RSC Advances

REVIEW

View Article Online
View Journal | View Issue

Cite this: RSC Adv., 2020, 10, 35072

A systematic review on the chemical constituents of the genus *Consolida* (Ranunculaceae) and their biological activities

Tianpeng Yin, Dab Le Cai*b and Zhongtao Ding **D**

For centuries, species of the genus *Consolida* (Ranunculaceae) have been extensively utilized for their extremely high ornamental and medicinal values. Phytochemical investigations of *Consolida* species have revealed the presence of multiple active ingredients, including diterpenoid alkaloids, flavonoids, phenolic acids, phytosterols, fatty acids, and volatile constituents. These chemical constituents are of great research significance due to their novel structures and broad biological activities. This review addresses, for the first time, the chemical constituents of *Consolida* plants and the biological activities of these compounds to facilitate future research.

Received 7th August 2020 Accepted 31st August 2020

DOI: 10.1039/d0ra06811j

rsc.li/rsc-advances

1. Introduction

The genus Consolida, a highly specialized genus of Ranunculaceae, is composed of approximately 50 species. Consolida plants are mainly distributed in drought regions in southern Europe, northern Africa, and western Asia, with a centre of diversity and speciation in Anatolia, as at least 29 Consolida species have been found in this region (Fig. 1A).1,2 Consolida plants have adapted to the seasonal drought climate and often grow on dry stony slopes in steppes, semideserts, and even deserts. In addition, some of its representatives, such as C. ambigua (formerly known as D. ajacis) (Fig. 1B), have been widely cultivated in bonsai pots, gardens, and greenbelts around the world. Plants of the Consolida genus are morphologically very similar to those of Delphinium and are frequently mistaken. In fact, the Consolida genus has been treated as a phytogroup in the genus Delphinium for many years and was even given the same trivial name larkspur. However, in 1821, Gray raised Consolida to the species level, and now in most cases, Consolida is regarded as a different genus from the genus Delphinium.3 Generally, Consolida plants are annual herbals approximately 10-60 cm in height, possessing single petals and single follicles that distinguish them from *Delphinium* plants.^{4,5}

Plants from the genus *Consolida* have received considerable interest due to their extremely high ornamental and medicinal values. *Consolida* plants feature showy purple petals, which have been widely cultivated for centuries not only as fresh and

dried flowers but also as seasonal outdoor flowers. Some species of Consolida, such as C. ambigua, C. regalis (D. consolida) (Fig. 1C), and C. orientalis (Fig. 1D), have become some of the most famous and popular horticultural plants around the world, especially in Europe and America. In addition to ornamental plants, Consolida plants are also of great medicinal value. In Turkey, China, and some other countries and regions, especially the Mediterranean and western Asia, various Consolida species have been extensively employed as herbal medicines for hundreds of years to treat multiple kinds of diseases, such as traumatic injury, rheumatism, sciatica, enteritis, stomach ache, ringworm, scabies and other skin diseases.^{6,7} In addition, Consolida plants can also be used externally against body lice.8 Generally, the medicinal uses of Consolida plants are similar to plants from its highly related genus Delphinium, as they are similar in chemical composition.

The chemical constituents of Consolida plants have been investigated since the beginning of the 20th century. These earlier studies attempted to isolate and identify the alkaloidal and pigmental compositions of several widespread Consolida species, such as C. ambigua and C. regalis. In 1914, Keller and Voelker first reported the isolation of two diterpenoid alkaloids (DAs), ajacine and ajaconine, from the seeds of C. ambigua.9 The first anthocyanin, delphinin, was identified from the petals of C. regalis by Mieg in 1915.10 The DAs and flavonoids of Consolida plants have attracted considerable attention for a long period of time, and many phytochemical investigations have been devoted to them. In addition, a series of studies performed by using high-performance liquid chromatography (HPLC), gas chromatography (GC) or their combination with mass spectrometry (MS) techniques revealed that a large number of other chemical components, such as phenolic acids, phytosterols, fatty acids (FAs) and other volatile constituents, exist in Consolida plants. The constituents of Consolida plants have

[&]quot;Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China

^bFunctional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China. E-mail: ztding@ynu.edu.cn; caile@ynu.edu.cn

Fig. 1 (A) The global distributions of plants from the genus *Consolida* (https://www.gbif.org/species/3033827); (B) *C. ambigua*, created by latormentanegra (https://www.inaturalist.org/observations/40694233); (C) *C. regalis*, created by Anastasiya Ishkova (https://www.inaturalist.org/observations/45139852); (D) *C. orientalis*, created by Sergei (https://www.inaturalist.org/observations/46362639).

exhibited a high diversity of chemical structures and biological activities, and these constituents can serve as a potential medicinal resource for drug discovery.

Several already published review articles and monographs have involved the DAs from *Consolida*.¹¹⁻¹³ However, to date, there has been no individual and systematic review of the chemical constituents in the genus *Consolida* in addition to their biological activities. Hence, this review has been prepared to summarize the structural features and biological activities of the chemical constituents in the genus *Consolida* for the first time. The aim of this review is to provide a complete overview on the existing knowledge of the chemical constituents and biological properties of plant species from *Consolida*, which will facilitate further research and exploitation of this genus.

2. Chemical constituents

To date, investigations on the chemical constituents of *Consolida* plants have led to the isolation and identification of approximately 143 distinct compounds, including 126 alkaloids and 17 flavonoids. In addition, phenolic acids, phytosterols, and FAs of several *Consolida* species have been investigated by using HPLC, GC, and MS methods. Herein, the studied chemical constituents of *Consolida* plants are summarized by category.

2.1. Alkaloids

In addition to the *Aconitum* and *Delphinium* genera, *Consolida* is another genus in the Ranunculaceae family that is well known

for its characteristic DA components. ^{11,14} DAs are unambiguously the most predominant and representative constituents of *Consolida* plants and have attracted much research interest since the beginning of the 20th century. ⁹ However, studies on the DA composition of *Consolida* plants increased only in the 1980s due to the difficulty associated with the structural identification of DAs, which possess a fused polycyclic skeleton substituted with multiple oxygenated groups. To date, a total of 121 DAs (1–121) along with five other alkaloids (122–126) have been isolated from *Consolida* species. Table 1 lists the names, types, corresponding plant sources and references of alkaloids isolated and identified from *Consolida* species.

DAs are usually classified as C₁₈-, C₁₉-, C₂₀- or bis-types, which can be further divided into several to dozens of subtypes. 15,16 The DAs found in Consolida plants include 5 C18-DAs (1-5), 87 C₁₉-DAs (5-91), and 29 C₂₀-DAs (92-121). These alkaloids cover 9 subtypes of DAs, including the ranaconitine (I) and lappaconitine subtypes (II) of C_{18} -DAs, the aconitine (III) and lycaconitine subtypes (IV) of C₁₉-DAs, and the hetisine (V), atisine (VI), denudatine (VII), napelline (VIII), and other subtypes (IX) of C20-DAs (Fig. 2). In view of the chemical diversity, the lycaconitine-type C₁₉-DAs contains the largest number of DAs in Consolida plants with 73 members, and they account for the largest proportion of isolated alkaloids (58%). The next largest subtypes are the hetisine-type C₂₀-DAs with 17 members (13%) and the aconitine-type C_{19} -DAs with 12 members (9%). Clearly, the lycaconitine-type C₁₉-DAs are the most characteristic DA components of the genus Consolida, which is similar to

Table 1 Alkaloids from Consolida plants

RSC Advances

Class and name (no.)	Type	Species	Ref.
C ₁₈ -DAs			
Hohenackeridine (1*)	I	C. hohenackeri	20
14-O-Demethyldelboxine (2*)	I	C. orientalis	21
14-Demethyltuguaconitine (3)	I	C. orientalis	26
Гuguaconitine (4)	I	C. orientalis	21
Lapaconidine (5)	II	C. scleroclada	27
C ₁₉ -DAs			
Pubescenine (6*)	III	C. pubescens, C. oliveriana, C. orientalis	8, 21 and 28
Hoheconsoline (7*)	III	C. hohenackeri	29
Consolinine (8*)	III	C. hohenackeri	29
Raveyine (8- <i>O</i> -methylcolumbianine, 9 *)	III	C. raveyi, C. oliveriana	23 and 30
Regaline (10*)	III	C. regalis	31
Bicolorine (11)	III	C. regalis, C. hohenackeri	31 and 32
Senbusine B (12)	III	C. anthoroidea	33
Neoline (13)	III	C. thirkeana	34
14- <i>O</i> -Benzoylneoline (14)	III	C. thirkeana	34
Leucanthumsine C (15)	III	C. thirkeana	34
Neolinine (16)	III	C. sulphurea	34
Aconitine (17)	III	C. scleroclada	27
Delphisine (18)	III	C. ambigua	35
Ajadelphinine (19*)	III	C. ambigua, C. orientalis, C. armeniaca, C. stenocarpa	21, 35-37
Corepanine (20*)	IV	C. regalis	31
Hohenackerine (21*)	IV	C. hohenackeri	32
Fortumine (22*)	IV	C. hohenackeri	32
Delcorine (23)	IV	C. regalis, C. hohenackeri	31 and 32
Deoxydelcorine (24)	IV	C. regalis	31
Dehyrodelcorine (25)	IV	C. regalis, C. hohenackeri	31 and 32
Delcoridine (26)	IV	C. regalis	31
Didehydrodelsoline (27)	IV	C. orientalis	21
Deltaline (28)	IV	C. ambigua	38
Delpheline (29)	IV	C. ambigua	22
Ajacusine (30*)	IV	C. ambigua	39
Ajadine (31*)	IV	C. ambigua, C. orientalis	21 and 39
14-Deacetylajadine (32*)	IV	C. ambigua, C. orientalis	21 and 40
Ajadinine (33*)	IV	C. ambigua	24
19-Oxoanthranoyllycotonine (34*)	IV	C. ambigua	22
Ajacisine A (35*)	IV	C. ambigua	41
Ajacisine B (36*)	IV	C. ambigua	41
Ajacisine C (37*)	IV	C. ambigua	41
Ajacisine D (38*)	IV	C. ambigua	41
Ajacisine E (39*)	IV	C. ambigua	41
Delajacine (conambine, 40 *)	IV	C. ambigua	38 and 42
Delajacirine (41*)	IV	C. ambigua	38
Delajadine (42*)	IV	C. ambigua	38
Ajanine (43*)	IV	C. ambigua	38
Ajacine (44)	IV	C. ambigua, C. orientalis	21 and 39
Anthranoyllycoctonine (45)	IV	C. ambigua, C. oliveriana	23 and 39
Delectine (46)	IV	C. ambigua C. ambigua	22
sodelectine (47)	IV	· ·	41
Methyllycaconitine (48) 18-Hydroxy-14- <i>O</i> -methylgadesine (49*)	IV IV	C. thirkeana, C. axilliflora, C. ambigua C. orientalis, C. oliveriana	34, 39 and 4 23 and 44
14- <i>O</i> -Acetyl-8- <i>O</i> -methylconsolarine (50)		C. orientalis C. orientalis	23 and 44 21
14- <i>O</i> -Acetyl-8- <i>O</i> -methylconsolarine (5 0) 18-Demethylpubescenine (5 1 *)	IV IV	C. orientalis C. orientalis	21 26
Dehydrodeltatsine (52*)	IV IV	C. orientalis	26 45
Denydrodenatsine (52°) 14-O-Acetyltakaosamine (53*)	IV IV	C. orientalis	45 45
1- <i>O</i> -Demethyltricornine (54*)	IV IV	C. orientalis	45 21
1- <i>O</i> -Benzoyltakaosamine (5 5 *)	IV IV	C. orientalis	21
1-0,19-Didehydrotakaosamine (56*)	IV IV	C. orientalis	21
8- <i>O</i> -Methylconsolarine (14-deacetyl-18-	IV IV	C. orientalis	21 and 46
demethylpubescenine, 57*)	1.4	G. Orioniumo	21 0110 40
14- <i>O</i> -Deacetylpubescenine (58*)	IV	C. orientalis, C. oliveriana	21 and 23

		Ref.	
IV	C. orientalis	21	
IV	C. orientalis, C. ambigua	35 and 47	
	·	8	
IV	C. oliveriana	23	
IV	C. oliveriana	23	
IV	C. hohenackeri, C. anthoroidea	20 and 33	
IV	C. hohenackeri	20	
IV	C. rugulosa	48	
		48	
		49	
		39	
		35	
		22 and 23	
		31 31	
		36	
		8, 26, 34, 35	
14		and 50	
IV		23, 26, 27, 39	
		and 50	
IV	C. orientalis	45	
IV	C. orientalis, C. ambigua,	22 and 45	
IV	C. oliveriana, C. orientalis, C. regalis, C. ambigua	8, 39, 47, 48 and 50	
IV	C. oliveriana, C. axilliflora, C. armeniaca, C. orientalis, C. ambigua, C. hohenackeri, C. regalis	21, 23, 32, 36 39, 43 and 50	
IV	C. orientalis, C. oliveriana, C. regalis, C. ambigua, C.	22, 23, 26, 43 and 50	
IV	C. olopetala, C. oliveriana, C. ambigua	6, 23 and 39	
IV	C. olopetala	6	
IV	C. olopetala, C. oliveriana, C. sulphurea, C. ambigua, C. orientalis	6, 21, 23, 34 and 39	
IV	C. sulphurea	34	
IV		48	
IV		21, 39 and 48	
		21	
		22	
	•	32 and 43	
IV	C. orientaus	21	
V	C. hellespontica, C. raveyi	25	
V	C. hellespontica, C. raveyi	25 and 30	
V	C. orientalis	51	
V	C. ambigua, C. orientalis, C. oliveriana	23, 46 and 49	
V	C. anthoroidea	33	
V	C. regalis, C. anthoroidea	33 and 50	
V	C. raveyi	30	
V	C. anthoroidea, C. oliveriana, C. hohenackeri, C. ambigua, C. raveyi, C. axilliflora	8, 30, 32, 33, 39 and 43	
VI	C. glandulosa	52	
VI	C. glandulosa	52	
VI	C. glandulosa	52	
VI	C. glandulosa	52	
VI	C. glandulosa	52	
VI	C. glandulosa	53	
VI	C. glandulosa	53	
VI VI	C. glandulosa C. glandulosa	53 53	
	IV I	IV C. orientalis, C. ambigua IV C. oliveriana IV C. oliveriana IV C. oliveriana IV C. oliveriana IV C. hohenackeri, C. anthoroidea IV C. hohenackeri IV C. hohenackeri IV C. rugulosa IV C. rugulosa IV C. ambigua IV C. regalis IV C. regalis IV C. regalis IV C. orientalis, C. oliveriana IV C. orientalis, C. scleroclada, C. oliveriana, C. regalis, C. oliveriana IV C. orientalis, C. scleroclada, C. oliveriana, C. regalis, C. oliveriana IV C. orientalis, C. scleroclada, C. oliveriana, C. regalis, C. ambigua IV C. orientalis, C. scleroclada, C. oliveriana, C. regalis, C. ambigua IV C. orientalis, C. oliveriana, C. regalis, C. ambigua IV C. orientalis, C. oliveriana, C. regalis, C. ambigua IV C. oliveriana, C. orientalis, C. rameniaca, C. orientalis, C. ambigua, C. oliveriana, C. ropelia, C. oliveriana, C. regalis, C. ambigua, C. orientalis, C. oliveriana, C. regalis, C. ambigua, C. orientalis, C. oliveriana, C. rapalisa IV C. olopetala, C. oliveriana, C. rabbigua, C. orientalis IV C. olopetala, C. oliveriana, C. sulphurea, C. ambigua, C. orientalis IV C. rugulosa IV C. rugulosa IV C. rugulosa IV C. rugulosa IV C. rabbigua, C. orientalis IV C. ambigua, C. orientalis IV C. ambigua, C. orientalis IV C. rapalosa IV C. rapalosa IV C. raveyi IV C. regalis, C. anthoroidea IV C. raveyi IV C. rapalosa IV C. glandulosa	

RSC Advances Re

Table 1 (Contd.)

Class and name (no.) Type		Species	Ref.	
13-O-Acetylvakhmatine (110*)	VI	C. ambigua	54	
Vakhmatine (111) VI		C. ambigua	54	
Hetisine (112)	VI	C. olopetala, C. anthoroidea, C. stenocarpa, C. axilliflora	6, 33, 37 and	
			43	
13-O-Acetylhetisine (113)	VI	C. anthoroidea	33	
Septentriosine (114)	VI	C. anthoroidea	33	
Hetisinone (115)	VI	C. regalis, C. stenocarpa	37 and 50	
Leptanine (116*)	VI	C. leptocarpum	19	
Stenocarpine (117*)	VII	C. stenocarpa	55	
Willipelletierine (118*)	VII	C. scleroclada	27	
Ajabicine (119*)	IX	C. ambigua	18	
Dehydronapelline (120)	X	C. olopetala	6	
12-Epidehydronapelline (121)	X	C. olopetala	6	
Other alkaloids				
β-Carboline (122)		C. ambigua	41	
Methyl- <i>N</i> -(3-carboxy-3-methylpropanoyl) anthranilate (123)		C. ambigua	41	
2,4-Dihydroxy-1,4-benzoxazine-3-one 2- <i>O</i> -glucoside (124)		C. ambigua	56	
2,4-Dihydroxy-1,4-benzoxazine-3-one (125)		C. ambigua	56	
Benzoxazolinone (126)		C. ambigua	56	

its highly related genus *Delphinium*. In contrast, the large number of aconitine-type C_{19} -DAs distinguishes *Consolida* from the genus *Aconitum*.¹⁷

Of the 122 DAs presented in *Consolida* plants (Fig. 3 and 4), 69 were isolated as new compounds (labeled with *). Among them, several of the new alkaloids possess novel DA skeletons. Ajabicine (119) from *C. ambigua* belongs to the infrequent actaline-type C₂₀-DAs bearing a rare C-14 exocyclic olefin methylene group, which may be produced biogenetically by a Wagner-Meerwein rearrangement of a denudatine-type DA.^{12,18} Leptanine (116) from *C. leptocarpum* (*D. leptocarpum*) is a dimeric alkaloid consisting of a hetisine-type C₂₀-DA part and an indolinopyrrole fragment. The indolinopyrrole fragment

is bound to the hetisine-type C_{20} -DA part through an α -directed (relative to the indoline core) C-17–C-3 bond according to an X-ray crystal structure analysis. In addition, several of the new alkaloids possess at least one uncommon substituent. For example, new C_{18} -DAs 1 and 2 possess an uncommon 3,4-epoxide unit, 20,21 and new alkaloids 35 and 71 have an N– $C_{(19)}$ = O lactam group. 22,23 New alkaloids 33, 62 and 63 possess an imine group at C-19, 23,24 while alkaloid 92 has an imine group at C-17, a rare substituent position. The other new alkaloids mainly vary in the variety, quantity, position, and orientation of oxygenated substituents. The common oxygenated substituents found in DAs from *Consolida* plants include hydroxyl (OH), carbonyl (=O), methoxyl (OMe), methylenedioxy (OCH₂O)

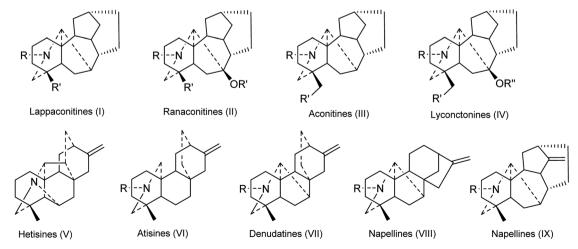


Fig. 2 The subtypes of DAs from Consolida plants.

OMe OMe .OMe OMe OBz OMe 'OH ŌМе Ř٥ MeO R₁ = OH, R₂ = O 17 6* R₁ = R₄ = OH, R₂ = OAc, R₃ = OMe 2* R1 = OMe, R2 = OH 10* R₁ = OMe, R₂ = R₃ = OH, R₄ = H 3 R₁ = R₂ = OH 11 R₁ = R₂ = R₃ = R₄ = OH 4 R1 = OH, R2 = OMe OMe OMe ŌМе ŌМе 27 OMe 19* $R_1 = R_3 = R_4 = OH$, $R_2 = H$ 20* $R_1 = \beta OMe$, $R_2 = R_4 = OMe$, $R_3 = H$ 50 R₁ = OH, R₂ = aOH, R₃ = OMe, R₅ = H, R₄ = OAc $7 R_1 = R_2 = R_3 = R_4 = OMe$. $R_6 = OH$ 51* $R_1 = OH$, $R_2 = aOH$, $R_3 = OMe$, $R_4 = R_5 = OAc$ 53* $R_1 = R_3 = R_5 = OH$, $R_2 = OMe$, $R_4 = OAc$ 8 R₁ = R₄ = R₅ = OH, R₂ = R₃ = OMe 21* R₁ = R₃ = OMe, R₂ = H, R₄ = OH 9 R₁ = R₄ = R₅ = OH, R₂ = H, R₃ = OMe NHCOMe "OMe 22* R₁ = R₃ = R₄ = OMe, R₂ = OAc 13 R₁ = R₃ = R₄ = OH, R₂ = R₅ = **54*** R₁ = R₃ = OH, R₂ = R₄ = OMe, R₅ = OAc 23 R₁ = R₃ = R₄ = OMe, R₂ = OH 55* $R_1 = R_3 = R_5 = OH$, $R_2 = OMe$, $R_4 = OBz$ 57* $R_1 = R_4 = OH$, $R_2 = aOH$, $R_3 = OMe$, $R_5 = H$ 14 R₁ = R₃ = OH, R₂ = R₅ = OH, R₄ = OBz 15 R₁ = R₂ = OMe, R₃ = R₄ = R₅ = OH **24** $R_1 = R_3 = R_4 = OMe$, $R_2 = H$ **25** $R_1 = R_3 = R_4 = OMe$, $R_2 = O$ **16** $R_1 = R_3 = R_4 = R_5 = OH$, $R_2 = OMe$ **18** $R_1 = OH$, $R_3 = R_4 = OAc$, $R_2 = R_5 = OMe$ 58* R₁ = R₄ = OH, R₂ = aOH, R₃ = R₅ = OMe 59* R₁ = R₄ = OH, R₂ = aOH, R₃ = OMe, R₅ = OBz 26 R₁ = R₄ = OMe, R₂ = R₃ = OH $R_1 = R_3 = R_4 = OMe, R_2 = O$ **61*** R_1 = OH, R_2 = α OH, R_3 = R_5 = OMe, R_4 = OAc **64*** R_1 = R_3 = R_4 = R_5 = OH, R_2 = H 30 R₁ = R₃ = OMe, R₂ = OH, R₄ = H 65* R₁ = R₄ = R₅ = OH, R₂ = aOH, R₃ = OMe 66* R₁ = R₃ = OH, R₂ = OMe, R₄ = R₅ = OBz OMe 67* R₁ = R₃ = OH, R₂ = OMe, R₄ = OAc, R₅ = OBz 68* R₁ = OMe, R₂ = R₃ = R₅ = OMe, R₄ = OAc 'OMe 69* R₁ = OMe, R₂ = R₅ = OMe, R₃ = OH, R₄ = OAc 70° R₁ = R₂ = R₅ = OH, R₃ = OMe, R₄ = OAc 72° R₁ = R₃ = OH, R₂ = R₄ = H, R₅ = OMe 73° R₁ = R₃ = OH, R₂ = R₅ = OMe, R₄ = H 74° R₁ = R₃ = R₄ = OH, R₂ = α OH, R₅ = H **75** R₁ = R₃ = R₅ = OH, R₂ = α OMe, R₄ = OMe **76** R₁ = R₃ = R₄ = OH, R₂ = α OMe, R₅ = OMe ŌМе ŌМе 77 R₁ = OH, R₂ = R₃ = R₅ = OMe, R₄ = OAc 78 R₁ = R₄ = OH, R₂ = R₃ = R₅ = OMe **49*** R₁ = R₃ = OH, R₂ = OMe **52*** R₁ = R₃ = OMe, R₂ = OH 79 R₁ = R₃ = OH, R₂ = R₄ = R₅ = OMe 80 R₃ = R₅ = OH, R₁ = R₂ = R₄ = OMe 56* R₁ = R₂ = R₃ = OH 60* R₁ = R₂ = OH, R₃ = OMe $R_1 = R_3 = R_4 = R_5 = OH, R_2 = OMe$ 82 R₁ = OMe, R₃ = OH, R₂ = R₄ = R₅ = OMe 84 R₁ = OMe, R₃ = R₄ = OH, R₂ = R₅ = OMe 35* R1 = OMe, R2 = R3 = OH, R4 = OMe 30* R₁ = OBz, R₂ = MeSuc 36* R₁ = OMe, R₂ = OH, R₃ = R₄ = OMe 31* R₁ = OAc, R₂ = NHAc 85 R₁ = OMe, R₂ = OMe, R₃ = R₄ = OH, R₅ = H 86 R₁ = R₃ = OH, R₂ = R₅ = OMe, R₄ = OBz 38* R₁ = R₂ = OH, OMe, R₂ = H, R₄ = OMe 32* R₁ = OH, R₂ = NHAc 37* R₁ = O, R₂ = NH₂ 39* R₃ = OMe, R₁ = R₄ = OH, R₂ = H 47 R₁ = OH, R₂ = H, R₃ = R₄ = OMe 87 R₁ = R₃ = OH, R₂ = R₅ = OMe, R₄ = OAc 88 R₂ = R₃ = OMe, R₁ = R₄ = R₅ = OH 40* R_1 = OMe, R_2 = NHCOCH(Me)Et 41* R_1 = OMe, R_2 = NHCOCH(Me)₂ 42* R_1 = OAc, R_2 = NHCOCH(Me)Et 89 R₁ = R₂ = R₃ = R₅ = OMe, R₄ = OH 90 R₁ = R₂ = OMe, R₃ = R₄ = R₅ = OH OMe 43* R1 = OCOC(Me)(OH)Et, R2 = NHCOMe HO. OMe R₁ = R₂ = OMe, R₃ = R₅ = OH, R₄ = OAc 44 R₁ = OMe, R₂ = NHCOMe 45 R₁ = OMe, R₂ = NH₂ 46 R₁ = OH, R₂ = NH₂

ОМе

MeO

62* R4 = OH, R2 = OMe 63* R1 = OMe, R2 = OAd

Fig. 3 Alkaloids 1–91 from Consolida plants.

groups and various ester groups, such as acetyl (Ac), 2-methylbutyryl (MeBu), benzoyl (Bz), and anthranoyl groups.

ŌMe

2.2. Flavonoids

48 R₁ = OMe, R₂ = MeSuc

Flavonoids, which are composed of C₆-C₃-C₆ structural units biosynthesized from phenylalanine, are one of the most widespread types of natural products in the plant kingdom. 61,62 The reported studies have revealed that a certain amount of flavonoids, including anthocyanin and flavanol glycosides, exist in Consolida plants, especially in their aerial parts. 63

Anthocyanins are the major pigments of Consolida flowers, which are of interest to the food industry because of their antioxidant power, attractive colour, and stability in highly acidic foods. 64,65 As early as 1915, Mieg isolated the first anthocyanin delphinin from the purple petals of C. regalis (D. consolida) and proposed its structure to be di-(phydroxybenzoyl)delphin,10 but the existence of a p-hydroxybenzoyl group was doubted by Harborne in 1964.66 Finally, in 1975, Asen revised its structure as delphinidin 3-di-(phydroxybenzoyl)-glucosylglucoside.⁶⁷ The reported discrepancies of the major anthocyanins found in C. regalis flowers may be attributed to the use of different plant materials, since there are a number of C. regalis varieties that have been cultivated all over the world. It should be noted that these early studies did not establish the location of substitutes and the linkage of glucoses in the molecules of anthocyanins until 1985. Sulyok and Balint yielded an anthocyanin from C. orientalis and identified its structure as delphinidin-3-rutinoside-5-glucoside (127) (Fig. 5).57 More recently, in 1995, four new acylated delphinidin 3,7-glycosides (128-131) were isolated from the blue-violet flowers of C. armeniaca as major anthocyanin pigments.58

Fig. 4 Alkaloids 92-126 from Consolida plants.

The flavanol glycosides in *Consolida* have also drawn attention from scientists. Twelve known flavonol glycosides (132–143) have been isolated from two *Consolida* species, *C. oliveriana* and *C. armeniaca*.^{59,60,68} These flavonols only possess common structures but have attracted considerable interest because of their extensive pharmacological activities, including antitumor, antitrypanosomatid, and antioxidant activities.

2.3. Phenolic acids

Until now, only a few studies on the phenolic acids of *Consolida* plants have been reported, and these studies were performed using HPLC or HPLC-MS techniques. A series of phenolic acids, mainly common phenylpropionic and benzoic acids, have been detected in the flowers of *Consolida* species (Fig. 6). For example, *p*-hydroxybenzoic (144), caffeic (145), ferulic (146) and

p-coumaric (147) acids have been detected as the main phenolic compounds in *C. armeniaca* flowers, ⁶⁹ and protocatechuic (149), vanillic (148), cinnamic (150), chlorogenic (151), gallic (152), sinapic (153), and benzoic acids(154), in addition to acids 144–147, were identified in *C. orientalis* flowers. ^{70,71}

2.4. Phytosterols

Although phytosterols are widely distributed in higher plants, little attention has been paid to *Consolida* phytosterols. To the best of our knowledge, the only investigation on *Consolida* phytosterols was performed by Waller *et al.* in 1981.⁷² In this study, 16 phytosterols were identified and quantified from the whole *C. ambigua* plant using GC-MS, and the study revealed that the major sterols in the *C. ambigua* plants were β -sitosterol (155), campesterol (156) and stigmasterol (157) (Fig. 7).

Review **RSC Advances**

$$R_3$$
 R_3
 R_4
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4

R ₁ ~R ₄ (Nos.)	Plant	Ref.
$R_1 = \alpha_{-1}$ -Rha- $(1 \rightarrow 6)$ - θ - θ -Glu, $R_2 = [6-O-(6-O-p-hydroxybenzoyl-\theta-\theta-Glu)-p-hydroxybenzoyl][6-O-(6-O-p-hydroxybenzoyl-\theta-\theta-Glu)-p-$	C. orientalis	57
hydroxybenzoyl]- θ -D-Glu- $(1\rightarrow 3)$ - θ -D-Glu- $(1\rightarrow 3)$]- θ -D-Glu, R ₃ = R ₄ = OH (127)		
$R_1 = 6 - O$ -malonyl- θ -D-Glu, $R_2 = 6 - O$ -(4- O -(6- O -(p-hydroxybenzoyl)- θ -D-Glu)-p-hydroxybenzoyl)- θ -D-Glu, $R_3 = R_4 = OH$ (128)	С.	58
	armeniaca	
$R_1 = 6 - O - \text{malonyl} - \theta - D - \text{Glu}, R_2 = [\theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}], R_3 = R_4 = OH (129)$	C.	58
	armeniaca	
$R_1 = 6 - O - \text{malonyl} - \theta - D - \text{Glu}, R_2 = [6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [6 - O - (4 - O - (6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 0 - (1 \rightarrow 0$	C.	58
Glu], $R_3 = R_4 = OH $ (130)	armeniaca	
$R_1 = 6 - O - \text{malonyl} - \theta - D - \text{Glu}, R_2 = [6 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu} - (1 \rightarrow 2)] - [\theta - D - \text{Glu} - 6 - O - (4 - O - (p - \text{hydroxybenzoyl}) - \theta - D - \text{Glu}) - p - O - (1 \rightarrow 2)] - [\theta - D - \text{Glu} - (1 \rightarrow 2)] - [\theta - D $	<i>C</i> .	58
hydroxybenzoyl)- θ -D-Glu], R ₃ = R ₄ = OH (131)	armeniaca	

R ₁ ~R ₅ (Name, No.)	Plant	Ref.
$R_1 = R_2 = R_3 = R_4 = R_5 = H$ (kaempferol ,132)	C. oliveriana	59
$R_1 = R_2 = R_3 = R_5 = H$, $R_4 = OH$ (quercetin, 133)	C. oliveriana	59
$R_1 = \theta_{-D}$ -Gal, $R_2 = R_3 = R_4 = R_5 = H$ (trifolin, 134)	C. oliveriana	59
$R_1 = \theta_{-D}$ -Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (hyperoside, 135)	C. oliveriana	59
$R_1 = 2$ -O-acetyl- θ -D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (2"-acetylhyperoside, 136)	C. oliveriana	59
$R_1 = 6-O$ -acetyl- θ -D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (6"-acetylhyperoside, 137)	C. oliveriana	59
$R_1 = \theta_{-D}$ -Gal, $R_3 = \theta_{-D}$ -Glu, $R_2 = R_4 = R_5 = H$ (7-glucotrifolin, 138)	C. oliveriana	59
$R_1 = \alpha_{-L}-Rha-(1\rightarrow 6)-\theta_{-D}-Gal, R_2 = R_3 = R_4 = R_5 = H \text{ (biorobin, 139)}$	C. oliveriana	59
$R_1 = \alpha_{-L}-Rha-(1\rightarrow 6)-\theta_{-D}-Gal$, $R_3 = \alpha_{-L}-Rha$, $R_2 = R_4 = R_5 = H$ (robinin, 140)	C. oliveriana	59
$R_1 = R_3 = \alpha_{-L}$ -Rha, $R_2 = R_4 = R_5 = H$ (141)	C. armeniaca	60
$R_1 = \theta_{-D}$ -Glu- $(1 \rightarrow 2)$ - α_{-L} -Rha, $R_3 = \alpha_{-L}$ -Rha, $R_2 = R_4 = R_5 = H$ (142)	C. armeniaca	60
$R_1 = \alpha_{-L}$ -Rha, $R_3 = \theta_{-D}$ -Glu- $(1 \rightarrow 2)$ - α_{-L} -Rha, $R_2 = R_4 = R_5 = H$ (143)	C. armeniaca	60

Flavonoids from Consolida plants.

Fatty acids and essential oils

Several studies have revealed that the seeds of *Consolida* species are a rich source of FAs. FAs are the major constituents of the oils from Consolida plants; for example, FA components are 87.16% of the seed oils of C. regalis.73 It has also been found that oleic acid (158), with a carbon chain length (CCL) of 18:1, is the most dominant FA in all studied Consolida plants (more than 50% of the total FAs), namely, C. regalis, C. orientalis, C. armeniaca, C. glandulosa and C. hohenackeri (Fig. 8).73-76 Consolida plants also contain certain amounts of linoleic (159), eicosenoic (160), and palmitic (161) acids, whereas other FAs are almost negligible.

To date, only one species of Consolida, namely, C. regalis, has been investigated for its volatile constituents by using GC-MS, ⁷³ and a total of 66 compounds have been identified, representing 99.86% of the total content (Table 2). The analyses showed that the major constituents of the oils from C. regalis seeds were FAs (87.16%). In addition to the FAs, the carbonyl compounds (total content 8.57%), heptadecenal (3.58%), heptadecadienal (3.24%), and esters (total content 2.37%), particularly methyl octadecenoate (1.06%), were the main volatile constituents.

3. Biological activities

The crude extracts and isolated compounds (mainly DAs and flavanols) of Consolida plants have been widely screened for their bioactivity. Preliminary screening tests revealed that Consolida-derived constituents possessed broad and impressive biological activities, including insecticide, antileishmanial, antimicrobial, antiviral, antitumor, and antioxidant activities.

Fig. 6 Phenolic acids from Consolida plants.

Fig. 7 Main phytosterols in Consolida species.

Fig. 8 Main FAs in Consolida species.

Herein, the biological activities of the crude extracts and isolated compounds of *Consolida* plants are summarized and discussed.

3.1. Insecticidal activity

Similar to its related genera *Aconitum* and *Delphinium*, the extracts or powders from plants in the *Consolida* genus have also been used widely as natural insecticides against various kinds of agricultural pests, which indicates that the constituents of *Consolida* plants possess insecticidal activities. Early in the mid-1980s, it was reported that the C₁₉-DA methyllycaconitine, which can also be found in *Consolida* plants, displayed high affinity to insect nicotinic receptors and had evolved to protect plants against pests in their early growth stages. Thus, the DAs in *Consolida* may play a vital role in the insecticidal activities of *Consolida* plants, and the results from several studies seem to support this viewpoint. Ulubelen *et al.*

tested the insect repellent activities of 29 natural DA components, six of which (79, 80, 84, 99, 112 and 115) were isolated from Turkish *Consolida* species, against a common household pest, the red flour beetle (*Tribolium casteneum* Herbst.).⁷⁹ C_{20} -DA hetisine (112) (repellency of 59.12% at 3 mg mL⁻¹) was found to have the highest activity among all tested alkaloids, suggesting that it is a promising candidate for insecticide development. In addition, the C_{19} -DAs lycoctonine (80) and browniine (84) and the C_{20} -DA ajaconine (100) also showed a repellency class III effect (40.1–60%) with repellency values of 46.87%, 46.87%, and 53.12% at 3 mg mL⁻¹, respectively, while delsoline (79) and hetisinone (115) showed only a low class II repellent effect (both with a repellency value of 37.50% at 3 mg mL⁻¹).

A series of C₁₉- and C₂₀-DAs isolated from Consolida species were evaluated for their insect antifeedant activities on polyphagous Spodoptera littoralis and the Colorado potato beetle Leptinotarsa decemlineata, as well as their toxicity to insect-derived Sf9 cells (derived from S. frugiperda pupal ovarian tissue) and mammalian Chinese hamster ovary (CHO) cells (Table 3).80,81 Most of the tested DAs showed notable antifeedant effects on these two pests (EC₅₀ < 50 μ g cm⁻²), and the antifeedant effects of DAs were found to be species- and structure-dependent (Table 4). Overall, DAs were more effective on L. decemlineata than on S. littoralis. Among these Consolida-derived DAs, the most active antifeedant to L. decemlineata was lycaconitine-type C19-DA 8-Omethylconsolarine (57, $EC_{50} = 0.13 \mu g \text{ cm}^{-2}$), followed by lycaconitine-type C₁₉-DAs 91, 78, 51, 81, 31, and aconitine-type DA 9 (EC₅₀ < 1 μ g cm⁻²). Ajadine (31, EC₅₀ = 0.1 μ g cm⁻²) exerted the strongest antifeedant effect on S. littoralis, followed by alkaloids 78 (EC₅₀ = 0.84 μ g cm⁻²) and 87 (EC₅₀ = 1.51 μ g cm⁻²). Only a few tested DAs showed toxicity to insect-derived Sf9 cells $(LD_{50} < 100 \mu g mL^{-1})$, and the most toxic compound was 14-Odeacetylpubescenine (58, $LD_{50} = 0.38 \mu g mL^{-1}$), followed by tuguaconitine (4, $LD_{50} = 1.83 \mu g mL^{-1}$) and 14-O-demethyldelboxine (2, $LD_{50} = 6.27 \mu g mL^{-1}$). In addition, none of the tested DAs showed cytotoxicity to CHO cells ($LD_{50} > 100 \mu g mL^{-1}$). In general, C₁₉-DAs demonstrated better antifeedant activities than C₂₀-DAs, especially lycaconitine-type C₁₉-DAs. From the viewpoint of chemical structure, it seemed that lycaconitine-type C₁₉-DAs with ester substituents were more effective, but more research is needed for confirmation. The data described above, combined with the fact that more C₁₉-DAs are present in Consolida plants, indicate that C₁₉-DAs play a key role in the insecticidal activity of Consolida plants. These results also encourage further in-depth research on the antifeedant activities of Consolida-derived C₁₉-DAs.

3.2. Antiparasitic activity

In some countries, such as Turkey and China, *Consolida* plants have been employed as anthelmintic herbals in traditional medicines.^{6,82} Several studies regarding the antiparasitic effect of the crude extracts and isolated compounds of *Consolida* species support the utilization of *Consolida* plants as anthelmintic herbals. Moreover, these results reveal the high potential of *Consolida*-derived compounds in the treatment of protozoal infections.

Table 2 Chemical constituents of oils from seeds of C. regalis

Compounds and class CAS no. formula Hydrocarbons 3.2,6-Dimethyldecane 13150-81-7 C ₁₃ H ₃₆ Undecane 112-0-3 C ₁₃ H ₃₆ Undecane 112-40-3 C ₁₃ H ₃₆ Tirdecane 629-50-5 C ₁₄ H ₃₆ Tirdecane 629-59-4 C ₁₄ H ₃₆ Pertadecane 629-62-9 C ₁₄ H ₃₆ Hexadecane 544-76-3 C ₁₆ H ₃₆ Hexadecane, isomer I 58045-14-0 C ₁₇ H ₃₂ Heptadecadiene, isomer I 81265-03-4 C ₁₇ H ₃₂ Heptadecane 629-78-7 C ₁₇ H ₃₆ Heptadecane 629-78-7 C ₁₇ H ₃₆ Octadecane 593-45-3 C ₁₆ H ₃₆ Nonadecane 629-92-5 C ₁₆ H ₃₆ Carbonylic compounds Total Total Nonanal 124-19-6 C ₁₄ H ₃₀ Non-2-enal 30642-09-2 C ₁₄ H ₁₉ O Nonanal 124-19-6 C ₁₄ H ₁₉ O Nonanal 124-19-6 C ₁₄ H ₁₉ O Decanal 312-19-1<	Relative conte
2,6-Dimethyldecane	- Relative conte
Undecane Undecane 112-021-4 C ₁₁ H ₂₀ Dodecene 112-10-3 C ₁₂ H ₃₀ Dodecene 112-20-3 C ₁₁ H ₃₀ C ₁₂ H ₃₀ Pridecane 629-50-5 C ₁₁ H ₃₀ Pridecane 629-50-4 C ₁₁ H ₃₀ Pridecane 629-62-9 C ₁₂ H ₃₂ C ₁₄ H ₃₀ Pretradecane 629-62-9 C ₁₄ H ₃₂ C ₁₄ H ₃₀ Pretradecane 544-76-3 C ₁₄ H ₃₀ Repaticacitriene 544-76-3 C ₁₄ H ₃₄ Repaticacitriene, isomer I S8045-14-0 C ₁₇ H ₃₂ Repaticacitriene, isomer II S8045-14-0 C ₁₇ H ₃₂ C ₁₈ H ₃₃ C ₁₈ H ₃₀ Cotadecane 629-78-7 C ₁₈ H ₃₀ Cotadecane 629-92-5 Carbonylic compounds Nonan-2-one 30642-09-2 C ₁₈ H ₁₀ C ₁₈ H ₁₀ C ₁₈ H ₁₀ C ₁₈ H ₁₀ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ H ₁₀ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ H ₁₀ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ H ₁₀ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ C ₁₈ H ₁₀ C ₁₈	
Dodecane	0.04
Tridecane 629-50-5 C ₁₁ H ₂₈ Petradecane 629-50-5 C ₁₁ H ₂₈ Petradecane 629-59-4 C ₁₁ H ₃₀ Petradecane 629-62-9 C ₁₁ H ₃₂ Hexadecatriene 2516-60-6 C ₁₁ H ₃₈ Hexadecane 544-76-3 C ₁₁ H ₃₀ Heptadecadiene, isomer I 58045-14-0 C ₁₂ H ₃₂ Heptadecadiene, isomer II 8126-50-34 C ₁₁ H ₃₂ Heptadecadiene, isomer II 8126-50-34 C ₁₁ H ₃₂ Octadecane 593-45-3 C ₁₁ H ₃₀ Octadecane 593-45-3 C ₁₁ H ₃₀ Nonadecane 593-45-3 C ₁₁ H ₃₀ Nonadecane 629-92-5 C ₁₀ H ₄₀ Carbonylic compounds Carbonylic compounds Nonan-2-one 30642-09-2 C ₉ H ₁₈ O Non-2-enal 2463-53-8 C ₉ H ₁₆ O Decan-2-one 693-54-9 C ₁₁ H ₂₀ O Decan-2-one 112-31-2 C ₁₁ H ₂₀ O Decan-2-one 122-31-31-1 C ₁₁ H ₁₉ O Deca-2-dienal 112-31-2 C ₁₁ H ₂₀ O Deca-2-dienal 124-25-4 C ₁₁ H ₂₀ O Petradecanal 2765-11-9 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Petradecanal 2765-11-9 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Petradecanal 2765-11-9 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Petradecanal 2765-11-9 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Hexadecenal 629-80-1 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Hexadecanal 629-80-1 C ₁₁ H ₂₀ O C ₁₁ H ₂₀ O Cotan-1-ol 143-08-8 C ₁₁ H ₃₀ O Heptadecenal 8028-42-3 C ₁₁ H ₃₀ O Heptadecenal 8028-42-3 C ₁₁ H ₃₀ O C ₁₁ H ₃₀ O Nonan-2-ol 628-99-9 C ₁₁ H ₃₀ O Cotan-1-ol 61725-89-1 C ₁₁ H ₃₀ O C ₁₁ H ₃₀ O Petradecanoic acid 6221-770-3 C ₁₁ H ₃₀ O C ₁₁ H ₃₀ O Petradecanoic acid 6221-770-3 C ₁₁ H ₃₀ O C ₁₁ H ₃₀ O Cotadecenoic acid 6221-770-3 C ₁₁ H ₃₀ O Cotadecenoic acid 6221-770-3 C ₁₁ H ₃₀ O Cotadecenoic acid 6225-79-8 C ₁₁ H ₃₀ O Cotadecenoic acid 6225-79-8 C ₁₁ H ₃₀ O Cotadecenoic acid 700-70-79 C ₂₀ H ₃₀ O C ₂₀ H ₃₀ O Cotadecenoic acid 700-70-79 C ₂₀	0.03
Tetradecane	0.05
Pentadecare	0.07
Hexadecatriene	0.04
Hexadecane	0.02
Hexadecane	0.02
Heptadecaine, isomer II	0.03
Heptadecane	0.06
Detadecane 593-45-3	0.02
Detadecane 593-45-3	0.02
Carbonylic compounds Substituting	0.03
Nonan-2-one 30642-09-2 C ₉ H ₁₈ O Nonanal 124-19-6 C ₂ H ₁₈ O Nonanal 244-19-6 C ₂ H ₁₈ O Non-2-enal 2463-53-8 C ₉ H ₁₆ O Decan-2-one 693-54-9 C ₁₀ H ₂₀ O Decanal 112-31-2 C ₁₀ H ₂₀ O Deca-2,4-dienal 3913-71-1 C ₁₀ H ₁₈ O Deca-2,4-dienal 5910-88-3 C ₁₀ H ₁₆ O Undec-2-enal 53 448-07-0 C ₁₁ H ₂₀ O Petradecanal 124-25-4 C ₁₄ H ₂₈ O Petradecanal 2765-11-9 C ₁₅ H ₃₀ O Hexadecanal 629-80-1 C ₁₆ H ₃₀ O Hexadecanal 76261-03-5 C ₁₆ H ₃₀ O Heyadecanal 5679-42-3 C ₁₇ H ₃₀ O Heptadecadienal 5679-42-3 C ₁₇ H ₃₀ O Heptadecadienal 5679-42-3 C ₁₇ H ₃₀ O Heptadecanal 5679-42-3 C ₁₇ H ₃₀ O Heptadecenal 98028-42-3 C ₁₇ H ₃₀ O Nonan-2-Ol 628-99-9 C ₉ H ₂₀ O Nonan-1-Ol 113-87-5 C ₉ H ₁₆ O Nonan-2-Ol 628-99-9 C ₉ H ₂₀ O Nonan-1-Ol 143-08-8 C	0.02
Nonanal 124-19-6	
Nonanal 124-19-6	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07
Decan-2-one $693-54-9$ $C_{10}H_{20}O$ Decanal $112-31-2$ $C_{10}H_{20}O$ Dece-2-enal $391-71-1$ $C_{10}H_{10}O$ Dece-2-enal $391-88-3$ $C_{10}H_{16}O$ Undee-2-enal $53448-07-0$ $C_{11}H_{20}O$ Tetradecanal $124-25-4$ $C_{14}H_{28}O$ Pentadecanal $2765-11-9$ $C_{15}H_{30}O$ Hexadecanal $629-80-1$ $C_{16}H_{30}O$ Hexadecenal $76261-03-5$ $C_{16}H_{30}O$ Hexadecedienal $5679-42-3$ $C_{17}H_{30}O$ Heptadecedienal $5679-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Aliphatic alcohols $C_{11}C_{11}C_{11}C_{12}C_{12}C_{12}C_{12}C_{13}C_{13}C_{14}C_{14}C_{14}C_{15}C_{14}C_{15}C$	0.02
Decanal 112-31-2 $C_{10}H_{20}O$ Dec-2-enal 3913-71-1 $C_{10}H_{16}O$ Deca-2,4-dienal 5910-88-3 $C_{10}H_{16}O$ Dridec-2-enal 53 448-07-0 $C_{11}H_{20}O$ Petradecanal 124-25-4 $C_{14}H_{28}O$ Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Hexadecanal 629-80-1 $C_{16}H_{32}O$ Hexadecanal 76261-03-5 $C_{16}H_{30}O$ Hexadecenal 76261-03-5 $C_{16}H_{30}O$ Heptadecenal 56797-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Miphatic alcohols Sector Sector Detar-1-ol 111-87-5 $C_{8}H_{18}O$ Nonan-2-ol 628-99-9 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nordecan-1-ol 61752-89-1 $C_{18}H_{30}O$	0.02
Dec-2-enal 3913-71-1 $C_{10}H_{18}O$ Dec-2-enal 3913-71-1 $C_{10}H_{18}O$ Dec-2-4-dienal 5910-88-3 $C_{10}H_{16}O$ Undec-2-enal 53 448-07-0 $C_{11}H_{20}O$ Fetradecanal 124-25-4 $C_{11}H_{20}O$ Pentadecanal 124-25-4 $C_{11}H_{20}O$ Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Hexadecanal 629-80-1 $C_{16}H_{32}O$ Hexadecanal 76261-03-5 $C_{16}H_{30}O$ $C_{5,10,14-Trimethylpentadecan-2-one 16825-16-4 C_{18}H_{36}O Heptadecadienal 56797-42-3 C_{17}H_{30}O Heptadecadienal 56797-42-3 C_{17}H_{30}O Heptadecenal 98028-42-3 C_{17}H_{30}O Heptadecenal 98028-42-3 C_{17}H_{30}O Nonan-2-ol 111-87-5 C_{8}H_{18}O Nonan-2-ol 628-99-9 C_{9}H_{20}O Nonan-1-ol 143-08-8 C_{9}H_{20}O Undecan-2-ol 1653-30-1 C_{11}H_{24}O Tridecan-1-ol 61725-89-1 C_{18}H_{36}O Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 2112-37-8 C_{12}H_{18}O_2 Pentadecanoic acid 143-07-7 C_{12}H_{24}O_2 Tetradecanoic acid 629-56-1 C_{10}H_{30}O_2 Hexadecanoic acid 629-56-1 C_{10}H_{30}O_2 Hexadecanoic acid 629-56-1 C_{10}H_{30}O_2 Hexadecanoic acid 98541-42-0 C_{18}H_{30}O_2 Octadecanoic acid 85541-42-0 C_{18}H_{30}O_2 Exerces Methyl tetradecanoate 124-10-7 C_{15}H_{30}O_2 Methyl tetradecanoate C_{17}H_{34}O_2 C_{17}H_{34}O_2$	0.02
Deca-2,4-dienal $5910-88-3$ $C_{11}H_{16}$ O Undec-2-enal $53448-07-0$ $C_{11}H_{20}$ O Pettradecanal $124-25-4$ $C_{14}H_{28}$ O Pentadecanal $2765-11-9$ $C_{15}H_{30}$ O Hexadecanal $629-80-1$ $C_{16}H_{32}$ O Hexadecenal $76261-03-5$ $C_{16}H_{30}$ O $61,0,14$ -Trimethylpentadecan-2-one $16825-16-4$ $C_{18}H_{36}$ O Hetyadecedienal $56797-42-3$ $C_{17}H_{30}$ O Hetyadecenal $98028-42-3$ $C_{17}H_{30}$ O Hetyadecenal $98028-42-3$ $C_{17}H_{30}$ O Hetyadecenal $98028-42-3$ $C_{17}H_{30}$ O Aliphatic alcohols C_{10} $C_{$	0.04
Undec-2-enal $53 \ 448-07-0$ $C_{11}H_{20}O$ Petradecanal $53 \ 448-07-0$ $C_{11}H_{20}O$ Petradecanal $124-25-4$ $C_{14}H_{28}O$ Pentadecanal $124-25-4$ $C_{14}H_{28}O$ Pentadecanal $2765-11-9$ $C_{15}H_{30}O$ Hexadecanal $629-80-1$ $C_{16}H_{32}O$ Hexadecenal $76261-03-5$ $C_{16}H_{30}O$ $C_{15}H_{30}O$ Hexadecenal $76261-03-5$ $C_{16}H_{30}O$ $C_{15}H_{31}O$ Heptadecadienal $56797-42-3$ $C_{17}H_{30}O$ Heptadecadienal $56797-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Heptadecenal $98028-42-3$ $C_{17}H_{30}O$ Nonan-2-ol $628-99-9$ $C_{9}H_{20}O$ Nonan-2-ol $628-99-9$ $C_{9}H_{20}O$ Nonan-1-ol $143-08-8$ $C_{9}H_{20}O$ Undecan-2-ol $1653-30-1$ $C_{11}H_{24}O$ Pridecan-1-ol $61725-89-1$ $C_{18}H_{30}O_{3}$ Aromatic compounds $-2(-(err-Butyl)-1,4-dimethoxybenzene -21112-37-8 -2(-21)(-21)(-21)(-21)(-21)(-21)(-21)(-2$	0.04
Tetradecanal 124-25-4 $C_{14}H_{28}O$ Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Hexadecanal 629-80-1 $C_{16}H_{32}O$ Hexadecanal 76261-03-5 $C_{16}H_{30}O$ 6,10,14-Trimethylpentadecan-2-one 16825-16-4 $C_{18}H_{36}O$ Heptadecadienal 56797-42-3 $C_{17}H_{30}O$ Heptadecanal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 111-87-5 $C_{8}H_{18}O$ Nonan-2-ol 111-87-5 $C_{8}H_{18}O$ Nonan-1-ol 114-80-8 $C_{9}H_{20}O$ Undecan-2-ol 1653-30-1 $C_{11}H_{24}O$ Tridecan-1-ol 61725-89-1 $C_{18}H_{38}O$ Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O$ Pentadecanoic acid 143-07-7 $C_{12}H_{24}O$ Pentadecanoic acid 143-07-7 $C_{12}H_{24}O$ Pentadecanoic acid 1402-84-2 $C_{15}H_{30}O$ Hexadecanoic acid 629-56-1 $C_{16}H_{30}O$ Hexadecanoic acid 629-56-1 $C_{16}H_{30}O$ Hexadecanoic acid 9855-79-8 $C_{18}H_{30}O$ Octadecanoic acid 9855-79-8 $C_{18}H_{30}O$ Decadecanoic acid 9855-79-8 $C_{18}H_{30}O$ Exters Methyl tetradecanoate 124-10-7 $C_{15}H_{36}O$ $C_{20}H_{38}O$ Rethyl tetradecanoate 124-10-7 $C_{15}H_{36}O$ $C_{17}H_{34}O$	0.07
Pentadecanal 2765-11-9 $C_{15}H_{30}O$ Hexadecanal 2765-11-9 $C_{15}H_{30}O$ Hexadecanal 629-80-1 $C_{16}H_{32}O$ Hexadecanal 76261-03-5 $C_{16}H_{30}O$ 61,01,41-Trimethylpentadecan-2-one 16825-16-4 $C_{18}H_{36}O$ Heptadecadienal 56797-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Nonan-2-ol 111-87-5 $C_{8}H_{18}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nonan-1-ol 1653-30-1 $C_{11}H_{24}O$ Pridecan-1-ol 61725-89-1 $C_{18}H_{38}O_{3}$ Aromatic compounds $C_{17}O$ Hamber 21112-37-8 $C_{12}O$ Pertadecanoic acid 143-07-7 $C_{12}O$ Pertadecanoic acid 143-07-7 $C_{12}O$ Pertadecanoic acid 1002-84-2 $C_{15}O$ Pertadecanoic 1002-84-2 $C_{15}O$ Pertadecanoic 1002-84-2 $C_{15}O$ Pertadecanoic 1002-84-2 $C_{15}O$ Pertadecanoic 1002-84-2 $C_{15}O$ Pe	0.05
Hexadecanal 629-80-1 $C_{16}H_{32}O$ Hexadecenal 76261-03-5 $C_{16}H_{30}O$ $6,10,14$ -Trimethylpentadecan-2-one 16825 - 16 - 4 $C_{18}H_{36}O$ Heptadecadienal 56797 - 42 - 3 $C_{17}H_{30}O$ Heptadecenal 98028 - 42 - 3 $C_{17}H_{30}O$ Aliphatic alcohols Octan-1-ol 111 - 87 - 5 $C_8H_{18}O$ Nonan-2-ol 628 - 99 - 9 $C_9H_{20}O$ Nonan-1-ol 143 - 08 - 8 $C_9H_{20}O$ Undecan-2-ol 1653 - 30 - 1 $C_{11}H_{24}O$ Tridecan-1-ol 61725 - 89 - 1 $C_{18}H_{38}O_3$ Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 21112 - 37 - 8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143 - 07 - 7 $C_{12}H_{24}O_2$ Tertradecanoic acid 62217 - 70 - 3 $C_{14}H_{28}O_2$ Pentadecanoic acid 62217 - 70 - 3 $C_{14}H_{28}O_2$ Pentadecanoic acid 629 - 56 - 1 $C_{16}H_{30}O_2$ Hexadecenoic acid 57 - 10 - 3 $C_{16}H_{30}O_2$ Octadece	1.02
Hexadecenal 76261-03-5 $C_{16}H_{30}O$ 5,10,14-Trimethylpentadecan-2-one 16825-16-4 $C_{18}H_{36}O$ 6,10,14-Trimethylpentadecanienal 56797-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{32}O$ Aliphatic alcohols Detan-1-ol 111-87-5 $C_{8}H_{18}O$ Nonan-2-ol 628-99-9 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Nonan-1-ol 1653-30-1 $C_{11}H_{24}O$ Tridecan-1-ol 61725-89-1 $C_{18}H_{38}O_{3}$ Aromatic compounds $C_{17}O$ $C_{17}O$ $C_{17}O$ $C_{18}O$ C_{1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.14
Heptadecadienal 56797-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{30}O$ Heptadecenal 98028-42-3 $C_{17}H_{32}O$ Aliphatic alcohols Octan-1-ol 111-87-5 $C_{8}H_{18}O$ Nonan-2-ol 628-99-9 $C_{5}H_{30}O$ Nonan-1-ol 143-08-8 $C_{5}H_{20}O$ Undecan-2-ol 1653-30-1 $C_{11}H_{24}O$ Oridecan-1-ol 61725-89-1 $C_{18}H_{38}O_{3}$ Aromatic compounds Aromatic compounds Cettert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_{2}$ Fatty acids Octean-1-ol 62217-70-3 $C_{14}H_{28}O_{2}$ Pentadecanoic acid 62217-70-3 $C_{14}H_{28}O_{2}$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_{2}$ Hexadecenoic acid 629-56-1 $C_{16}H_{30}O_{2}$ Hexadecenoic acid 57-10-3 $C_{16}H_{32}O_{2}$ Octadecenoic acid 2825-79-8 $C_{18}H_{34}O_{2}$ Octadecenoic acid 85541-42-0 $C_{18}H_{36}O_{2}$ Cosenoic acid 85541-42-0 $C_{18}H_{36}O_{2}$ Esters Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_{2}$ Methyl tetradecanoate 112-39-0 $C_{17}H_{34}O_{2}$	0.03
Heptadecenal 98028-42-3 $C_{17}H_{32}O$ Aliphatic alcohols Octan-1-ol 111-87-5 $C_{9}H_{18}O$ Nonan-2-ol 628-99-9 $C_{9}H_{20}O$ Nonan-1-ol 143-08-8 $C_{9}H_{20}O$ Undecan-2-ol 1653-30-1 $C_{11}H_{24}O$ Tridecan-1-ol 61725-89-1 $C_{18}H_{38}O_3$ Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143-07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217-70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629-56-1 $C_{16}H_{30}O_2$ Hexadecenoic acid 57-10-3 $C_{16}H_{32}O_2$ Octadecenoic acid 2825-79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541-42-0 $C_{18}H_{36}O_2$ Lecosenoic acid 7050-07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl tetradecanoate 112-39-0 $C_{17}H_{34}O_2$	0.21
Aliphatic alcohols Octan1-ol 111-87-5 $C_8H_{18}O$ Nonan-2-ol 628-99-9 $C_9H_{20}O$ Nonan-1-ol 143-08-8 $C_9H_{20}O$ Undecan-2-ol 1653-30-1 $C_{11}H_{24}O$ Tridecan-1-ol 61725-89-1 $C_{18}H_{38}O_3$ Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143-07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217-70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_2$ Hexadecanoic acid 629-56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57-10-3 $C_{16}H_{30}O_2$ Hexadecanoic acid 2825-79-8 $C_{18}H_{34}O_2$ Octadecenoic acid 85541-42-0 $C_{18}H_{36}O_2$ Reconsoluted 85541-42-0 $C_{18}H_{36}O_2$	3.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Nonan-1-ol 143-08-8 $C_9H_{20}O$ Undecan-2-ol 1653-30-1 $C_{11}H_{24}O$ Tridecan-1-ol 61725-89-1 $C_{18}H_{38}O_3$ Aromatic compounds 2 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143-07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217-70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629-56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57-10-3 $C_{16}H_{30}O_2$ Octadecenoic acid 2825-79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541-42-0 $C_{18}H_{36}O_2$ Icosenoic acid 7050-07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	0.02
Undecan-2-ol $1653-30-1$ $C_{11}H_{24}O$ Tridecan-1-ol $61725-89-1$ $C_{18}H_{38}O_3$ Aromatic compounds 2 -(tert-Butyl)-1,4-dimethoxybenzene $21112-37-8$ $C_{12}H_{18}O_2$ Fatty acids 2 -(tert-Butyl)-1,4-dimethoxybenzene $21112-37-8$ 2 -(2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	0.14
Aromatic compounds C18H38O3 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143-07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217-70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629-56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57-10-3 $C_{16}H_{32}O_2$ Octadecenoic acid 2825-79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541-42-0 $C_{18}H_{36}O_2$ Icosenoic acid 7050-07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	0.04
Aromatic compounds 2-(tert-Butyl)-1,4-dimethoxybenzene 21112-37-8 $C_{12}H_{18}O_2$ Fatty acids Dodecanoic acid 143-07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217-70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002-84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629-56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57-10-3 $C_{16}H_{32}O_2$ Octadecenoic acid 2825-79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541-42-0 $C_{18}H_{36}O_2$ Icosenoic acid 7050-07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	0.01
2 -($tert$ -Butyl $)$ -1,4-dimethoxybenzene 21112 -37-8 $C_{12}H_{18}O_2$ Fatty acids $C_{12}H_{24}O_2$ $C_{12}H_{24}O_2$ Dodecanoic acid 62217 -70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002 -84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629 -56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57 -10-3 $C_{16}H_{32}O_2$ Octadecenoic acid 2825 -79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541 -42-0 $C_{18}H_{36}O_2$ Icosenoic acid 7050 -07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124 -10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112 -39-0 $C_{17}H_{34}O_2$	0.01
Fatty acids Dodecanoic acid 143 -07-7 $C_{12}H_{24}O_2$ Tetradecanoic acid 62217 -70-3 $C_{14}H_{28}O_2$ Pentadecanoic acid 1002 -84-2 $C_{15}H_{30}O_2$ Hexadecenoic acid 629 -56-1 $C_{16}H_{30}O_2$ Hexadecanoic acid 57 -10-3 $C_{16}H_{32}O_2$ Octadecenoic acid 2825 -79-8 $C_{18}H_{34}O_2$ Octadecanoic acid 85541 -42-0 $C_{18}H_{36}O_2$ Icosenoic acid 7050 -07-9 $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate 124 -10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112 -39-0 $C_{17}H_{34}O_2$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02
Tetradecanoic acid $62217-70-3$ $C_{14}H_{28}O_2$ Pentadecanoic acid $1002-84-2$ $C_{15}H_{30}O_2$ Hexadecenoic acid $629-56-1$ $C_{16}H_{30}O_2$ Hexadecanoic acid $57-10-3$ $C_{16}H_{32}O_2$ Octadecenoic acid $2825-79-8$ $C_{18}H_{34}O_2$ Octadecanoic acid $85541-42-0$ $C_{18}H_{36}O_2$ Icosenoic acid $7050-07-9$ $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate $124-10-7$ $C_{15}H_{30}O_2$ Methyl hexadecanoate $112-39-0$ $C_{17}H_{34}O_2$	
Tetradecanoic acid $62217-70-3$ $C_{14}H_{28}O_2$ Pentadecanoic acid $1002-84-2$ $C_{15}H_{30}O_2$ Hexadecenoic acid $629-56-1$ $C_{16}H_{30}O_2$ Hexadecanoic acid $57-10-3$ $C_{16}H_{32}O_2$ Octadecenoic acid $2825-79-8$ $C_{18}H_{34}O_2$ Octadecanoic acid $85541-42-0$ $C_{18}H_{36}O_2$ Icosenoic acid $7050-07-9$ $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate $124-10-7$ $C_{15}H_{30}O_2$ Methyl hexadecanoate $112-39-0$ $C_{17}H_{34}O_2$	0.07
Pentadecanoic acid $1002-84-2$ $C_{15}H_{30}O_2$ $C_{16}H_{30}O_2$ $C_{17}H_{30}O_2$ $C_{17}H_{30}O_2$ $C_{17}H_{30}O_2$ $C_{17}H_{30}O_2$	0.22
Hexadecenoic acid $629-56-1$ $C_{16}H_{30}O_{2}$ $C_{16}H_{30}O_{2}$ $C_{16}H_{32}O_{2}$ $C_{16}H_{32}O_{2}$ $C_{16}H_{32}O_{2}$ $C_{16}H_{32}O_{2}$ $C_{16}H_{32}O_{2}$ $C_{18}H_{34}O_{2}$ $C_{18}H_{34}O_{2}$ $C_{18}H_{34}O_{2}$ $C_{18}H_{36}O_{2}$ $C_{18}H_{36}O_{2}$ $C_{18}H_{36}O_{2}$ $C_{20}H_{38}O_{2}$ $C_{20}H_{38}O_{$	0.03
Hexadecanoic acid $57-10-3$ $C_{16}H_{32}O_2$ Octadecenoic acid $2825-79-8$ $C_{18}H_{34}O_2$ Octadecanoic acid $85541-42-0$ $C_{18}H_{36}O_2$ Icosenoic acid $7050-07-9$ $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate $124-10-7$ $C_{15}H_{30}O_2$ Methyl hexadecanoate $112-39-0$ $C_{17}H_{34}O_2$	0.06
Octadecenoic acid $2825-79-8$ $C_{18}H_{34}O_2$ Octadecanoic acid $85541-42-0$ $C_{18}H_{36}O_2$ Occosenoic acid $7050-07-9$ $C_{20}H_{38}O_2$ Esters Methyl tetradecanoate $124-10-7$ $C_{15}H_{30}O_2$ Methyl hexadecanoate $112-39-0$ $C_{17}H_{34}O_2$	8.34
Octadecanoic acid $85541-42-0$ $C_{18}H_{36}O_2$ Accosenoic acid $7050-07-9$ $C_{20}H_{38}O_2$ Esters Wethyl tetradecanoate $124-10-7$ $C_{15}H_{30}O_2$ Methyl hexadecanoate $112-39-0$ $C_{17}H_{34}O_2$	77.79
Esters $C_{20}H_{38}O_2$ Methyl tetradecanoate 124 - 10 - 7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112 - 39 - 0 $C_{17}H_{34}O_2$	0.16
Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	0.49
Methyl tetradecanoate 124-10-7 $C_{15}H_{30}O_2$ Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	
Methyl hexadecanoate 112-39-0 $C_{17}H_{34}O_2$	0.02
•	0.20
Ethyl hexadecanoate 628-97-7 $C_{18}H_{36}O_2$	0.07
Isopropyl hexadecanoate $026-97-7$ $C_{18}\Pi_{36}O_{2}$ $C_{19}H_{38}O_{2}$	0.03
	0.03
Methyl octadecenoate 14620-36-1 $C_{19}H_{36}O_2$ Ethyl octadecenoate 1260505-83-6 $C_{20}H_{38}O_3$	1.06 0.40

Table 2 (Contd.)

		Molecular	
Compounds and class	CAS no.	formula	Relative content
Monoterpenoids			
Methyl icosenoate	2390-09-2	$C_{21}H_{40}O_2$	0.19
Estragole	140-67-0	$C_{10}H_{12}O$	0.06
β-Ionone	79-77-6	$\mathrm{C}_{13}\mathrm{H}_{20}\mathrm{O}$	0.02
Sesquiterpenoids			
Copaene	138874-68-7	$C_{15}H_{24}$	0.01
β-Caryophyllene	87-44-5	$C_{15}H_{24}$	0.04
α-Bergamotene	17699-05-7	$C_{15}H_{24}$	0.02
β-Farnesene	3899-18-1	$C_{15}H_{26}$	0.04
Germacrene D	37839-63-7	$C_{15}H_{24}$	0.09
β-Selinene	17066-67-0	$C_{15}H_{24}$	0.01
α-Muurolene	10208-80-7	$C_{15}H_{24}$	0.02
Himachalene	1461-03-6	$C_{15}H_{24}$	0.17
Cadinene	523-47-7	$C_{15}H_{24}$	0.18
Carotol	465-28-1	$C_{15}H_{26}O$	0.08
Cedrol	77-53-2	$C_{15}H_{26}O$	0.09
Dihydrofarnesol	51411-24-6	$\mathrm{C_{15}H_{28}O}$	0.04
Higher isoprenoids			
Squalene	111-02-4	$C_{30}H_{50}$	0.17
Others			
2-Isopropyl-3-methoxypyrazine	25773-40-4	$C_8H_{12}N_2O$	0.03

Carole *et al.* investigated the antileishmanial activities of 27 plants from Lebanese. ⁸³ The screened plants were extracted with water, methanol, and dichloromethane. The methanol extracts of *C. rigida* (white larkspur) exhibited significant antiamastigote effects on the intracellular form of *Leishmania* species ($IC_{50} = 8.1~\mu g~mL^{-1}$). Furthermore, the methanol extracts also showed no toxicity to the host cells (THP1 human monocytes, $IC_{50} > 250~\mu g~mL^{-1}$), exhibiting a selectivity index (SI) larger than 30. Notably, of the screened plants, the antileishmanial effects of the methanol extracts of *C. rigida* were next only to the aqueous extracts of *Onosma aucheriana* ($IC_{50} = 5.1~\mu g~mL^{-1}$, SI > 49) and the methanol extracts of *Cytisus syriacus* ($IC_{50} = 5.8~\mu g~mL^{-1}$, SI > 43).

From a total of 64 DAs (41 C₁₉-DAs and 23 C₂₀-DAs) screened by González et al., only three atisine-type C₂₀-DAs displayed antiparasitic effects against Leishmania infantum and Trypanosoma cruzi, while none of the C₁₉-DAs affected the parasites.80,84,85 Among these three DAs, azitine (93) has been found in Consolida species. Azitine (92) showed promising antileishmanial and antitrypanocidal properties. It was effective in vitro both against the extracellular and intracellular forms of L. infantum and could not only lower the in vitro growth rate of L. infantum but also affect the capacity to infect cells and reduce the multiplication of amastigotes. In the in vitro experiment, azitine (92) exerted an inhibitory effect against *L. infantum* parasites (IC₅₀ = 10.12 μ g mL⁻¹ after 72 h of culture), which was lower than those obtained by the reference drug pentostam (IC $_{50}=11.32~\mu g~mL^{-1}$ after 72 h of culture), and exhibited an inhibiting effect against T. cruzi epimastigotes ($IC_{50} = 67.74~\mu g~mL^{-1}$ after 72 h of culture). In the intracellular experiment, azitine (92) clearly inhibited the infection rate (approximately 53%) of *L. infantum* in J774A.1 macrophage cells after 48 h of culture. Moreover, this alkaloid is not toxic to host cells ($IC_{50} > 200~\mu g~mL^{-1}$), which highlights its potential as a lead compound in the discovery of drugs for protozoal infections.

Additionally, a set of flavonol glycosides obtained from C. oliveriana and their acetylated products have exhibited impressive antileishmaniasis activity against two Leishmania species L. peruviana and L. braziliensis (Table 4).86-88 All the compounds tested showed high inhibitory effects against their corresponding parasites, and some of them had higher effectiveness and selectivity indexes than those of their corresponding reference drugs. For example, acetylated compounds 133a, 134a, and 136 were highly active against L. peruviana, and 133a and 136 were strongly effective against L. braziliensis. Transmission electronic microscopy and nuclear magnetic resonance analysis raised the possibility that the action (or part of the action) could be at the level of the parasite membranes. Regarding structures, the acetylated compounds performed better than the phenolic analogs, and the kaempferol derivatives possessing a monosubstituted B-ring were more active than the quercetin analogs. The interesting structure-activity relationship (SAR) described above implies that the Consolidaderived flavonols can serve as a low-cost starting material for the discovery of acetylated compounds with better antileishmaniasis efficacy.

Table 3 Antifeedant effects of DAs on L. decemlineata and S. littoralis and cytotoxicity on Sf9 cells

Compounds	Тур	L. decemlineata (EC ₅₀ , μ g e cm ⁻²)	S. littoralis (EC ₅₀ , μ g cm ⁻²)	Sf9 cells (LD ₅₀ , $\mu g \text{ mL}^{-1}$)
14- <i>O</i> -Demethyldelboxine (2)	I	1.92	≈50	6.27
14-Demethyltuguaconitine (3)	I	2.36	5.38	>100
Tuguaconitine (4)	I	3.31	11.79	1.83
Pubescenine (6)	III	12.53	>50	>100
Raveyine (9)	III	0.99	>50	>100
Ajadelphinine (19)	III	4.43	>50	>100
Ajadine (31)	IV	0.84	0.42	>100
14-Deacetylajadine (32)	IV	nt	nt	>100
18-Hydroxy-14- <i>O</i> -methylgadesine (49)	IV	0.13	>50	>100
18-Demethylpubescenine (51)	IV	0.60	>50	29.17
1- <i>O</i> ,19-Didehydrotakaosamine (56)	IV	1.49	14.29	>100
8- <i>O</i> -Methylconsolarine (57)	IV	0.23	>10	>100
14-O-Deacetylpubescenine (58)	IV	≈50	17.99	0.38
18-O-Benzoyl-14-O-deacetyl-18-O-demethylpubescenine	IV	nt	nt	>100
(59)				
18-Methoxygadesine (60)	IV	6.36	>50	>100
Consolidine (61)	IV	≈ 50	9.86	>100
Olivimine (62)	IV	10.92	>50	>100
Olividine (63)	IV	3.62	3.33	29.45
Gigactonine (75)	IV	13.02	9.31	>100
Delcosine (76)	IV	1.11	3.53	32.37
Deltatsine (78)	IV	0.54	0.84	>100
Delsoline (79)	IV	2.22	>50	>100
Lycoctonine (80)	IV	>50	>50	>100
Takaosamine (81)	IV	0.66	5.29	>100
Delphatine (82)	IV	2.97	2.72	>100
Browniine (84)	IV	nt	Nt	>100
14-Acetyldelcosine (87)	IV	>50	1.51	14.88
14-O-Acetyldelectinine (91)	IV	0.29	5.63	>100
Dihydroajaconine (96)	V	5.0	>50	>100
Isoatisine (99)	V	3.4	>50	>100
Ajaconine (100)	V	5.1	8.2	>100
Glandulosine (107)	VI	4.0	>50	>100
Hetisine (113)	VI	1.73	≈50	>100
Atropine		7.38	>50	>100
Anabasine		>50	≈60	>100
Eserine		≈60	>50	>100

3.3. Antimicrobial activity

The crude extracts of several Consolida plants have been evaluated for their antimicrobial activities against some kinds of plant and human pathogenic bacteria and fungi. In a screening of plants with antimicrobial activity from northeastern Iran, two Consolida species, C. orientalis and C. rugulosa, were evaluated for their antimicrobial activity against several pathogenic bacteria and fungi, and C. orientalis showed significant antimicrobial activity against Morganella morganii and P. aeruginosa.89 Ucar tested the antimicrobial activity of ethanol extracts from the aerial parts (leaf, flower, and branch) of C. regalis against a series of common human pathogenic bacteria and fungi, including Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, Bacillus cereus, Candida albicans, and C. tropicalis. The extracts from the leaf, flower, and branch parts of C. regalis showed moderate antimicrobial activity against C. tropicalis with MIC values of 0.625 mg mL^{-1} , 0.625 mg mL^{-1} , and 0.312 mg mL^{-1} , respectively, and the extracts from the leaf and branch parts showed moderate antimicrobial activity against S. aureus, with

MIC values of 0.625 mg mL⁻¹. The extracts showed only a weak effect on the other tested microorganisms.⁹⁰

Kalpana et al. evaluated the antifungal activities of methanol extracts from the leaves, stems and flowers of C. ambigua (D. ajacis) against several phytopathogenic fungi, Alternaria solani, Rhizoctonia solani, Colletotrichum gloeosporioides and Pyricularia oryzae. All of these extracts at 10 mg mL⁻¹ were effective at inhibiting fungal colony growth compared with that of the control. The extract of the C. ambigua leaves showed the complete inhibition of P. oryzae colony growth, followed by the almost complete inhibition of C. gloeosporioides colony growth, whereas low inhibition was observed against R. solani and A. solani. The stem extract showed the complete inhibition of the colony growth of C. gloeosporioides, P. oryzae and R. solani, followed by the inhibition of A. solani colony growth; the flower extract completely reduced the growth of the plant pathogenic fungus C. gloeosporioides, followed by P. oryzae while the least inhibition was observed against A. solani.91 In addition, Yusuf et al. tested the antifungal activity of the leaf extracts of D. consolida against Alternaria solani, an early blight disease Table 4 In vitro activity of flavonoids of Consolida plants on promastigotes of Leishmania species

	IC_{50} (μM)				
R ₁ -R ₅ (name, no.)	L. peruviana	L. braziliensis	J774.2 cells		
$R_1 = R_2 = R_3 = R_4 = R_5 = H$ (kaempferol,132)	71.29	53.65	53.67		
$R_1 = R_2 = R_3 = R_4 = Ac$, $R_4 = H$ (kaempferol tetraacetate, 132a)	53.32	68.56	15.56		
$R_1 = R_2 = R_3 = R_5 = H, R_4 = OH $ (quercetin, 133)	60.04	30.49	125.44		
$R_1 = R_2 = R_3 = R_5 = Ac$, $R_4 = OAc$ (quercetin pentaacetate, 133a)	11.18	46.78	109.23		
$R_1 = \beta$ -D-Gal, $R_2 = R_3 = R_4 = R_5 = H$ (trifolin, 134)	53.34	52.46	161.32		
$R_1 = \beta$ -D-Gal Ac, $R_2 = R_3 = R_5 = H$, $R_4 = H$ (trifolin heptaacetate, 134a)	10.53	8.72	148.71		
$R_1 = 2$ -O-acetyl- β -D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (2"-acetylhyperoside, 136)	7.35	6.21	122.31		
$R_1 = 6$ -O-acetyl-β-D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (6"-acetylhyperoside, 137)	86.95	51.60	61.32		
Pentostam	11.32	9.56	12.44		
Glucatim	15.33	25.61	15.20		

pathogen of potato. However, the studied extracts showed no inhibitory effect on the mycelial growth of *A. solani.*⁹²

The above antimicrobial activities can be attributed to their DA compositions, which have been reported to exhibit certain antibacterial and antifungal activities. ¹⁵ Bilge *et al.* reported that five *Consolida* alkaloids presented a notable antibacterial effect only toward *K. pneumoniae* and *A. baumannii* with MIC values of 8 μg mL⁻¹, while the five *Consolida* alkaloids exhibited considerable antifungal activity with MIC values of 4 μg mL⁻¹ (Table 5). ⁹³

3.4. Antiviral activity

The isolated DAs of *Consolida* plants, mainly lycaconitine-type C_{19} -DAs, show antiviral activities toward several highly pathogenic viruses. Five known lycaconitine-type DAs from Turkish *Consolida* species were screened for their antiviral effects on both DNA virus herpes simplex (HSV) and RNA virus parainfluenza (PI-3) using Madin–Darby bovine kidney and Vero cell lines. The maximum non-toxic concentrations (MNTC) and cytopathogenic effects (CPE) were determined using acyclovir and oseltamivir as the references. Consequently, a selective

inhibition was observed toward PI-3 virus by these alkaloids, while they were entirely unsuccessful in the inhibition of HSV (Table 6). The PI-3 inhibitory activity of the alkaloids was fairly analogous to that of the positive control oseltamivir, ranging between 8–32 μg mL⁻¹ as the minimum and maximum inhibitory concentrations for the cytopathogenic effect (CPE).⁹³ In addition, the new lycaconitine-type C₁₉-DAs ajacisines C–E (37–39) and isodelectine (47) were found to exhibit moderate to weak antiviral effects against respiratory syncytial virus (RSV) with IC₅₀ values of 75.2, 35.1, 10.1, and 50.2 μ M, respectively,⁴¹ while the positive control ribavirin showed an IC₅₀ value of 3.1 μ M. The antiviral activities of DAs may be due to their high reactivity with microtubules, thus destroying their stability by polarity; this result can block cellular division and prevent the rapid growth of cancer cells.⁹⁴

3.5. Antitumor activity

Although no species of *Consolida* are traditionally used to treat cancer, several studies have revealed that the crude extracts and isolated compounds of *Consolida* plants possess certain

Table 5 Antimicrobial activities of DAs

DAs	E. coli	P. aeruginosa	P. mirabilis	K. pneumoniae	A. baumannii	S. aureus	B. subtilis	C. albicans
Lycoctonine (80)	32	64	32	8	8	64	128	4
18-O-Methyllycoctonine (61)	32	64	32	8	8	64	128	4
Delcosine (76)	32	64	32	8	8	64	128	4
14-Acetyldelcosine (87)	32	64	32	8	8	64	128	4
14-Acetylbrowniine (84)	32	64	32	8	8	64	128	4
Ampicilline	2	_	2	2	2	< 0.12	0.12	_
Oflaxocine	0.12	1	< 0.12	0.12	0.12	0.5	0.5	_
Ketocanazole	_	_	_	_	_	_	_	2

Table 6 Antiviral effects of DAs against HSV and PI-3

Compounds	MDDIV selle (MNIEC	HSV		Vers calls (MANTEC	PI-3	
	MDBK cells (MNTC, μg mL ⁻¹)	Max.	Min.	Vero cells (MNTC, μg mL ⁻¹)	Max.	Min.
Lycoctonine (80)	64	_	_	32	32	8
18- <i>O</i> -Methyllycoctonine (61)	64	_	_	64	32	1
Delcosine (76)	64	_	_	64	32	1
14-Acetyldelcosine (87)	64	_	_	64	32	1
14-Acetylbrowniine (84)	64	_	_	64	32	1
Acyclovir	16	16	< 0.25	_	_	_
Oseltamivir	_	_	_	32	32	< 0.25

antitumor effects. In a screening of anticancer plants from Iran, the ethanol extracts of *C. orientalis* exerted an antiproliferative effect against human cervical carcinoma HeLa cells with an IC50 value of 1.6 mg mL⁻¹,95 which might be attributed to the high content of some DAs with cytotoxic activities in the C. orientalis extracts. 17,96

De Inés et al. evaluated the cytotoxic effects of 43 DAs (40 C₁₉-DAs and 3 C₁₈-DAs) on CHO cells and several tumor cell lines, including CT26 (murine colon adenocarcinoma), SW480 (human colon adenocarcinoma), HeLa, SkMel25 (human melanoma) and SkMel28 (human malignant melanoma).97 As shown in Table 7, 13 of the tested alkaloids that have been found in Consolida plants produced a cytotoxic effect on the different cell lines (MICs $< 100 \mu g mL^{-1}$). Among the various groups, the most active alkaloids were found among the lycaconitine-type C₁₉-DAs. All the cell lines responded to 27, 56 and 60 with varying potencies. Alkaloid 27 was the most cytotoxic to CHO and SkMel28, while 56 was the most cytotoxic to CT26, SW480, HeLa and SkMel25 cells, indicating selective structure-dependent cytotoxicity for the group. Alkaloids 13 and 19 also showed relatively strong cytotoxicity toward several tumor cell lines. It is worth noting that most of the active alkaloids, including the most effective alkaloid 56, exhibited selective cytotoxicity to cancerous versus noncancerous tissues, which highlights their potential use as candidates for the

treatment of cancer. In addition, the viability assays indicated that their cytotoxic effects could be related to the inhibition of ATP production.

While flavanol glycosides from Consolida themselves are slightly active against certain human cancer cell lines, increasing cytotoxic activity has been observed after the corresponding flavanols undergo acetylation. Diaz et al. prepared a series of flavanol acetates isolated from the aerial parts of C. oliveriana and tested their cytotoxicity effects against the human myeloid leukemia HL-60 and U937 cell lines and the human melanoma SK-MEL-1 cell line (Table 8).59 As shown in Table 8, some of these flavonol glycoside acetates (132a, 133a, 134a, 134b and 135a) displayed cytotoxicity against the tested cancer cell lines with IC₅₀ values ranging from 10 to 88 μM. In particular, trifolin heptaacetate (134a) was the most effective against all assayed cell lines, with an IC₅₀ value of approximately 10-15 μM. A subsequent pharmacological study revealed that trifolin heptaacetate could induce cancer cell apoptosis through a caspase-dependent mechanism that is associated with the release of cytochrome c.98 It has been suggested that trifolin heptaacetate has the potential to be developed as a chemopreventive agent and possibly as a therapeutic agent against cancer; however, more detailed mechanistic studies on trifolin heptaacetate are still needed.

Table 7 Antitumor effects of DAs against human cancer cell lines

	MICs ($\mu g \text{ mL}^{-1}$)							
Compounds	СНО	CT26	SW480	Hela	SkMel25	Skmel28		
Pubescenine (6)	>100	100	25	50	50	>100		
Raveyine (9)	>100	50	50	>100	50	>100		
Neoline (13)	>100	25	12.5	6.25	25	>100		
Ajadelphinine (19)	>100	50	25	12.5	25	>100		
Didehydrodelsoline (27)	6.25	12.5	12.5	12.5	25	6.25		
Ajadine (31)	50	50	50	>100	>100	50		
14-Deacetylajadine (32)	>100	>100	100	50	100	>100		
Methyllycaconitine (48)	12.5	12.5	50	50	100	100		
18-Demethylpubescenine (51)	>100	>100	>100	>100	50	>100		
1-0,19-Didehydrotakaosamine (56)	>100	6.25	6.25	0.4	6.25	25		
18-Methoxygadesine (60)	25	50	25	25	25	>100		
Lycoctonine (80)	>100	50	50	>100	>100	>100		
Delphatine (82)	>100	>100	>100	100	>100	>100		

Table 8 Antitumor effects of flavanol glycosides against human cancer cell lines

R ₁ -R ₅ (name, no.)	IC_{50} (μ M)		
	HL-60	U937	SK-MEL-1
$R_1 = R_2 = R_3 = R_4 = Ac$, $R_4 = H$ (kaempferol tetraacetate, 132a)	45	48	37
$R_1 = R_2 = R_3 = R_5 = Ac$, $R_4 = OAc$ (quercetin pentaacetate, 133a)	38	25	58
$R_1 = \beta$ -D-Gal Ac, $R_2 = R_3 = R_5 = H$, $R_4 = H$ (trifolin heptaacetate, 134a)	21	10	15
$R_1 = \beta$ -D-Gal OMe, $R_2 = R_3 = R_5 = Me$, $R_4 = H$ (heptamethyltrifolin, 134b)	88	>100	>100
$R_1 = \beta$ -D-Gal Ac, $R_2 = R_3 = R_5 = Ac$, $R_4 = OAc$ (hyperoside acetate, 135a)	15	19	23
$R_1 = 2$ -O-acetyl- β -D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (2"-acetylhyperoside, 136)	>100	>100	>100
$R_1 = 6$ -O-acetyl- β -D-Gal, $R_2 = R_3 = R_5 = H$, $R_4 = OH$ (6"-acetylhyperoside, 137)	>100	>100	>100
$R_1 = \beta$ -D-Gal Ac, $R_3 = \beta$ -D-Glu Ac, $R_2 = R_5 =$ Ac, $R_4 =$ H (glucotrifolin acetate, 138a)	>100	>100	>100

3.6. Antioxidant activity

Several Consolida species have been evaluated for their antioxidant activities by using in vitro antioxidant assays, and considerably different effects have been observed. Zeng et al. reported that the aqueous extracts of C. ambigua (D. ajacis) flowers exhibited only a weak DPPH radical scavenging ability among 45 tested flowers, although these C. ambigua extracts could effectively scavenge hydroxyl superoxide and anion radicals.99 In contrast, investigations performed by Zengin et al. and Zengin et al. showed that C. orientalis has powerful antioxidant activities, effectively scavenging free radicals, including DPPH, ABTS, and superoxide radicals; reducing cupric and ferric ions; chelating prooxidant metal ions; and inhibiting the oxidation of linoleic acid. 100,101 Another investigation also demonstrated that C. regalis possesses a powerful ability to scavenge DPPH and ABTS free radicals.90 The difference in antioxidant activities between these Consolida species may be attributed to their different phenolic contents.

4. Conclusions

To the best of our knowledge, a total of 143 distinct compounds, including 126 alkaloids (121 DAs and 5 other alkaloids) and 17 flavonoids (5 anthocyanins and 12 flavanols), have been isolated and identified from *Consolida* plants, which indicate that the *Consolida* genus is a source of abundant DAs. The DAs that have been found in *Consolida* plants consist of 5 C₁₈-DAs, 87 C₁₉-DAs and 29 C₂₀-DAs. In terms of DA subtypes, the lycaconitine-type C₁₉-DAs with 73 members account for the largest proportion (58%) of the isolated alkaloids; thus, lycaconitine-type C₁₉-DAs can be regarded as the characteristic and representative components of the genus *Consolida*. On the other hand, of the 143 isolated compounds, 73 are novel, including 69 new DAs and 4 new anthocyanins. Among these new compounds, several

possess unprecedented structures or uncommon substituents. These findings underscore the high chemical diversity among the chemical constituents of *Consolida* plants, which can serve as a vast resource for drug discovery.

The crude extracts and isolated compounds of *Consolida* plants have been reported for their various biological activities, including insecticidal, antiparasitic, antifungal, antiviral, anticancer, and antioxidant activities. Some of the reported effects are in accordance with the purported uses of *Consolida* plants in folk medicine, which is conducive to illuminating the pharmacodynamic material basis of *Consolida*-derived herbal drugs. For example, the anthelmintic effects of *Consolida* plants may be attributed to the anthelmintic effects of DAs. Some constituents from *Consolida* plants possess activities that differ from their traditional medicinal use, such as antitumor and antioxidant activities, indicating the novel potential applications for the use of *Consolida* plants.

Although phytochemical and biological studies on *Consolida* plants have attracted considerable interest, some research potential remains. First, of the 50 *Consolida* species around the world, only a few species have been studied for their biological constituents. The related investigations are restricted to the widespread *Consolida* species, such as *C. ambigua*, which contributes relatively more compounds than other species. Most of the less common *Consolida* species are still largely unstudied. Hence, an extensive investigation of the other *Consolida* species, especially species that are used medicinally, remains necessary.

Second, the preliminary detection performed by using LC, GC, and MS techniques reveal that there are a number of other compounds in *Consolida* plants, such as phenolic acids, steroids, FAs and volatile constituents, that may also possess new structures or notable biological activities, thus potentially serving as a medicinal resource for drug discovery. In addition,

unlike toxic DAs, the phenolic acids, steroids, FAs and volatile constituents are generally less toxic, which is advantageous for the food and pharmaceutical industry. However, these compounds have not attracted the interest of researchers, and none have been isolated. Thus, further studies on the isolation and biological tests of these compounds are strongly encouraged.

Finally, all of the biological activities of Consolida plants have been investigated by using in vitro chemical and cellular models, and little clinical or in vivo research is currently available. These pharmacological studies are insufficient to validate the effects of Consolida plants and their derived compounds, which hinder their application and promotion. It is necessary to evaluate the biological activities of the constituents from Consolida plants using both in vitro and in vivo pharmacological models to facilitate further research and exploitation of this genus.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by a grant from the National Natural Science Foundation of China (No. 31860095), and a grant from the Guizhou Provincial Natural Science Foundation (No. QKHJC[2018]1193).

References

- 1 P. H. Davis, Flora of Turkey and the East Aegean Islands, 1966, vol. 1, pp. 119-134.
- 2 E. Kuddisi, A. Emine and T. Osman, Turk. J. Biochem., 2010, 35, 99-104.
- 3 W. C. Wang, Guihaia, 2019, 39, 1425-1469.
- 4 F. Jabbour and S. S. Renner, Taxon, 2011, 60, 1029-1040.
- 5 D. Y. Hong, Acta Bot. Sin., 1986, 28, 1-10.
- 6 L. Bitis, S. Süzgeç, F. Meriçli, H. Özçelik, J. Zapp, H. Becker and A. H. Meriçli, Pharm. Biol., 2008, 44, 244-246.
- 7 X. Yang, Y. Q. Zhen, S. J. Hao, Q. W. Bian, H. J. Lin, G. L. Liu and X. L. Zhou, Chem. Res. Appl., 2018, 30, 1133-1136.
- 8 A. Ulubelen, H. K. Desai, B. P. Hart, B. S. Joshi, S. W. Pelletier, A. H. Meriçli and H. Ç. Özen, J. Nat. Prod., 1996, 59, 907-910.
- 9 O. Keller and O. Voelker, Arch. Pharm., 1914, 251, 207-216.
- 10 W. Mieg, Justus Liebigs Ann. Chem., 1915, 408, 61-82.
- 11 F. P. Wang, Q. H. Chen and X. Y. Liu, Nat. Prod. Rep., 2009, 27, 529-570.
- 12 F. P. Wang and X. T. Liang, C₂₀-diterpenoid alkaloids, 2002, vol. 59, pp. 1-280.
- 13 F. P. Wang and Q. H. Chen, The C19-diterpenoid alkaloids, 2010, vol. 69, pp. 1-577.
- 14 X. Liang, Y. Gao and S. Luan, RSC Adv., 2018, 8, 23937-
- 15 T. P. Yin, L. Cai, H. X. Fang, Y. S. Fang, Z. J. Li and Z. T. Ding, Phytochemistry, 2015, 116, 314-319.

- 16 T. P. Yin, Y. Shu, H. Zhou, L. Cai and Z. T. Ding, Fitoterapia, 2019, 135, 1-4.
- 17 T. P. Yin, L. Cai and Z. T. Ding, RSC Adv., 2020, 10, 13669-13686.
- 18 B. S. Joshi, M. S. Puar, H. K. Desai, S. A. Ross, J. Lu and S. W. Pelletier, Tetrahedron Lett., 1993, 34, 1441-1444.
- 19 U. K. Kurbanov, B. Tashkhodzhaev, K. K. Turgunov and N. I. Mukarramov, Chem. Nat. Compd., 2019, 55, 197-199.
- 20 G. Almanza, J. Bastida, C. Codina and G. De La Fuente, Phytochemistry, 1997, 45, 1079-1085.
- 21 A. Alva, M. Grandez, A. Madinaveitia, G. de la Fuente and J. A. Gavin, Helv. Chim. Acta, 2004, 87, 2110-2119.
- 22 X. Liang, S. A. Ross, Y. R. Sohni, H. M. Sayed, H. K. Desai, B. S. Joshi and S. W. Pelletier, J. Nat. Prod., 1991, 54, 1283-1287.
- 23 M. Grandez, A. Madinaveitia, J. A. Gavín, A. Alva and G. de la Fuente, J. Nat. Prod., 2002, 65, 513-516.
- 24 H. K. Desai, B. T. Cartwright and S. W. Pelletier, J. Nat. Prod., 1994, 57, 677-682.
- 25 H. K. Desai, B. S. Joshi, S. W. Pelletier, B. Sener and F. Bingöl, Heterocycles, 1993, 36, 1081-1089.
- 26 J. Hohmann, P. Forgo, Z. Hajdú, E. Varga and I. Máthé, J. Nat. Prod., 2002, 65, 1069-1072.
- 27 F. Mericli, A. H. Mericli, G. V. Seyhan, M. Bahar, H. K. Desai, H. Ozcelik and A. Ulubelen, Pharmazie, 2002, 57, 761-762.
- 28 G. De La Fuente, R. D. Acosta, J. A. Gavín, R. H. Lugo and P. G. Jones, Tetrahedron Lett., 1988, 29, 2723-2726.
- 29 A. Ulubelen, A. H. Meriçli, F. Meriçli, H. Özçelik, B. Sener, H. Becker and I. Choudhary, Phytochemistry, 1999, 50, 909-912.
- 30 A. H. Meriçli, F. Meriçli, V. Seyhan, A. Ulubelen, H. K. Desai, B. S. Joshi and S. W. Pelletier, Heterocycles, 1997, 10, 1955-1965.
- 31 B. Sener, F. Bingol and T. Baykal, Gazi Univ. Eczacilik Fak. Derg., 1988, 5, 79-89.
- 32 B. Sener, F. Bingol and T. Baykal, Gazi Univ. Eczacilik Fak. Derg., 1989, 6, 1-5.
- 33 S. Suzgec, L. Bitis, U. Sozer, H. Ozcelik, J. Zapp, A. K. Kiemer and A. H. Mericli, Chem. Nat. Compd., 2009, 45, 287-289.
- 34 A. H. Mericli, S. Yazici, E. Eroglu-Ozkan, B. Sen, S. Kurtoglu, H. Ozcelik and F. Mericli, Chem. Nat. Compd., 2012, 48, 525-526.
- 35 S. W. Pelletier, S. Bhandaru, H. K. Desai, S. A. Ross and H. M. Sayed, J. Nat. Prod., 1992, 55, 736-743.
- 36 A. H. Meriçli, F. Meriçli, A. Ulubelen, H. K. Desai, B. S. Joshi, S. W. Pelletier and M. Küçükislamoglu, Heterocycles, 1998, 1, 329-335.
- 37 F. Mericli, A. H. Mericli, N. Tan, H. Oezcelik and A. Ulubelen, Sci. Pharm., 1999, 67, 313-318.
- 38 J. Lu, H. K. Desai, S. A. Ross, H. M. Sayed and S. W. Pelletier, J. Nat. Prod., 1993, 56, 2098-2103.
- 39 S. W. Pelletier, R. S. Sawhney, H. K. Desai and N. V. Mody, J. Nat. Prod., 1980, 43, 395-406.
- 40 P. Kulanthaivel, H. K. Desai and S. W. Pelletier, J. Nat. Prod., 1989, 52, 143-144.

RSC Advances

- 41 L. Yang, Y. B. Zhang, L. Zhuang, T. Li, N. H. Chen, Z. N. Wu, P. Li, Y. L. Li and G. C. Wang, Planta Med., 2017, 83, 111-116.
- 42 H. K. Desai and S. W. Pelletier, Heterocycles, 1998, 7, 1343-
- 43 G. De La Fuente, L. Ruiz-Mesía, J. Molero and C. Blanché, Fitoterapia, 1996, 67, 87-88.
- 44 A. G. Gonzalez, G. de la Fuente, O. Munguia and K. Henrick, Tetrahedron Lett., 1981, 22, 4843-4844.
- 45 A. Alva, M. Grandez, A. Madinaveitia, G. de la Fuente and J. Gavín, Chem. Pharm. Bull., 2004, 52, 530-534.
- 46 Z. Hajdú, P. Forgo, B. Löffler and J. Hohmann, Biochem. Syst. Ecol., 2005, 33, 1081-1085.
- 47 A. G. Gonzalez, G. De La Fuente and O. Munguia, Heterocycles, 1983, 20, 409-411.
- 48 L. Lei, W. G. Sun, L. He, H. F. Jiang, M. Zhang, W. J. He, Z. X. Hu, Y. Gu, H. P. Song and Y. H. Zhang, Ecotoxicol. Environ. Saf., 2019, 170, 141-147.
- 49 S. W. Pelletier, R. S. Sawhney and N. V. Mody, Heterocycles, 1978, 9, 1241-1247.
- 50 F. Mericli, A. H. Mericli, H. K. Desai, A. Ulubelen and S. W. Pelletier, Sci. Pharm., 2001, 69, 63-67.
- 51 F. Meriçli, A. H. Meriçli, A. Ulubelen, H. K. Desai and S. W. Pelletier, J. Nat. Prod., 2001, 64, 787-789.
- 52 G. Almanza, J. Bastida, C. Codina and G. De La Fuente, Phytochemistry, 1997, 44, 739-747.
- 53 L. Ruiz-Mesía, A. Madinaveitia, M. Reina, M. L. Rodriguez, G. de la Fuente and W. Ruiz-Mesía, J. Nat. Prod., 2002, 65,
- 54 V. Venkateswarlu, S. K. Srivastava, B. S. Joshi, H. K. Desai and S. W. Pelletier, J. Nat. Prod., 1995, 58, 1527-1532.
- 55 G. De La Fuente Martin and L. R. Mesía, Phytochemistry, 1997, 46, 1087-1090.
- 56 I. Attila, M. Ku and A. Okatan, J. Chromatogr. A, 1992, 609, 402-406.
- 57 G. Sulyok and J. Balint, Stud. Org. Chem., 1985, 23, 261-263.
- 58 N. Saito, K. Toki, S. Özden and T. Honda, *Phytochemistry*, 1996, 41, 1599-1605.
- 59 J. G. Diaz, A. J. Carmona, F. Torres, J. Quintana, F. Estevez and W. Herz, Planta Med., 2008, 74, 171-174.
- 60 M. Küçükislamoglu, N. Yayli, H. B. Şentürk, H. Genç and S. Özden, Turk. J. Chem., 2000, 24, 191-198.
- 61 T. P. Yin, H. Zhou, L. Cai and Z. T. Ding, RSC Adv., 2019, 9, 10184-10194.
- 62 S. B. Babiaka, F. Ntie-Kang, B. Ndingkokhar, J. A. Mbah, W. Sippl and J. N. Yong, RSC Adv., 2015, 5, 57704–57720.
- 63 G. G. Melnichuk, Ukr. Bot. Zh., 1971, 28, 525-527.
- 64 N. Schulze-Kaysers, M. M. Feuereisen and A. Schieber, RSC Adv., 2015, 5, 73301-73314.
- 65 J. A. Fernández-López, V. Fernández-Lledó J. M. Angosto, RSC Adv., 2020, 10, 24669–24682.
- 66 B. B. Harborne, Phytochemistry, 1964, 3, 151-160.
- 67 S. Asen, R. N. Stewart and K. H. Norris, *Phytochemistry*, 1975, 14, 2677-2682.
- 68 I. Da Silva, J. G. Diaz and J. Gonzalez-platas, J. Pharm. Sci., 2011, 100, 1588-1593.

- 69 S. Ozden, H. Ertepinar, H. B. Senturk, N. Durust and O. Beyazoglu, Pharmazie, 1990, 45, 803-804.
- 70 S. Özden, M. Küçükislamoglu and T. Oezden, Pharmazie, 1995, 50, 818-820.
- 71 I. Attila, A. Baysal, M. Tufekci, Y. Gok and S. Ozden, Plant. Med. Phytother., 1990, 24, 224-230.
- 72 G. R. Waller, S. Mangiafico, R. C. Foster and R. H. Lawrence, Planta Med., 1981, 42, 344-355.
- 73 L. Kokoska, K. Urbanova, P. Kloucek, L. Nedorostova, L. Polesna, J. Malik and I. Valterova, Chem. Biodiversity, 2012, 9, 151-161.
- 74 E. Dabi, E. Hethelyi, I. Zambo, P. Tetenyi and V. Simonidesz, *Phytochemistry*, 1986, **25**, 1221–1222.
- 75 F. Ayaz and M. Reunanen, Pak. J. Bot., 1996, 28, 155-159.
- 76 K. Aitzetmüller, N. Tsevegsüren and G. Werner, Plant Syst. Evol., 1999, 215, 37-47.
- 77 L. Chen, L. Shan, J. Zhang, W. Xu, M. Wu, S. Huang and X. L. Zhou, Nat. Prod. Commun., 2015, 10, 2063-2065.
- 78 J. F. Zhang, L. Chen, S. Huang, L. H. Shan, F. Gao and X. L. Zhou, J. Nat. Prod., 2017, 80, 3136-3142.
- 79 A. Ulubelen, A. H. Meriçli, F. Meriçli, N. Kilinçer, A. G. Ferizli, M. Emekci and S. W. Pelletier, Phytother. Res., 2001, 15, 170-171.
- 80 A. González-Coloma, M. Reina, A. Guadaño, R. Martínez-Díaz, J. G. Díaz, J. García-Rodriguez and M. Grandez, Chem. Biodiversity, 2004, 1, 1327-1335.
- 81 A. González-Coloma, A. Guadano, C. Gutiérrez, R. Cabrera, E. De La Pena, G. De La Fuente and M. Reina, J. Agric. Food Chem., 1998, 46, 286-290.
- 82 A. Ulubelen and U. Kolak, Innovations in Chemical Biology, 2009, pp. 39-49.
- 83 C. Di Giorgio, F. Delmas, M. Tueni, E. Cheble, T. Khalil and G. Balansard, J. Altern. Complementary Med., 2008, 14, 157-
- 84 P. Gonzalez, C. Marin, I. Rodriguez-Gonzalez, A. B. Hitos, M. J. Rosales, M. Reina, J. G. Diaz, A. Gonzalez-Coloma and M. Sanchez-Moreno, Int. J. Antimicrob. Agents, 2005, 25, 136-141.
- 85 P. Gonzalez, C. Marin, I. Rodriguez-Gonzalez, A. Illana, H. Mateo, S. S. Longoni, M. J. Rosales, A. Gonzalez-Coloma, M. Reina and M. Sanchez-Moreno, Pharmacology, 2006, 76, 123-128.
- 86 C. Marín, J. G. Díaz, D. Irure Maiques, I. Ramírez-Macías, M. J. Rosales, R. Guitierrez-Sánchez, R. Cañas and M. Sánchez-Moreno, Phytochem. Lett., 2017, 19, 196-209.
- 87 C. Marin, S. Boutaleb-Charki, J. G. Diaz, O. Huertas, M. J. Rosales, G. Pérez-Cordon and M. Sánchez-Moreno, J. Nat. Prod., 2009, 72, 1069-1074.
- 88 S. Boutaleb-Charki, M. Sánchez-Moreno, J. G. Diaz, M. J Rosales, O. Huertas, R. Gutierrez-Sánchez and C. Marín, Open Nat. Prod. J., 2011, 4, 1-7.
- 89 B. S. Bazzaz and G. Haririzadeh, Pharm. Biol., 2008, 41, 573-
- 90 E. Ucar, Fresenius Environ. Bull., 2018, 27, 5950-5957.
- 91 P. Kalpana, K. Verinder, G. Suman, J. Anshu, P. Anubhay, R. Manju and M. Sanjeev, J. Chem. Pharm. Res., 2016, 8, 11-18.

92 Y. Yusuf, G. Ayhan, K. Izzet, C. Halit and W. Mark, Afr. J.

- *Biotechnol.*, 2011, **10**, 8291–8295. 93 S. Bilge, O. Ilkay and Ö. Berrin, *ARKIVOC*, 2007, **vii**, 265–272.
- 94 M. Monajjemi, Afr. J. Microbiol. Res., 2011, 5, 4344-4352.
- 95 F. Nemati, A. A. Dehpouri, B. Eslami, V. Mahdavi and S. Mirzanejad, *Iran. Red Crescent Med. J.*, 2013, **15**, e8871.
- 96 X. X. Liang, Y. Y. Gao and S. X. Luan, RSC Adv., 2018, 8, 23937-23946.
- 97 C. De Inés, M. Reina, J. A. Gavín and A. González-Coloma, *Z. Naturforsch.*, *C: J. Biosci.*, 2006, **61**, 11–18.
- 98 F. Torres, J. Quintana, J. G. Diaz, A. J. Carmona and F. Estevez, *Apoptosis*, 2008, **13**, 716–728.
- 99 Y. W. Zeng, L. X. Xu and Y. H. Peng, *Chin. J. Appl. Environ. Biol.*, 2004, **10**, 699–702.
- 100 G. Zengin, M. F. Mahomoodally, C. M. N. Picot-Allain, Y. S. Cakmak, S. Uysal and A. Aktumsek, *S. Afr. J. Bot.*, 2019, **120**, 119–123.
- 101 A. Seyda, B. Merve, S. SilaOzlem, K. Nuriye and A. Rezzan, *Int. J. Curr. Res.*, 2016, **8**, 43735–43738.