Issue 23, 2017

Functionalization of transparent conductive oxide electrode for TiO2-free perovskite solar cells

Abstract

Many of the best performing solar cells based on perovskite-halide light absorbers use TiO2 as an electron selective contact layer. However, TiO2 usually requires high temperature sintering, is related to electrical instabilities in perovskite solar cells, and causes cell performance degradation under full solar spectrum illumination. Here we demonstrate an alternative approach based on the modification of transparent conductive oxide electrodes with self-assembled siloxane-functionalized fullerene molecules, eliminating TiO2 or any other additional electron transporting layer. We demonstrate that these molecules spontaneously form a homogenous monolayer acting as an electron selective layer on top of the fluorine doped tin oxide (FTO) electrode, minimizing material consumption. We find that the fullerene-modified FTO is a robust, chemically inert charge selective contact for perovskite based solar cells, which can reach 15% of stabilised power conversion efficiency in a flat junction device architecture using a scalable, low temperature, and reliable process. In contrast to TiO2, devices employing a molecularly thin functionalized fullerene layer show unaffected performance after 67 h of UV light exposure.

Graphical abstract: Functionalization of transparent conductive oxide electrode for TiO2-free perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
18 مارٕچ 2017
Accepted
02 میٔ 2017
First published
02 میٔ 2017

J. Mater. Chem. A, 2017,5, 11882-11893

Functionalization of transparent conductive oxide electrode for TiO2-free perovskite solar cells

P. Topolovsek, F. Lamberti, T. Gatti, A. Cito, J. M. Ball, E. Menna, C. Gadermaier and A. Petrozza, J. Mater. Chem. A, 2017, 5, 11882 DOI: 10.1039/C7TA02405C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements