The engineering of CO2 hydrogenation catalysts for higher alcohol synthesis
Abstract
Anthropogenic CO2 emissions have drawn significant attention in recent years. Using CO2 as feedstock for chemical processes has become a key solution in overall closed carbon cycles for a vision of a circular carbon economy. CO2 hydrogenation to higher alcohol has emerged as one of the most promising CO2 conversion pathways for mitigating CO2 emissions and producing value-added chemicals. The present review critically discusses the most recent cutting-edge catalyst development in higher alcohol synthesis (HAS), focusing on the influence of different metals, promoters, and supports according to the contributions of different active species in modern catalyst configurations. Particularly, the critical roles of oxygen vacancies and the reaction mechanisms shed light on the rational design of the next-generation CO2 hydrogenation catalysts.
- This article is part of the themed collections: CO2 Conversion and RSC Sustainability Recent Review Articles