
Analyst

PAPER

Cite this: Analyst, 2018, 143, 5987

Received 3rd September 2018,
Accepted 24th September 2018

DOI: 10.1039/c8an01701h

rsc.li/analyst

Raman spectroscopic analysis of high molecular
weight proteins in solution – considerations for
sample analysis and data pre-processing†
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This study explores the potential of Raman spectroscopy, coupled with multivariate regression techniques and

a protein separation technique (ion exchange chromatography), to quantitatively monitor diagnostically relevant

changes in high molecular weight proteins in liquid plasma. Measurement protocols to detect the imbalances

in plasma proteins as an indicator of various diseases using Raman spectroscopy are optimised, such that stra-

tegic clinical applications for early stage disease diagnostics can be evaluated. In a simulated plasma protein

mixture, concentrations of two proteins of identified diagnostic potential (albumin and fibrinogen) were system-

atically varied within physiologically relevant ranges. Scattering from the poorly soluble fibrinogen fraction is

identified as a significant impediment to the accuracy of measurement of mixed proteins in solution, although

careful consideration of pre-processing methods allows construction of an accurate multivariate regression

prediction model for detecting subtle changes in the protein concentration. Furthermore, ion exchange

chromatography is utilised to separate fibrinogen from the rest of the proteins and mild sonication is used to

improve the dispersion and therefore quality of the prediction. The proposed approach can be expeditiously

employed for early detection of pathological disorders associated with high or low plasma/serum proteins.

Introduction

Raman spectroscopy has emerged over the past 20 years as an
increasingly routine analytical technique for a wide range of
applications, as it provides specific biochemical information
without the use of extrinsic labels. This technique can provide
intrinsic vibrational signatures of the material of interest in a
non-destructive fashion, and its potential for diagnostic appli-
cations has been well demonstrated, notably in human serum
and plasma.1–4 Raman spectroscopy provides a vibrational sig-
nature of a complex biological mixture which is a result of the
contributions from all the major components from that
mixture, and changes in the concentrations of the components
will give rise to notable changes in the Raman signal.
However, although both Raman and Fourier-Transform
Infrared (FTIR) spectroscopy have been widely explored to

study bodily fluids over the last two decades, most of these
studies have been carried out on air dried samples, in order to
avoid the water contribution in the case of FTIR, and to
increase the concentration of the analytes in the case of
Raman.5–9 The major limiting factor in the use of dried
samples is the so-called “coffee-ring” effect, or, specifically in
terms of blood serum, the Vroman effect,10–12 whereby
different analytes precipitate from solution at different rates,
giving rise to variations in the spectral features due to chemi-
cal and physical inhomogeneity. This leads to spatially varying
chemical compositions and sample thicknesses, and unreli-
able results.13 Ultimately, it is desirable to undertake the ana-
lysis in the native state of bodily fluids, in which the chemical
composition is averaged out by molecular motion over the
measurement time, and additional drying steps can be elimi-
nated. This aim naturally favours Raman analysis, as water is a
relatively weak Raman scatterer.

In this paper, the sensitivity of Raman spectroscopy to
detect subtle changes in a simulated plasma protein-mixture
concentration is explored, specifically for the higher molecular
weight proteins. Albumin is the most abundant plasma
protein, normally constituting about 50% of the plasma
protein and has a molecular weight of 66 kDa.14 The normal
concentration of albumin in the human body is 30 mg mL−1,
although it dramatically decreases in critically ill patients and
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does not increase again until the recovery phase of the
illness.15 Several studies have demonstrated that the functions
of albumin, such as ligand binding and transport of various
molecules, can be applied to the treatment of cirrhotic
patients and patients suffering from other end stage liver
diseases.16–18 It is clear that closely monitoring the variation
in albumin concentration could act as an indicator of liver dis-
eases and other related pathologies. Fibrinogen is a 340 kDa
(0.4% in human plasma) dimeric plasma glycoprotein syn-
thesised by the liver and plays a major role in blood coagu-
lation.19 The normal concentration of fibrinogen in human
body is ∼3 mg mL−1, and any variation in this concentration
can be an indicator of disease states.20–22 Many clinical studies
have consistently shown elevated levels of fibrinogen in
patients with cardiovascular disease and thrombosis.23–25

The conventional test kits available in a hospital for plasma/
serum analysis suffer from long time delays for the availability
of results due to the need of specialised laboratories, which
may in turn delay the therapy, and prolong patient anxiety. The
potential of vibrational spectroscopy techniques coupled with
multivariate analysis techniques have been previously investi-
gated for a range of clinical applications.1–9,26–29 This paper
evaluates the potential of Raman spectroscopy as a diagnostic
tool to detect minute changes in the plasma protein concen-
trations in aqueous samples and explores the challenges to
such liquid based biopsy techniques, including sample scatter-
ing and fractionation of individual constituent components.

A simulated plasma protein mixture of high and low mole-
cular weight proteins, i.e. albumin, fibrinogen, cytochrome c
and vitamin B12, at physiologically relevant concentrations,
was prepared and variations were made to these concen-
trations over physiologically relevant ranges. Separation of pro-
teins in the solution was performed by ion exchange chrom-
atography to separate high molecular weight proteins from low
molecular weight proteins, and high molecular weight fraction
proteins from each other. The efficiency of data pre-processing
methods (rubberband and Extended Multiplicative signal
Correction (EMSC)) in removing the background, to build an
accurate prediction model, was explored and mild sonication
was used to improve the dispersion of fibrinogen. The stan-
dardisation of measurement protocol and other experimental
parameters is detailed and the results of concentration depen-
dence study of proteins, in isolation and protein mixtures, and
the chemometric methods used to build the prediction model
are presented. This study presents a systematic assessment of
some of the challenges presented by measurements of high
molecular weight protein mixtures, and some potential solu-
tions to improve the protocols of liquid biopsy monitoring
using Raman spectroscopy.

Materials and methods
Preparation of stock protein and protein mixture

Albumin (A9511), fibrinogen (F3879), cytochrome c (C2506)
and vitamin B12 (V2876) were purchased from Sigma Aldrich,

Ireland. Individual protein solutions of varying concentration
were prepared in distilled water, to explore the accuracy of
detection of each protein and sensitivity of vibrational spectro-
scopic techniques to subtle changes in the protein concen-
trations in its native state. In order to assess the ability of
Raman spectroscopic techniques to detect subtle changes in
the concentration of the protein-mixture, potentially usable as
biomarkers of various disease states, varying concentrations of
each protein in the protein-mixture were prepared in distilled
water. Concentrations of albumin and fibrinogen, were varied
in the protein mixture in the physiologically relevant ranges,
from 5 mg mL−1 to 50 mg mL−1 (ref. 15) and 0.5 mg mL−1 to
5 mg mL−1 (ref. 22) respectively while maintaining the concen-
trations of cytochrome c and vitamin B12 constant. The stock
solutions and the protein-mixture solutions and analysed in
the liquid form using Raman spectroscopy.

Ultrasonication

A Sonics VCX-750 Vibra Cell Ultra Sonic Processor (Sonics &
Materials Inc., USA), equipped with a model CV33 Sonic Tip
was used to sonicate the fibrinogen stock solution for 5–10
seconds at 30% amplitude at room temperature to explore the
effect of improved dispersion of the fibrinogen on the
measurement procedure. Fibrinogen can withstand ultra-
sonication for 10 seconds at 30% amplitude at low frequency
without cleavage of peptide and interchain disulfide bonds or
formation of interchain and intermolecular cross-links.26

Ion exchange chromatography

Carboxymethyl-cellulose (C9481) was purchased from Sigma
Aldrich, Ireland. It acts as a weak cationic exchanger and binds
to the positively charged molecules.27 Glycine (G8898) was pur-
chased from Sigma Aldrich, Ireland and glycine buffer of pH
10 was prepared as the elution buffer.28 1 mL of the protein-
mixture was pipetted into a centrifuge tube and 0.08 g of car-
boxymethyl-cellulose. The solution was mixed for 10 minutes
on a Spira-mix roller and then centrifuged at 14 000g for
5 minutes. The unbound material was present in the super-
natant and was transferred to a fresh tube. The pellet was
washed using 2 mL glycine buffer by repeated inversion, fol-
lowed by centrifugation at 14 000g for 5 minutes. The super-
natant that contains the fibrinogen was carefully transferred to
a fresh centrifuge tube and Raman analysis was performed.

Raman spectroscopy

A Horiba Jobin–Yvon LabRam HR800 spectrometer with a
16-bit dynamic range Peltier cooled CCD detector was used to
record the Raman spectra throughout this work. The spectro-
meter was coupled to Olympus 1X71 inverted microscope and
a ×60 water immersion objective (LUMPlanF1, Olympus) was
employed. In the following experiments 532 nm laser of
12 mW was used with the 600 lines per mm grating and the
backscattered Raman signal was integrated for 3 accumu-
lations and a total acquisition time of 80 seconds over the
spectral range from 400–1800 cm−1.
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Sample substrates

The Lab-Tek plate (154534) was chosen as the optimal sub-
strate for this study. It has a 0.16–0.19 mm thick glass bottom,
1.0 borosilicate cover glass, and was purchased from Thermo
Fischer Scientific, Ireland.

Spectral preprocessing

Pre-processing techniques are essential to remove the back-
ground signal and reduce the noise, before further analysis.
Smoothing of the raw data was done by Savitzky–Golay at a
polynomial order of 5 and window 13. Two pre-processing
techniques, Extended Multiplicative Signal Correction (EMSC)
and the rubberband method, were trialed on the raw dataset
of the proteins in Matlab, at different stages of the study.
EMSC was employed for the pre-processing of protein data to
remove the underlying water spectrum,29 which has an OH
bending vibration at ∼1640 cm−1 (ref. 30) which can obscure
the protein signals at low concentrations. The reference for
EMSC was prepared by adding a few drops of distilled water to
the known concentration of protein powder and a thick paste
is made (∼10 mg mL−1). Rubberband correction was carried
out in Matlab by wrapping a ‘rubberband’ of defined length
around the ends of the spectrum to be corrected and fitting
against the curved profile of the spectrum.31 A Raman spec-
trum of the paste was recorded using the 532 nm laser as
source and used as the reference spectrum.

Partial least squares regression

Partial Least Squares Regression (PLSR) algorithm was applied
to construct a regression model that can be used to predict the
outcome in varying concentration of proteins, and the per-
formance model in predicting varying protein concentration
was evaluated in this study.32 The PLSR model attempts to elu-
cidate factors that account for the systematic majority of vari-
ation in predictors ‘X’ (spectral data) versus associated
responses ‘Y’ (target values of protein concentration). The
spectral data (X matrix) is thus related to the targets (Y matrix)
according to the linear equation Y = XB + E, where B is a matrix
of regression coefficients and E is a matrix of residuals. Leave
– One – Out cross validation was applied to assess the validity
of the model. In this case, the number of latent variables was
assessed, enabling the assessment of the performance of a
model when applied to an unknown data set. The number of
latent variables used for building the PLSR model is optimised
by finding the value that is equivalent to the minimum of the
Root Mean Square Error of Cross Validation (RMSECV) and
percent variance explained by the latent variables. The spectral
data obtained from the 30 samples were split as 20% training
and 30% test sets and the RMSECV was calculated. RMSECV is
used to evaluate the robustness of the constructed model.33

The percent variance plot explains the number of components
required for maximum variation in the input data. The appro-
priateness of various pre-processing methods can be deter-
mined through the performance of the PLSR model.

Results
Standardisation of measurement protocol

For the analysis of liquid protein samples, an optimised
inverted set-up, previously demonstrated by Bonnier et al.13

was used. Better analysis of serum using Raman spectroscopy
was reported when the sample was analysed in the inverted
geometry using a water immersion objective with a 785 nm
laser and CaF2 substrate. In this study, a ×60 water immersion
objective is used with a 532 nm laser and the substrate used
was a Lab-Tek plate. The 532 nm laser was chosen as it is com-
patible with (thin glass bottomed) Lab-Tek plate substrates
and provides a strong Raman signal of water with minimal
background interference. A drop of water is used to minimise
the differences in the refractive indexes between sample, objec-
tive and the substrate. However, the water drop does not con-
tribute to the data collected, as it is outside the focus of the
beam. This set-up also has an added advantage of providing
high quality, consistent Raman spectra from a sample volumes
as low as 1 μL.

Fig. 1 presents the spectra of the fingerprint region of the
stock solutions of proteins recorded in the inverted geometry.
The raw spectra of the proteins were baseline corrected using
the rubberband method and smoothed using the Savitzky–
Golay algorithm (polynomial 5, window 13). Measurement in
the inverted geometry, using a water immersion objective, is
found to be the best instrumental set up that enables an
increase in the overall spectral intensity accompanied by an
improved signal to noise (S/N) ratio with small sample volume.

The spectra of albumin and fibrinogen shown in Fig. 1
clearly reveal the common Raman peaks of these two proteins.
These include the amide I band around ∼1659 cm−1, a rela-
tively sharp band at 1003 cm−1 associated with phenylalanine,
intense bands at ∼1336 cm−1 and ∼1450 cm−1 due to C–H
deformation, and a vibration band at ∼940 cm−1 related to C–
C stretching mode backbone of α-helix structure. The signature
peaks of albumin that differentiate it from fibrinogen are
bands at 899 cm−1 and 1102 cm−1, that can be related to ν(CC)
and ν(CN).34 The signature peaks of fibrinogen are sharp
bands observed at 758 cm−1 and 1552 cm−1 that can be
assigned to tryptophan.35 Raman bands of cytochrome c and
vitamin B12 are highly specific and can be easily distin-
guished, as evidenced in Fig. 1.36,37

Monitoring the concentration dependence of proteins in
aqueous solution

Albumin. Protein solutions were prepared by varying the
concentration of albumin in order to achieve the physiologi-
cally relevant range from 5 mg mL−1 to 50 mg mL−1. Fig. 2A
show the raw unpre-processed spectra, which exhibit a steady
increase in the spectral intensity when the concentration is
increased from 5 mg mL−1 to 50 mg mL−1. The spectrum of
the highest concentration clearly shows albumin features,
whereas those of the lower concentrations are dominated by
water, which has a characteristic OH bending mode at
∼1640 cm−1. As the concentration of albumin increases, a
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notable increase in the background can also be observed,
which can be attributed to scattering. Although many studies
suggest that the broad background present in Raman spectra
is due to fluorescence,38 albumin is a non-resonant protein
that is optically transparent at 532 nm, so the background is
rather due to scattering of the source laser as well as the
Raman scattered light, which enters the spectrometer as stray
light, and is dispersed across the CCD in a wavelength inde-
pendent fashion.39 In order to analyse the spectral variations
and the albumin concentrations, the PLSR algorithm was
applied. The percent variance plot in Fig. 2B gives a rough
indication of how the algorithm progressively fits the spectral
data, showing that nearly 68% of the variance is explained by
the first component, while as many as four additional com-
ponents make significant contributions.

Based on the percent variance explained by the latent vari-
ables and the minimum value of RMSECV, the optimum
number of latent variables to reach the best model is deter-
mined. The PLSR coefficient plot displayed in Fig. 2C, con-
firms the correlation of the data in Fig. 2D is based on
albumin features, such as the peaks at ∼1665 cm−1,
∼1448 cm−1 and ∼1337 cm−1. Finally, after selecting the
optimum number of components for the data set analysed, a
predictive model is built from the PLSR analysis (Fig. 2D), to
compare the observations to the known concentrations of

albumin in the samples with the estimated concentrations
from the spectral data sets. Fig. 2D indicates that a good linear
model could be obtained with the raw data set. However, the
PLSR coefficient is not a clean albumin spectrum and has a
large background due to scattering, indicating that scattering
could have influenced the model. Furthermore, the minimum
value of RMSECV was found to be 22.59 mg mL−1, indicating a
poor accuracy of prediction over the range 5 mg mL−1 to 50 mg
mL−1. Analysis of the raw albumin concentration dependence
serves as an initial illustration of some of the issues presented
by measurement of high molecular weight macromolecules in
solution. Appropriate pre-processing steps could help to mini-
mise the background from scattering effects. Hence, rubber-
band pre-processing steps were performed on the data set
before PLSR analysis and the model obtained is displayed in
Fig. 3.

Fig. 3A shows the albumin data set after background correc-
tion using the rubberband method. Fig. 3B shows the percent
variance explained by the latent variables, indicating that three
components accounted for the majority of the variance. Five
latent variables were chosen for this model and the resultant
PLSR coefficient exhibits strong albumin features, as shown in
Fig. 3C. A linear predictive model can be defined from the rub-
berband corrected data set of varying concentration of
albumin in water Fig. 3D. The RMSECV was found to be

Fig. 1 Raman spectra of the stock solutions of albumin, fibrinogen, cytochrome c and vitamin B12 recorded in the finger print region in the inverted
geometry focused by water immersion ×60 objective. Well-defined Raman peaks with minimum background were obtained.
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1.58 mg mL−1 after applying the rubberband pre-processing
steps for the same data set. The results suggest that there is a
significant improvement in the predictive capacity of the con-
structed model when rubberband pre-processing steps are
applied to the data set.

Simulated “pathological” plasma protein mixtures were pre-
pared by varying the concentration of albumin in order to
achieve the physiologically relevant range from 5 mg mL−1 to
50 mg mL−1 and by maintaining the concentrations of fibrino-
gen, cytochrome c and vitamin B12 constant at the concen-
trations of the “healthy” human plasma. The concentrations
for hypoalbuminemia (>30 mg mL−1) and hyperalbuminemia
(<30 mg mL−1) have been deliberately included in the set of
samples being prepared. Based on the results of Fig. 2, rubber-
band correction was applied to the dataset in an attempt to
improve the accuracy of the prediction by performing baseline
correction. Notably, the Raman spectral features of the protein
mixture were seen to decrease with increasing albumin con-
centration (Fig. S1A in ESI†), and the PLSR coefficient obtained
from this data shows inverse albumin features (Fig. S1C†),
indicating that the model built from this dataset is not
reliable, as the high degree of scattering is effecting the
dataset and the prediction model is not based on the albumin
features. Hence, the EMSC based algorithm was applied to the

data set in an attempt to eliminate the scattering associated
with the albumin data in the simulated plasma and sub-
sequently improve the prediction model. EMSC of polynomial
order 4 was performed on the data set of varying concentration
of albumin in simulated plasma protein mixture. The refer-
ence used for EMSC is a spectrum of albumin which has been
diluted with a minimum amount of water, recorded with
532 nm.

Fig. 4A displays the albumin spectra after performing back-
ground correction using the EMSC algorithm. The amide 1
band at 1665 cm−1 and CH2 deformation band at 1445 cm−1

can be clearly seen in the corrected spectra. Based on the per-
centage variance explained by the latent variables (Fig. 4B) and
the minimum value of RMSECV, seven latent variables were
found to be optimal for this model. The PLSR coefficient
shows albumin features (Fig. 4C), indicating that the predic-
tion is now based on the variation in the albumin peak inten-
sity. A linear prediction model was achieved from this model
(Fig. 4D). The minimum value of RMSECV is 1.5844 mg mL−1,
indicating an improved prediction capacity. This value is the
same as the minimum value of RMSECV recorded for the
varying concentration of albumin in distilled water, indicating
that the PLSR model of EMSC corrected simulated plasma
spectra is as accurate as the PLSR model of rubberband cor-

Fig. 2 (A) Raw Raman spectra of varying concentrations of albumin (5 mg mL−1–50 mg mL−1) in distilled water recorded using 532 nm laser, (B)
percent variance explained by the components, (C) plot of PLSR coefficient with Albumin features, (D) linear predictive model built from the PLSR
analysis.
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rected spectra of varying concentrations of pure albumin in
water. The results demonstrated in this section suggest that
this model can be effectively used to detect variations in the
concentration of albumin in human plasma, as a result, for
example, of liver disorders at an early stage. A strong reduction
in the RMSECV indicates that the EMSC algorithm can
efficiently subtract the background without altering the
albumin features, which in turn improves the prediction of the
model.

Fibrinogen. Fibrinogen solutions were prepared by diluting
the stock solution of 100 mg ml−1 to the more physiologically
relevant range of 0.5 mg mL−1 to 5 mg mL−1. Raman spectra
were recorded from the protein samples and smoothed using
Savitzky–Golay (polynomial 5, window 13). When the rubber-
band method was applied on this dataset to perform baseline
correction, the PLSR coefficient spectrum obtained was an
inverse water spectrum, as shown in ESI (Fig. S2†). Fibrinogen
is poorly soluble in water, such that the fibrinogen solution is
visually cloudier than the albumin solution. This significant
problem of lack of solubility due to the protein aggregation
leads to scattering of the more pronounced Raman signal of
the water, in a concentration dependent fashion. Hence, EMSC
with a polynomial of order 4 was performed on the same data
set to pre-process the data prior to PLSR analysis. The refer-
ence spectrum was obtained under similar conditions as the

albumin reference, from a fibrinogen paste with minimal
amount of water. A polynomial of order 3 resulted in the best
correction. The output, however, is a very noisy spectral data
set with some indication of fibrinogen features in the spectra,
notably at ∼758 cm−1, ∼1650 cm−1, ∼1450 cm−1, ∼1336 cm−1

and ∼1250 cm−1 (Fig. S3 in ESI†).
In an attempt to overcome the lack of solubility of the

protein, the stock solution was ultrasonicated to enhance the
dispersion of fibrinogen and obtain a clear solution.
Ultrasonication for approximately 10 seconds at 30% ampli-
tude resulted in a clear solution of fibrinogen with a signifi-
cantly improved Raman signal (Fig. S4 in ESI†). Varying con-
centrations of fibrinogen samples in the physiologically rele-
vant range were prepared using the ultrasonicated fibrinogen
stock.

The spectrum of sonicated fibrinogen after background cor-
rection using the EMSC algorithm with polynomial of order 3
displays strong fibrinogen features with higher intensity over
the same concentration range, compared to the non-sonicated
fibrinogen samples (Fig. 5A). Applying PLSR, it is clear from
Fig. 5B that a total of six components made significant contri-
butions to explain the variance in the sonicated fibrinogen
spectra. Based on the percent variance explained, six latent
variables were used to build the prediction model. The PLSR
coefficient plot shows signature peaks of fibrinogen, indicating

Fig. 3 (A) Rubberband corrected Raman spectra of varying concentrations of Albumin (5 mg mL−1–50 mg mL−1) in distilled water, (B) % variance
explained by the latent variables, (C) plot of PLSR coefficient with Albumin features, (D) linear predictive model built from the PLSR analysis.
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that the prediction was based on variation in the fibrinogen
spectral intensities (Fig. 5C). A linear prediction model was
defined from the data set, showing correlation between the
Raman peak intensity and concentration (Fig. 5D). The
minimum value of RMSECV is found to be 0.0615 mg mL−1.
The reduction in the RMSECV value recorded for fibrinogen
data after sonication indicates that the accuracy of the model
increases as a result of the improved solubility following soni-
cation. Hence, it can be concluded that sonication improves
the solubility of the fibrinogen and increases the spectral
intensity, in turn leading to a considerable improvement in
the predictive capacity of the model.

Simulated “pathological” plasma protein-mixture was pre-
pared by varying the concentration of fibrinogen stock in order
to achieve the physiologically relevant range from 0.5 mg mL−1

to 5 mg mL−1 and by maintaining the concentrations of
albumin, cytochrome c and vitamin B12 constant at the
normal concentrations in healthy human plasma. The concen-
trations for heart disorders (<3 mg mL−1) and liver disorders
(<3 mg mL−1) have been deliberately included in the concen-
tration range. The raw spectra of varying concentrations of
fibrinogen in simulated plasma were smoothed by Savitzky–
Golay, polynomial of 5, window 13 (Fig. 6).

The arrow indicates that both the background and spectral
features themselves decrease with increasing concentration of

fibrinogen. However, noting that albumin is the dominant
contributor to the Raman signal, and that fibrinogen is the
dominant scatterer, this can be understood as a (fibrinogen)
concentration dependent loss of (albumin) Raman scattering.

The PLSR coefficient obtained after pre-processing the data
using the EMSC based algorithm shows an inverse spectrum
of albumin rather than fibrinogen, as shown in Fig. S5 in ESI.†
As in the case of the water dispersions, the dominant effect of
increasing concentrations of the poorly soluble fibrinogen is
the scattering of the dominant Raman spectrum. Hence,
although the predictive model built from this dataset shows a
good correlation with fibrinogen concentration, it is not based
on the characteristic spectroscopic signature of fibrinogen,
and the variation of the albumin signal could equally be due
to any other scatterer.

Ultracentrifugation using 100 kDa centrifugal filters failed
to separate fibrinogen from the rest of the protein in the
protein mixture. Fig. S6† shows that the Raman spectrum of
the concentrate obtained has pronounced characteristic
albumin features at 899 cm−1 and 1102 cm−1. Ion exchange
chromatography was therefore explored as an alternative
method for fibrinogen separation from the protein mixture,
based on its charge. Carboxymethyl-cellulose acts as a weak
cationic exchanger and fibrinogen is eluted out by altering the
net charge of the bound protein, and thus its matrix binding

Fig. 4 (A) EMSC corrected of varying concentrations of albumin in simulated plasma, and (B) percent variance explained by the latent variables, (C)
PLSR coefficient showing albumin features, and (D) linear prediction model defined from the dataset.
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capacity. Fibrinogen was detected in the unbound fraction.
Albumin was not detected in the unbound fraction by Raman
spectroscopy and it is concluded adsorption of the albumin
fraction to the carboxymethyl cellulose resin occurred at the
pH values employed. Other studies have shown carboxymethyl
cellulose may form insoluble complexes with serum
albumin.40

Fibrinogen was extracted from the protein mixtures over the
full concentration range, and Raman spectra were recorded
from the separated fibrinogen and EMSC was performed on
the data set before doing PLSR analysis. In the absence of soni-
cation the prediction model performed poorly, due to the high
degree of scattering, as seen in Fig. S7.† Mild sonication can
be employed to improve the solubility of and reduce the scat-
tering from fibrinogen, and thus the performance of the pre-
diction model.

The spectrum of sonicated fibrinogen separated by ion
exchange chromatography after background correction using
the EMSC algorithm displays strong fibrinogen features. In
Fig. 7B, it is clear that nine components made significant con-
tributions to the variance in the sonicated fibrinogen spectra.
The minimum value of RMSECV is found to be 0.0568 mg
mL−1. The PLSR coefficient plot shows the signature peaks of

Fig. 5 (A) Raman spectra of varying concentration of sonicated fibrinogen background corrected using EMSC algorithm (B) percent variance
explained by the latent variables (C) PLSR coefficient plotted from the sonicated fibrinogen data set shows strong fibrinogen features, (D) linear pre-
dictive model built from the PLSR analysis showing correlation between concentration and peak intensity.

Fig. 6 Smoothed spectra of varying concentration of fibrinogen in
simulated plasma (0.5 mg mL−1 to 5 mg mL−1). The arrow indicates the
order of increasing concentration.
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fibrinogen (Fig. 7C), indicating that the linear prediction
model obtained was based on the correlation between the
Raman spectral intensities of fibrinogen and concentration
(Fig. 7D). Hence, it can be concluded that ion exchange chrom-
atography can successfully separate fibrinogen for Raman ana-
lysis from the protein mixture within 30 minutes and an accu-
rate prediction model can be built from the Raman data to
detect subtle changes in the fibrinogen concentration. Early
detection of fibrinogen concentration could help to prevent
disorders that are associated with increased fibrinogen level in
plasma such as thromboembolism,41 various cardiovascular
events and post-surgical arterial reocclusion.42

Discussion

In monitoring biological molecules in their native aqueous
state in biofluids, Raman spectroscopy offers the potential
advantage over other spectroscopic techniques such as infra-
red absorption, that water was a relatively low scattering cross
section. However, applications of the technique face several
challenges related to detection of relatively low concentrations
and variations of concentrations of analytes, and low quality
signals from poorly dispersed components, and there remains

a considerable number of issues relating to the fundamental
process of recording and extracting the spectral details using
chemometric techniques.

Raman analysis in the inverted geometry using a water
immersion objective is found to be the optimal method to
record well defined spectra with minimal background, and
notably samples of volumes as low as 1 μL can be measured.
In a sample set of varying concentrations over physiologically
relevant ranges, the albumin contributions to the spectrum
dominate over those of the water, and, after minimal prepro-
cessing, PLSR can be employed to establish a regression model
whose predictive performance shows a close correlation
between the concentrations of the proteins and the Raman
spectral profile. However, in a the more complex simulated
plasma mixture of proteins, improved data preprocessing tech-
niques are required to account for the increased spectral
background.

Although the broad background to Raman spectra is often
attributed to fluorescence, this cannot be the case for
materials with are nonresonant at the Raman source wave-
length. Proteins such as albumin and fibrinogen can, however,
contribute to stray Mie scattered light by causing diffusely scat-
tered radiation that is not well collimated by the collection
objective of the Raman microscope, enters the spectrometer

Fig. 7 (A) EMSC corrected data of varying concentrations of fibrinogen separated by ion exchange chromatography, and (B) percent variance
explained by the latent variables, (C) PLSR coefficient showing fibrinogen features and (D) linear prediction model defined from the dataset.
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effectively as stray light, and is dispersed across the detector.21

The rubberband pre-processing method appeared to efficiently
remove the background from the data set of varying concen-
tration of albumin in water, but failed to satisfactorily deal
with the background of varying concentrations of albumin in
the simulated plasma protein mixture. The more sophisticated
EMSC based algorithm helped eliminate the scattering associ-
ated with the albumin data in the simulated plasma, improv-
ing the prediction model, and also helped to extract the spec-
tral features of fibrinogen from water. In both cases, before
subtraction, the primary effect of varying the protein concen-
trations was to decrease the contribution of the dominant
Raman scatterer, which can be understood in terms of the
presence of the poorly soluble, highly Mie scattering fibrino-
gen component. This proposed method can be efficiently used
to detect albumin as a standard biomarker for detecting dis-
eases associated with hypoalbuminemia (<30 mg mL−1), such
as liver diseases, gastrointestinal protein loss, edema and
hyperalbuminemia (>30 mg mL−1), such as severe dehydration
and abnormal increase in body fat.43,44 The accuracy of the
proposed method is comparable to that of the most commonly
used method for detecting albumin from biological fluids, the
enzyme linked immunosorbent assay (ELISA),45,46 which is
sensitive and selective but is very time consuming and requires
extensive sample preparation steps.

In varying concentrations of fibrinogen in aqueous solu-
tion, the Raman signal of the water itself is diffusely scattered,
increasingly so with increasing fibrinogen concentration, and
thus the PLSR identifies a decreasing Raman contribution of
water as the dominant concentration dependent effect. In the
case of albumin in the simulated protein mixture, a concen-
tration dependent Mie scattering of the Raman signal of
albumin itself is the dominant effect of increasing albumin
concentration. While one would expect a linear concentration
dependent increase in the Raman signal of albumin, the
inability of the ultracentrifugation technique to separate the
two high molecular weight proteins may suggest an interaction
between the albumin and fibrinogen, such that increased
albumin Raman scattering is overwhelmed by increased Mie
scattering.

Mild sonication is seen to improve the dispersion of fibri-
nogen in aqueous solutions, and significantly improve the
Raman signal. Removing the water contribution using EMSC is
seen to significantly improve the predictive model (Fig. 5).

Separation of the fibrinogen by ion exchange chromato-
graphy from the plasma protein mixture and application of the
ultrasonication technique to reduce aggregation helped to
detect fibrinogen features from the plasma solution even at a
concentration as low as 0.5 mg mL−1. The RMSECV of
0.0568 mg mL−1 compares favourably with similar obser-
vations, for example for attenuated total reflection – Fourier
transform infrared absorption monitoring of glucose in blood
serum.47 The accuracy of this study is closer to that of the
most commonly used gold-standard method i.e., the Clauss
assay, which has a detection limit of ∼0.4 mg mL−1.48 The
Clauss assay is relatively time consuming and suffers from

inconsistencies in the results due to calibration standards,
methodologies and variation in the reagents from various
manufacturers.41 These steps are relevant only in the case of
human plasma and can be avoided while working with human
serum as fibrinogen is absent in the serum. The optimised
protocol can be applied to detect low abundant protein in
bodily fluids after depletion of the abundant proteins to
reduce the spectral variability. Currently, such studies are con-
ducted and the results are promising.

Ion exchange chromatography is a quick method to separ-
ate the proteins from each other by altering their net surface
charge, making it an ideal tool for separating all the protein
constituents and a better alternative to ultracentrifugation. In
this case, ultracentrifugation failed to separate HMWF pro-
teins from one another, as they tend to form hydrophobic
bonds and nonspecific binding interactions with the mem-
brane material (Fig. S6†). However, the ion exchange chroma-
tographic method has to be tailored to the specific protein,
depending on its charge, and cannot be applied as a ‘one-for-
all’ separation kit for all the proteins.

Conclusions

The potential advantages of using vibrational spectroscopy for
disease diagnosis based on bodily fluids have been extensively
explored over the last two decades. However, little consider-
ation has been given to date to the optimisation of a Raman
analysis protocol involving proteins in their native aqueous
state, leading to irreproducible results due to high complexity
of the plasma proteins. This study is a proof of concept that
Raman spectroscopy can be successfully used to detect subtle
changes in individual plasma protein concentration from
simulated plasma samples to disease diagnostics purposes.

It has been shown that measurement in the inverted geo-
metry using a water immersion objective yields high quality
spectra and the sample volume can be as small as 1 μL. This
experimental set up is advantageous for clinical purposes
where the volumes of patient samples are minimal. In the
simulated plasma protein mixture, the poorly soluble fibrino-
gen component was seen to obscure the systematic variations
of the protein concentrations, due to the high degree of scat-
tering. Extraction of the fibrinogen by ion exchange chromato-
graphy is seen to be more specific than by ultracentrifugal fil-
tration, such that the variations of fibrinogen levels themselves
can be quantified. In general, the scattering problems caused
by fibrinogen favour the use of blood serum for the analysis of
the remaining lower molecular weight fractions.

However, to further ensure relevancy and consistency of
these results, experiments need to be carried out in pooled
plasma/serum. The use of Raman spectroscopy coupled with
chemometric techniques not only gives a mere estimate of
whether the protein levels are high or low but also gives higher
accuracy of quantification. Once appropriate experimental
methods are established, a hypothesised point-of-care device
that can be used in real clinical applications for spectroscopic
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analysis of body fluids can be realised. The proposed approach
can be expeditiously employed for early detection of pathologi-
cal disorders associated with high or low plasma proteins.
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