on,
studies on a series of silicon modified dithiolato diiron models
were described by Apfel et al."™>” The Fe,((SCH,),SiR;R,)(CO)s
(68 to 70, Ry = R, = Me, (CH,), nn = 4, 5) complexes were obtained
by reacting Fe3(CO);, and the corresponding bis(mercapto-
methyl)silanes. Moreover, the Si-bridged tetranuclear model
(CO)eFe,(SCH,),Si(CH,S),Fe,(CO)s (71) was synthesised from
Si(CH,SH), and Fe3(CO);,. Due to C/Si exchange, the basicity of
the sulphur centres increased resulting in a higher probability
of S protonation. The group of Weigand and coworkers con-
tinued the study on such Si-substituted models and further
reported a series of Fe,((SCH,),SiR)(CO)s models with bulky
Si-bridgehead substituents (R = Si-substituted fluorene (72),
xanthene (73) and thioxanthene (74)).">*"° Furthermore, to
investigate the role of bulky dithiolato linkers and their influ-
ence on redox properties, models with Ge- and Sn-containing
linkers were reported. Adapting the synthetic approach, reaction
of R,Sn(CH,lI), (R = Me, Ph) as well as Me,Ge(CH,Cl),
and Fe,(SLi),(CO)e resulted in the corresponding complexes
Fe,((SCH,),ER,)(CO)s (E = Sn (67, 75), R = Me, Ph; Ge (76),
R = Me). In case of Sn, the cyclic tetraiiron models 77 and 78
were also obtained alongside in low yields (<9%). Notably,
while for E(CH,S ), (E = S, O, NR’, CR,, Si) the bridge adopts a
chair/boat geometry, in case of Ge- and Sn-substituted models,
the FeSCECS ring preferentially adopts an almost planar geo-
metry indicating the deformability of these rings due to less
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Fig. 29 Literature-known exchanges of the bridgehead carbon atom by heavier analogues.

torsional strain.'®® These studies were further extended and

models with selenium substituted Sn-bridges were reported."®
Fe,((Se,(CH,),SnMe,)(CO)s (n = 1 (79), 2 (80)) were obtained
from Me,Sn(CH,Se), or Me,Sn(CH,Se)Se and Fe;(CO);, and the
desired complexes were obtained in moderate yields (20 to
30%). Herein, also the chalcogenide substitution along with
C/Sn exchange causes an increased basicity of the metal core
thereby facilitating its protonation.

Notably, the silicon bearing aromatic system possesses light
harvesting properties.'®*'®* The [FeFe]-hydrogenase model 72
with the covalently attached photosensitizer 1-silafluorene was
synthesised via the reaction of 1,1’-bis(chloromethyl)-1-sila-
fluorene and Fe,S,(CO)s. Photochemical H, evolution experiments
were then performed in acetonitrile using trifluoroacetic acid
as proton donor and triethylamine as electron donor revealing
a turnover number (TON) of 29 and a turnover frequency (TOF)
of 2.2 h™'.**

4.2.3.4 PDT models with secondary sphere modifications.
In Section 4.2.3.1, we already presented mimics that were easily
modified by amide bond formation between a carboxylic acid at
the C, position of the dithiolate bridge and a modified amine.
Along this line, [2Fe-2S]-clusters were also incorporated into
larger matrices such as e.g. (bio-)polymers. Incorporating the
previously highlighted mimics into a larger matrix was shown
to enable its protection from undesired influences of foreign
substrates and higher complex stability was anticipated.
Fe,(pdt)(CO)s models were immobilized on various polymers
(e.g. polyacrylic acid"*>'®® and polystyrene-polyethylene glycol'*®)

1696 | Chem. Soc. Rev,, 2021, 50, 1668—1784

through an amide bond between 81 and amines of the proteins or
a redox active group enabling a study of electron transfer
processes in such systems. Contrary to those expectations, the
PEG environment facilitated degradation of the iron cluster by
CO loss and subsequent binding of the ether-oxygen. Likewise,
a more unstable behaviour against acidic media was found
caused by the surrounding ether moieties in the polymer.'®®

4.2.4 Azadithiolate (ADT) models. Even before the final
structural elucidation, it was suggested that a secondary amine
in the enzymatic cofactor, in close vicinity to the diiron site,
would facilitate a low energetic pathway for proton hydride
combination due to its protonation accounting for the unsurpassed
catalytic efficiency.>*® The importance of an amine-bridge was
further supported by DFT calculations."®”

The synthesis of Fe,(adt)(CO)s-like models was first reported
in 2001. Here, the dilithium salt of Fe,S,(CO)s was obtained via
reaction of Fe,S,(CO)s with Li[BEt;H] and afforded the
N-functionalized models Fe,(adt)(CO)s (R = Me (82), allyl
(83), (CH,),SMe (84)) upon reaction with the respective bis-
(chloromethyl)amine precursor bridges.'®®'®® It was further
reported that the bridges can be generated via chloromethylation
of various primary amines by a successive reaction with para-
formaldehyde in CH,Cl, and the following addition of SOCl,.'*°
This method opened up the field for easily accessible N-func-
tionalized models of the [2Fe-2S]-subsite hydrogenases mimics.

Subsequently, Li and Rauchfuss synthesized the cofactor
mimic 2 bearing a secondary amine.'” Here, condensation of
Fe,(SH),(CO)s, which was obtained via protonation of Li,Fe,-
S,(CO)s, and urotropine ((CH,)¢N,) gave the desired complex in

This journal is © The Royal Society of Chemistry 2021
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Fig. 31 Synthetic pathways towards Fe,(adt®)(CO)¢ mimics. (Cp’ = MeCsH.).

moderate yields of 24%. The yield could be improved to ca. 40%
when using a premixed solution of (NH,),CO; and paraform-
aldehyde instead of urotropine.'” As shown in Fig. 31, the
reaction might proceed via the formation of intermediate
Fe,(SCH,0H),(CO)s (85), which feasibility and reactivity was
later studied by Stanley et al.'** Another route to obtain 2 in
28% yield was the reaction of Fe;S,(CO), (86) with ammonium
carbonate ((NH4),CO;) and paraformaldehyde."”

A further method to prepare Fe,(adt)(CO)s was presented by
Wang et al. who reported on the synthesis of this complex using
organosilicon protecting groups (Fig. 32). The group employed
alkylsilylchlorides (‘Pr;SiCl (87), Et;SiCl (88), ‘BuMe,SiCl (89))
along with ammonia and paraformaldehyde, which was reacted
with Fe,(SH),(CO)s resulting in the highest yield of 36% after
deprotection with TFA in case of 87.'7°

This journal is © The Royal Society of Chemistry 2021

In 2010, Rauchfuss et al investigated a rather unusual
pathway to obtain Fe,(adt¥)(CO)s (R = Me (82), Ph (90), Bn
(91)). Herein, the organotitanium complex (MeCsH,),Ti(adtY)
(92R) was used as an azadithiolate transfer agent to [Fe(bda)-
(CO)s] (bda = benzylideneacetone) giving Fe,(adt™)(CO)s in 42%
yield.'”*

In 2015, a synthesis for isotope-labelled °’Fe,(adt)(CO)s
starting from *’FeBr, was reported (Fig. 33).”" Analogous to
the synthesis of 1 reported by Hieber,"”> "1 is formed from the
reaction of [H*"Fe(CO),]” (*93) and elemental sulphur. Since
the established routes towards the native cofactor are based on
iron carbonyl chemistry, and labelling of Fe(CO); with *>’Fe is
challenging on laboratory scale, this new route was developed
to avoid Fe(CO)s (or derivatives thereof) as starting material.
This allowed for explicit spectroscopic investigations by NRVS
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Fig. 33 Synthetic pathway to %Fe,(adt)(CO)e.

and Méssbauer of [2°7Fe]y first in its H,,-CO state and later in
Hox, Hiya and Hy-0, as well (see Section II1).°47*

Extending the chalcogenide exchange to the adt models
as well, the enzyme cofactor was synthesised with selenium.
The straightforward synthetic route comprises of coupling of
carbamate protected amine with Li,Fe,Se,(CO)s (94) followed
by deprotection with BF; and Me,S (Fig. 34).>>'”® Deprotection
of 95 afforded the target product 96 in 20% yield, which was
further subjected to ligand exchange resulting in [Fe,(adSe)-
(CO)4(CN),]*~ (4). This complex could also be embedded into
apo-CrHydA1 and apo-CplI (see Section 2.2).*>

4.2.4.1 N-Alkyl modified ADT models. The conceptually
most obvious modification of the amine-linker is a simple
alkyl chain, which is, however, not much reported in
literature.'”'%$1747176 The ghortest version, model 82 bearing
a methyl moiety, can be synthesized according Fig. 31 or by salt-
elimination using Li,Fe,S,(CO)s and methylbis(chloromethyl)-
amine."””"®® The methyl group resides either in axial or
equatorial position, which is dependent on a balance between
the anomeric effect (favours an axial position) and steric
repulsions between the methyl group and the carbonyl
ligands (favours an equatorial positions)."®® Compared to
Fe,(adt)(CO)s, the methyl substitution changes the catalytic
properties in two ways: (1) the inductive effect of the methyl
group increases the electron density and therefore the basicity
of the amine bridge and (2) the electron density of the iron

(rNH
S<S oc. ,S8
ocr) \/CO T ——» 0C'% \"'co
ocC co ocC co
574 579

centres is increased via hyperconjugation of the Ny, and C-S
o* orbitals. This changed electron density is, however, not
visible by a shift of the CO-frequencies within the IR spectra,
but results in a shift of the first reduction potential from
—1.58 V for NH (2) to —1.72 V for the NMe derivative (82)
(vs. Fc/Fc'). As a result, the methyl substitution allows for the
use of less acidic proton sources during the proton reduction
while the potential that has to be applied to reduce the system
is more negative,'”"16%170:176

Along this line, Fe,(adt®)(CO)s (97, R = (CH,),NHTSs) was
synthesised but amine deprotection was unsuccessful, thereby
restricting its further application. In addition, the tetranuclear
model 98 was reported containing two linked adt-units."””

Lengthening the alkyl chain substituents increases the steric
bulk around the metal centres and is advantageous in terms of
mimicking specific H-cluster redox states. Modifications with
longer alkyl chains range from simple ethyl groups to more
complex cyclic alkyls.'”'?%174176:178-185 The gynthetic protocols
are similar to those for Fe,(adt®)(CO)s (R = H, Me). Both
strategies, condensation of the respective amine with (para)-
formaldehyde and the following reaction with Fe,(SH),(CO)s
or the salt-elimination method can be regularly found in
literature. The electron donor abilities of the alkyl-moieties
increase from ethyl to isopropyl/sec-butyl to tert-butyl, which
is reflected by a more cathodic potential, decreasing average
CO-frequencies, as well as an increasing Fe-Fe bond distance."”*"%>
However, the differences in electronic parameters between

?bz
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Fig. 34 Synthetic pathway to Fe,(adSe)(CO)g (96).
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the respective alkyl chain modifications are almost non-
significant.'7?7'8318¢

To shed light into the protonation behaviour of the active
site, the acid base chemistry between the adt moiety and BH;
was investigated with model system 2 and 82.'7° Treating
Fe,(adt™*)(CO)s with one equivalent of BH; THF, wherein the
N-coordinating BH; group of model 99 binds to the Fe upon
decarbonylation afforded complex 100 (Fig. 35). This study
served as an illustration for the analogous binding of H, to
the iron centre in the enzyme.'”*

4.2.4.2 N-Modification of ADT models by esters and amides.
In Section 4.2.3, we reported on modifications of Fe,(pdt)(CO)s-
like complexes with hydroxy- or carboxylic acid-functional
groups via esterification reactions or formation of amides.
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The same methodology can be applied to Fe,(adt)(CO)¢-like
structures as well. These functional and structural models
have been extensively studied to reveal the mechanism of the
enzyme.187_189

Song et al. as well as Sun and coworkers reported on the
functionalization of hydroxy-modified Fe,(adt¥)(CO)s (101, R =
CH,CH,OH) to various N-modified complexes (Fig. 36).'3%"%°
As observed for hydroxy-modified pdt-models,"** the hydroxy
group of 101 forms an intermolecular H-bond network.'®®
Via addition of derivatised carboxylic chlorides, aromatic
groups (102 to 105) can be added to the bridge. In addition, a
terephthalic acid bridged dimer (106) and a thioacetate derivate
(107) have been reported."®*'*° However, as also observed for
pdt-models, the catalytic properties of these models cannot be
altered by changing the substituents at the nitrogen atom.*°
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Fig. 36 Towards the syntheses of N-alkanol modified models.
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Extending this concept to adSe derivatives, Gao et al. reported a
series of double as well as triple cluster cores by linking multiple
molecules of Fe,(SeCH,),NR(CO); (R = (CH,),OH) (108)."”

Instead of hydroxy alkyl-modified amines, the introduction
of carboxylic acids was performed with the same overall aim.
Fe,((SCH,0H),(CO), was reacted with the corresponding amino
acids ((2-aminomethyl)benzoic acid, 2- or 4-aminobutyric acid)
and afforded the desired hexacarbonyl products 109 to 111."*

The group of Song reported an additional modification
scheme with diverse models bearing N-acyl functionalities
(112 to 116) (Fig. 37)."°> For example, model 116 was obtained
upon reaction of 2 with 2-chloroacetic acid or chloroacetyl
chloride and subsequent treatment with potassium thioacetate.
Due the electron withdrawing substituents, these complexes
display first reduction potentials in the range of —1.49 V to
—1.54 V vs. F¢™°, which is milder than for unmodified complex
2 (—1.58 V)."° Likewise, these models serve as a template
for designing systems suitable for photocatalytic studies by
modifying the acyl group.*®

4.2.4.3 N-Aryl modified ADT models. Subsequently, an ADT
model series of substituted N-phenyl complexes (117 to 121)
was established.'®® Crystal structures of the ortho-substituted
models show sp*-hybridisation of the bridgehead nitrogen,
while the para-substituted models 119 and 120 display a rather
sp>-behavior at the nitrogen. Due to the steric influence of

r(
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the substituents, the lone pair of the nitrogen is unable to
delocalise into the aromatic ring and hence these substituted
models are capable of conducting proton reduction at near
neutral pH 5.5 with low overpotentials in aerobic conditions.
On the other hand, ortho unsubstituted models with electron
withdrawing substituents (Br and NO,) at the para position,
required harsher acidic conditions for proton reduction due to
the diminished basic nature of the nitrogen.'®?

In view of developing the ADT models, the nitro functiona-
lized model 120 model was established by treating Fe,S,(CO)s
with N,N-bis(chloromethyl)-4-nitroaniline followed by reduction
with Pd/H,. This procedure yields the corresponding amine
derivative Fe,((adt®)(CO)s (122, R = p-C¢H,NH,)."** Additionally,
condensation of N,N-bis(chloromethyl)-p-methoxyaniline with
LiyFe,S,(CO)e afforded Fe,((adt®)(CO)s (123, R = p-C¢H,OMe).'*?
The different electronic effects of the ring substituents are evident
in the reductive behaviour of these models. Due to the electron
withdrawing nature, the nitro-substituted model 120 is reduced
at more positive potential as compared to the amino 122 and
the methoxy derivative 123 (E 5o = —1.42 V vs. Ejpy = —1.56 V
and Ej,; = —1.61 V).""' As these previous studies on aromatic
substituents suggested a decreased reduction potential, Jiang
et al. introduced furan, thiophene and pyridine substituents
on the Fe,(adt®)(CO)s models (124 to 126)."°*'"” Herein, the
electronic interactions between the heterocycles and the metal
centre via linking C, N, S atoms, influences the redox behaviour.
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Fig. 37 Syntheses of N-acyl modified models.
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Additionally, bromine was introduced at the thiophene ring
in 127 to facilitate functionalization. This bromothiophene
model is catalytically active with HClO, at a potential of
—1.09 V vs. Fc/Fc', which is significantly lower as reported for
other ADT models."*®

Extending the study to ADSe mimics, complexes with N-aryl
diselenide bridges were synthesised (128 to 130)."*® Introduction
of different substituents (CH;, NO,, H) at the para positions of the
aryl ring aimed at studying the inductive effects. Electrochemical
results were in accordance with the trends observed for sulphur
bearing models, i.e. the nitro substituted complex was more easily
reduced than the alkyl substituted complex. Also, crystallographic
studies show that sulphur to selenium replacement is responsible
for slight elongation of the Fe-Fe bond.'*®

In a more recent approach, the [2Fe-2S]-cluster was attached
to a variety of molecules such as nucleosides, redox active
fragments (ferrocene and ruthenocene), and luminescent
markers (boron-dipyrromethenes-BODIPYs) by introducing an
azide functionality (131) and subsequent Cu-catalysed Huisgen
cycloaddition (Click-reaction) between terminal alkynes and
azides. Advantages of this strategy are high tolerance towards
sensitive substrates and a broad range of various functional
groups. It was further shown that the resulting triazole rings
from the click-reaction can be protonated by strong acids such
as H,SO, and therefore serve as model for the native adt
bridge."*®

4.2.4.4 N/P exchange in ADT models. Even though phosphorus
is the heavier analogue of nitrogen, little effort has been con-
ducted to establish active site mimics of [FeFe]-hydrogenases
bearing phosphorus in the linker (Fig. 38). A preceding attempt
to introduce a tertiary phosphine bridge resulted in ligand
substitution in complex 132R (R = Ph, CH,Fc) due to the high
nucleophilicity of the phosphine.””® Therefore, models 133R
wherein phosphorus is incorporated into the bridging position
were synthesized from Li,Fe,S,(CO)s and phosphine oxides
O—P(R)(CH,Cl), (R = Ph, OEt) to avoid interaction of the lone
pair phosphorus with the iron centre.’**°> Furthermore, this
O—P functionality was identified as the protonation site in this
model system. Recently, a new strategy to synthesize complexes
wherein the phosphorus occupies the bridgehead position

HH R
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was reported. There, Fe3(CO);, and the respective dithiols
O=—PR(CH,SH), (R = OEt, OMe, OPh, OH, Me) were reacted in
THF at room temperature to obtain the desired compounds 133R
in moderate yields of approx. 40%.2%*

Another aza-diphosphido model 134 was synthesized via
deprotonation of a Fe,(PPhH),(CO)s precursor with MeLi and
further incorporation of a (CI(CH),),NR (R = CH,CH,OMe)
linker (Fig. 39). Notably, protonation of these aza-diphosphido
analogues occurs exclusively at the amine bridgehead.**

4.2.5 Oxadithiolate (ODT) models. Based on the first
crystal structures of [FeFe]-hydrogenases, [Fe,(odt)(CO),(CN),J>~
(135) was one of the mimics considered to be the putative active
site, since the central oxygen atom has the same number of
electrons as the actual active sites head group NH.*>'* Its precursor
Fe,(0dt)(CO)s (136) was originally prepared via acidification of
Fe,(SCH,0H),(CO)s, and later from Li,Fe,S,(CO)s and (CICH,),0
via salt-elimination (Fig. 40)."”*** Compared to Fe,(adt)(CO)s, the
average CO frequency of the oxadithiolate derivate is slightly
upshifted from 2018 to 2024 cm ' in hexane indicating the
influence of the electron withdrawing oxygen group on the overall
electronic structure of the diiron cluster.’” However, this electron
withdrawing behaviour is not reflected in the respective first
reduction potential, which is identical for both complexes at
—1.58 V vs. Fe/Fc'.

For the oxadithiolate models, sulphur to heavier homologue
exchange was carried out and Fe,(odSe)(CO)s (137) and
Fe,(0dTe)(CO)s (138) complexes were reported. While 137
was obtained in 45% yield from addition of (HSeCH,),O
to Fe;(CO)1»,2°° 138 was synthesised in 21% yield from
Fe,Te,(CO)g and (CICH,),0.>%°

As already reported for the model counterparts 2 and 20,
substitution of CO with more electron donating ligands such as
CN™, PR3, NHCs and Cp(CO),FeSPh was carried out to further
influence the electron density at the iron centres,'#18%:207-210
Additionally, tetranuclear models wherein the modified ligand
system (dppf, (Ph,PCH,),NCH,),, (Ph,PCH,CH,0CH,), and
1,4-(CN),C¢H,) connect two [2Fe-2S]-cores have been synthe-

sised and crystallographically elucidated.>**

4.2.5.1 O/S exchange in ODT models. In contrast to the little
explored N-P exchange in adt, incorporation of the heavier
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Fig. 38 Synthetic pathways to phosphorus substituted subsite models.
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Fig. 40 Synthesis routes towards Fe,(odt)(CO)s.

homologue sulphur is much more common in odt complexes.
According to IR spectroscopy, both models do not show signi-
ficant electronic differences although sulphur is less electron
withdrawing than oxygen.?°**!" The first reduction potential of
Fe,(sdt)(CO)s (139), however, is shifted from E;46 = —1.58 V to
Eis50 = —1.51 V vs. Fe/Fc"
electron density at the iron centre.

, showing a more severe change in the
204,211

1702 | Chem. Soc. Rev,, 2021, 50, 1668—1784

The synthesis of 139 was reported initially by Song et al. in
2007, using 1,2,4-trithiolane as starting material, which was
reacted with Fe3(CO);, in refluxing THF to yield the desired
complex in 42% yield.>'" In parallel, Windhager et al. reported
various model complexes (140 to 142) containing S-substituted
bridge structures obtained by reacting Fe,(CO), with different
sulphur substituted heterocycles. It was observed that larger
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Fig. 42 Synthetic pathways to novel sdt complexes from Fe,(CO)g.

heterocycles yield trinuclear clusters (141 and 142). The flexi-
bility of the linker strongly affects the structure of the resulting
models, e.g. the 7- and 8-membered heterocycles yield triiron
clusters wherein the thioether moieties coordinate to one of the
Fe centres each. Applying the 9-membered thio compounds
affords the diiron complex 140 (Fig. 41).>*?

The treatment of diiron thiadithiolate with Cp(CO),Fe(BF,),
prepared in situ from Cp(CO),Fel and AgBF,, led to cationic
model 143a (Fig. 43). This model corroborates the ability of
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Fig. 43 Trimetallic subsite models with coordination of the bridgehead

sulphur to metal centres.
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the bridgehead sulphur atom to likewise coordinate to metal
centres.”'’ Taking advantage of this coordinating capability,
the parent Fe,(sdt)(CO)s model was reacted with M(CO)s(THF)
(M = Cr, W) (prepared in situ by photolysis of M(CO)s in THF)
and afforded the multi-metallic complexes 143b and 143c.>*?
These complexes were designed to profit from combined redox
properties of the different metals involved; however, they were
unstable under electrochemical conditions and hence could
not be studied for their catalytic properties.**?

Additionally, the introduction of substituted 1,2,4-trithio-
lanes leads to various di-, tri- and tetranuclear models and is
exemplarily shown for the diadamantyl-substituted trithiolane
in Fig. 42. The synthesis proceeds through an oxidative addition
of the disulphide bond to Fe,(CO), yielding models 144 to 146.>**

4.2.5.2 Oxidation of SDT-like models. The Fe,(sdt)(CO)e
models were likewise studied for their chemical oxidation
response, as it was reasoned that the activity of [FeFe]-hydro-
genases is hampered under aerobic conditions due to oxidation
of the cofactor.®”® Sulphur-oxidation was achieved through
reaction of varying equivalents of dimethyldioxirane (DMD)
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