Fundamentally intertwined: anharmonic intermolecular interactions dictate both thermal expansion and terahertz lattice dynamics in molecular crystals†
Abstract
We investigate the anisotropic thermal expansion behavior of a co-crystalline system composed of 4,4′-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffraction (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional theory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics.
- This article is part of the themed collections: ChemComm 60th Anniversary Collection and 2024 Emerging Investigators