Issue 22, 2021

NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids

Abstract

Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.

Graphical abstract: NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
19 جنؤری 2021
Accepted
17 میٔ 2021
First published
18 میٔ 2021
This article is Open Access
Creative Commons BY license

Nanoscale, 2021,13, 10067-10080

NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids

J. Ferrera-González, L. Francés-Soriano, N. Estébanez, E. Navarro-Raga, M. González-Béjar and J. Pérez-Prieto, Nanoscale, 2021, 13, 10067 DOI: 10.1039/D1NR00389E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements