Issue 23, 2017

Hybrid colloidal microswimmers through sequential capillary assembly

Abstract

Active colloids, also known as artificial microswimmers, are self-propelled micro- and nanoparticles that convert uniform sources of fuel (e.g. chemical) or uniform external driving fields (e.g. magnetic or electric) into directed motion by virtue of asymmetry in their shape or composition. These materials are currently attracting enormous scientific attention as models for out-of-equilibrium systems and with the promise to be used as micro- and nanoscale devices. However, current fabrication of active colloids is limited in the choice of available materials, geometries, and modes of motion. Here, we use sequential capillarity-assisted particle assembly (sCAPA) to link microspheres of different materials into hybrid clusters of prescribed shapes (“colloidal molecules”) that can actively translate, circulate and rotate powered by asymmetric electro-hydrodynamic flows. We characterize the active motion of the clusters and highlight the range of parameters (composition and shape) that can be used to tune their trajectories. Further engineering provides active colloids that switch motion under external triggers or perform simple pick-up and transport tasks. By linking their design, realization and characterization, our findings enable and inspire both physicists and engineers to create customized active colloids to explore novel fundamental phenomena in active matter and to investigate materials and propulsion schemes that are compatible with future applications.

Graphical abstract: Hybrid colloidal microswimmers through sequential capillary assembly

Supplementary files

Article information

Article type
Paper
Submitted
02 مارٕچ 2017
Accepted
24 میٔ 2017
First published
24 میٔ 2017

Soft Matter, 2017,13, 4252-4259

Hybrid colloidal microswimmers through sequential capillary assembly

S. Ni, E. Marini, I. Buttinoni, H. Wolf and L. Isa, Soft Matter, 2017, 13, 4252 DOI: 10.1039/C7SM00443E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements