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We describe the problems of quantum chemistry, the intuition behind classical heuristic

methods used to solve them, a conjectured form of the classical complexity of

quantum chemistry problems, and the subsequent opportunities for quantum

advantage. This article is written for both quantum chemists and quantum information

theorists. In particular, we attempt to summarize the domain of quantum chemistry

problems as well as the chemical intuition that is applied to solve them within concrete

statements (such as a classical heuristic cost conjecture) in the hope that this may

stimulate future analysis.
1 Introduction

This essay is about the quantum simulation of chemical matter. Although this is the
introductory article to a Faraday Discussion in a chemistry journal, it is actually
written with two audiences in mind: quantum chemists and quantum information
theorists. This is because although quantum chemistry and quantum information
theory have increasingly crossed paths in recent years, practitioners in one eld oen
have limited understanding of the other eld’s perspective. One purpose of this essay
is to describe the intuition that quantum chemists have about the quantum many-
body problem in chemical matter. This intuition guides modern day research into
improved methods and their applications. The other is to give a vantage point on
quantum chemistry that hopefully emphasizes some of the concerns of quantum
information theorists, which we believe will be useful for the future development of
quantum chemistry. Quantum information theory is a mathematical eld with
provable results, while quantum chemistry is primarily an empirical one. As the
author is a quantum chemist, this article is written in the informal style of quantum
chemistry. In some cases, it supplies the author’s (non-rigorous) personal opinions.
Intuitions and opinions are clearly not theorems, but we present them in the hope
that they can be valuable guideposts when the path ahead is unclear.
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This essay has four subsequent parts. First, we give a brief tour of quantum
mechanics (QM) in chemical matter and review some applications of modern day
interest. Second, we summarize a range of classical heuristics in quantum
chemistry. Third, we give an intuitive perspective on how to think about
complexity in quantum chemistry. Finally, we briey discuss quantum algorithms
for quantum chemistry and where to search for quantum advantage in the
simulation of chemical matter.
1.1 An apology about discussions of complexity

This article makes statements about complexity in the non-rigorous quantum
chemistry style. We use terms such as polynomial (easy) and exponential (hard)
complexity, and mention some complexity classes such as NP (harder than
polynomial to solve (e.g. exponentially hard) but polynomially easy to verify) and
QMA (the analog of NP on a quantum computer).1 But we go no deeper. We hope
that by understanding the intuitions that quantum chemists have about their
problems, computer scientists may begin to formalize the conjectures about
complexity that this article raises.
2 Quantum mechanics in chemical matter
simulation
2.1 What is quantum chemistry?

We rst consider the term “quantum chemistry”. Unfortunately this term has
grown to have different meanings in chemistry and in quantum information
theory, which is a source of confusion. In the quantum information and quantum
computing communities, quantum chemistry usually means “an application of
quantum mechanics to chemistry”. However, in the chemical sciences, quantum
chemistry has traditionally had amore restricted meaning: it is the numerical and
conceptual theory of chemical bonding and reactivity. Mathematically this is
represented by the electronic structure problem. In theoretical chemistry,
quantum chemistry is a sub-eld that is considered to be distinct from quantum
dynamics and quantum statistical mechanics.

A second source of confusion is that in quantum information discussions,
chemistry usually means molecular chemistry, perhaps related to the popular
view of chemistry as something to do with brightly colored solutions bubbling
away in test-tubes. Yet in the chemical sciences, chemistry has long grown beyond
only the molecular setting to encompass materials and biochemistry. In this
broadened perspective, the dening characteristic of chemistry is the under-
standing of matter at the level of the chemical identity of the atoms, under the
relatively accessible conditions of a chemical laboratory.

As quantum chemistry and quantum information come together, it is perhaps
most interesting, and most useful, to use a broader denition of the term
quantum chemistry, as the application of quantum mechanics to molecules,
materials, and biomolecules under relatively accessible experimental conditions,
which we collectively refer to here as chemical matter. In this essay, we will start
with this broad denition of quantum chemistry. However, for reasons of scope
and the expertise of the author, we will necessarily need to specialize and we focus
only on the electronic structure aspects of quantum chemistry later on.
12 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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2.2 Quantum mechanics in chemistry

So how does quantummechanics enter into chemistry? Chemical matter consists
of electrons (with mass∼10−30 kg) and nuclei (with masses in the range∼10−27 to
10−25 kg) and these particles are typically conned on the atomic scale (about
10−10 m). Because of their very different masses, at a given energy we can think of
the motion of electrons as being much faster than that of the nuclei, so that they
quickly reach some kind of stationary state. Thus the starting point for much of
quantum mechanics in chemistry is the Born–Oppenheimer approximation. This
is an adiabatic (i.e. separation of timescales) approximation, i.e. for a given set of
nuclear positions R, we can meaningfully discuss the electronic eigenstates.
These are the eigenstates of the electronic Hamiltonian

Hel = Tel + Vnuc–el + Vel–el + VNN (1)

containing the kinetic energy of the electrons (Tel), the nuclear–electron potential
(Vnuc–el), the electron–electron repulsion (Vel–el), and the nuclear–nuclear repul-
sion VNN, and we write the time-independent electronic Schrödinger equation as

Hel(R)Jel
i (r;R) = Eel

i J
el
i (r;R) (2)

where r are the electron coordinates, and we indicate a parametric dependence of
the electronic wavefunctions and energies on the nuclear positions R. Eeli (R) is
known as the potential energy surface (PES) of the ith electronic state and is the
foundation for the most basic concepts of molecular structure: the minima dene
the stable molecular structures and the saddle points dene the transition states
which govern reaction rates. Because of the central nature of the PES, we can
reasonably argue that electronic structure is the dening mathematical problem
of quantum mechanics in chemistry and is where the majority of applications of
quantum mechanics in chemistry lie.

Electronic structure is, however, not the only way in which quantum
mechanics enters into chemistry. For example, the time-independent electronic
Schrödinger equation has its time-dependent counterpart

ivtJ
el(r;R) = HelJel(r;R), (3)

(here and elsewhere we work in atomic units) and the associated problem of
electron dynamics enters into problems of electron transport, energy transfer,
and strongly (e.g. laser) driven processes in chemistry.

In addition, the nuclei in the Born–Oppenheimer approximation may be
thought of as particles moving in the effective classical potential that is the
potential energy surface Eeli (R). The stationary quantum solutions then satisfy the
time-independent nuclear Schrödinger equation

(Tnuc + Eel
i )F

nuc
i,a (R) = Etot

i,aF
nuc
i,a (R) (4)

Solving for the energies Etoti,a andFi,a is the basis of understanding various kinds of
spectroscopy which excite the nuclear motion. The time-dependent nuclear
Schrödinger equation follows as

ivtF
nuc(R) = (Tnuc + Eel

i )F
nuc(R) (5)
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 13
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and describes nuclear quantum effects in reaction dynamics. And nally, there
are quantum mechanical efforts outside of the Born–Oppenheimer approxima-
tion. These are needed to understand the non-adiabatic processes of relaxation of
electrons, spins, and nuclei, as well as phenomena where there is an electronic
energy scale comparable to the nuclear vibrational energy scale, such as in
phonon-driven superconductivity.
2.3 The magnitude of quantum effects in chemistry: classical limits

The above categorizes the subareas of quantum mechanical effects in chemistry,
but does not speak to how important they are. As Dirac famously pointed out,
quantummechanics is the underlying theory of chemistry.2 But in practice, many
chemical phenomena can be understood without, or only with a little, quantum
mechanics. An estimate of the size of quantum effects in different settings is from

the thermal de Broglie wavelength l ¼
ffiffiffiffiffiffiffiffiffiffi
2p
mkT

r
; this is the lengthscale on which the

delocalized nature of quantum particles starts to affect their statistical properties.
At room temperature (298 K), for electrons, le = 10−9 m and for the nuclei it
ranges from lnuc ∼ 10−10 to 10−12 m. At the atomic scale of 10−10 m, we conclude
that quantum effects are always important in describing electrons, but are usually
unimportant for nuclei, which are essentially classical objects, with the exception
of the lightest nuclei.
2.4 The magnitude of quantum effects in chemistry: locality

Another important empirical limitation to the emergence of quantum effects in
chemistry is the “principle” of locality. It is a famous feature of quantum
mechanics that states can carry non-local correlations (entanglement), in prin-
ciple, over long distances. But chemical thinking succeeds precisely by assuming
that such effects do not exist: we can reason about chemical entities because
distant parts of a molecule do not radically change the identity of a given atom.

As we discuss somewhat more technically in Section 3.7, the existence of
locality in chemistry can reasonably be argued to be partly due to the laws of
nature, and partly due to the lack of perfect quantum control over chemical
matter, which limits the types of systems that are studied in chemical experi-
ments. Whatever the origin, the locality principle limits the complexity of
quantum effects: coherence and entanglement are limited to nite distances and
nite times. The task of computational quantum simulations is to address
quantum effects up these nite scales.
2.5 Standard computational applications of QM in chemistry

Because of the above, in practice, the use of QM to understand chemistry is more
restricted than Dirac’s original statement suggests. Some examples of “standard”
computational applications of QM in chemistry include (i) computing the
potential energy surface by solving the electronic Schrödinger equation with some
approximate method, (ii) computing rates associated with dynamical processes of
electrons, photoexcitations, and energy relaxation, oen using low-order time-
dependent perturbation theory, (iii) describing corrections to classical nuclear
motion, commonly in a semi-classical picture.
14 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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The motivation for new methods in quantum chemistry naturally arises due to
limitations in our capabilities in the above tasks. As all methods are approximate,
the limitations are usually either of the kind that the approximation is not
accurate enough, or the approximation is not cheap enough! These are clearly two
sides of the same coin, but asmany heuristics have a setting that one can adjust to
balance cost versus accuracy, the rst problem refers to the case where dialing up
the accuracy leads to us exceeding our computational budget, while the second
refers to the case where dialing down the accuracy still does not lead to a fast
enough calculation (or else produces nonsense).

Discussing the methods and the limitations in more detail for all the above
tasks exceeds the scope of this essay and the capabilities of this author. In the
remainder, we focus primarily on the task of solving the electronic Schrödinger
equation, the original domain of quantum chemistry.

2.6 The nature of open problems in chemistry

Many computational chemistry problems remain open. This simply means that
they cannot be solved at a level that advances chemical understanding. At the
same time, there is an important difference when applying computation to
chemistry, such as to answer “what is the mechanism of nitrogenase”, as
compared to a problem such as “nd the prime factors of 43 112 609”. One
difference is that the chemical problem is much less well posed (e.g. what should
we even compute?). A second difference is that there is a lot of existing partial
information, from experimental observation, by analogy with other related
chemical systems, and from a range of inexact classical simulations. Chemical
simulations are thus always about adding the next chapter to an ongoing story,
rather than opening and closing the book. When assessing the value of improved
simulations and newmethods in quantum chemistry, the fact that open problems
are not really completely open constrains the role of new simulations in the eld.

2.7 Some examples of open problems

We now consider some examples of open computational chemistry problems that
have been used tomotivate the development of new quantum chemistry methods,
namely (i) the computation of ligand affinities in drug discovery, (ii) under-
standing biological nitrogen xation, and (iii) ambient pressure high temperature
superconductivity.

2.7.1 Ligand binding affinities in drug discovery. Drug discovery is a long
and complicated task, costing upwards of 1 billion USD to develop a single new
small molecule drug, thus the possibility to use relatively inexpensive computa-
tional chemistry to improve this process is an alluring possibility. Although most
stages of the drug pipeline do not involve quantummechanics, the basic thesis in
computational drug design is that a necessary (though obviously far from suffi-
cient) requirement is that the drug molecule attaches to its target (usually
a protein). Thus, a seemingly obvious task for a quantum chemical simulation
would be to compute the binding affinity of a drug molecule at a given protein
target site.

Assuming that the protein is relatively rigid and the target site and general
orientation (“pose”) of the drug are already known, computing the binding
affinity, however, is still quite non-trivial. Simple approximate mean-eld
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 15

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00141a


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 1
1 

Ju
ly

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
1/

1/
20

26
 3

:0
1:

19
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
quantum chemistry methods – such as density functional theory (DFT, see
Section 3.3) – in most cases yield sufficient accuracy in the electronic energy, and
a density functional calculation of the energy can indeed today be carried out on
small proteins and drugs.3 However, the challenge arises from the fact that the
binding affinity is not a zero-temperature energy, but a free energy, that includes
the entropic effects from the solvent and the protein. In actual binding events, the
entropy and energy effects are oen similar in magnitude with opposite sign, with
the binding free energy being the small residual.4 The motion of the atoms can be
assumed to be entirely classical, described by Newton’s equations, but in stan-
dard methodologies (such as free-energy perturbation theory which computes the
relative affinities of ligands relative to a base ligand) one needs to simulate, even
under optimistic assumptions, ∼100 ns of dynamics, or roughly 108 energies and
forces. For this to complete in a realistic turnaround time (say 1 day of compute)
each electronic energy and gradient must be computed in ∼1 millisecond.

Thus computing ligand affinities is a problem where standard QM simula-
tions, as applied directly to the protein plus ligand complex, are simply not fast
enough. Instead, practical solutions for free energy sampling involve empirical
models trained to the QM data: these either abandon the QM description entirely
for a parametrized “force-eld” form of the potential energy surface (perhaps,
today, enhanced with a general function approximator such as a neural network);
or else simulate only a small part of the problem near the binding site quantum
mechanically (and the rest with force elds); these methods can be combined
with statistical mechanical “enhanced sampling” techniques to reduce the
number of atomic congurations to be computed for the free energy. The goal of
developing new quantum methods in this area (such as faster DFT algorithms or
even cheaper mean-eld methods) is to partially bridge the gap to the point that
training techniques have sufficient data; then they can be hoped to generalize
accurately to the timescales of interest.

2.7.2 Biological nitrogen xation. Another problem oen brought up in the
context of improving quantum chemistry methods is that of understanding bio-
logical nitrogen xation. The nitrogen cycle is one of the major biogeochemical
cycles and the xing (i.e. reduction) of atmospheric nitrogen is essential for the
biological incorporation of nitrogen. Nitrogen is xed today both by the Haber–
Bosch process, an industrial process nominally given by the equation

N2 + 3H2 / 2NH3 (6)

which balances the kinetic and thermodynamic driving forces of the process at
high pressures and high temperatures and uses an iron-based catalyst, and by
bacteria via the nitrogenase enzyme, which works under ambient conditions,
nominally satisfying the stoichiometry

N2 + 8H+ + 8e− + 16MgATP / 2NH3 + H2 + 16MgADP + 16Pi (7)

One o-quoted statistic about the Haber–Bosch process is that it consumes an
enormous amount of energy, e.g. 2 percent of the world’s energy supply. Efficient
Haber–Bosch plants today use about 26 GJ per ton of ammonia.5 It is tempting to
think that biological nitrogen xation uses much less energy, but this is not simple
to establish. For example, the above equation suggests 16 ATP molecules are
16 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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consumed for every N2 molecule, translating under physiological ATP hydrolysis
conditions (which can vary, leading to slightly different numbers6) to a nominal 24
GJ per ton of ammonia, a comparable energy cost. But this is not an end-to-end
cost, e.g. it does not include the costs of synthesizing and maintaining the nitro-
genase machinery (a signicant component of the cellular proteome in nitrogen
xing cells) as well as general cellular function and homeostasis. In addition, there
are other challenges besides energy consumption in industrializing a biological
process, for example, the nitrogenase enzyme is extremely slow. The chemical
motivation to study nitrogenase is thus less to produce an energy-efficient
replacement of the Haber–Bosch process but rather because it is an interesting
system in its own right, and perhaps it maymotivate how to understand and design
other catalysts that can activate and break the nitrogen–nitrogen triple bond under
ambient conditions. In this context, some basic chemical questions to answer
include (i) where do the various species in the reaction bind to the enzyme, and (ii)
what is the step-by-step catalytic mechanism?

The focal point of the earliest quantum chemistry calculations has mainly
been to determine the electronic structure of the Fe–S clusters that are the active
sites of nitrogenase, which would seem to be the starting point to understand
their catalytic activity. This problem is non-trivial because the Fe atoms contain
3d orbitals and the associated electrons are “strongly correlated” (discussed in
detail in Section 3.6), posing a practical challenge for many common quantum
chemistry approximations. At the current time, there is a reasonable under-
standing of the general qualitative features of the electronic structure of the iron–
sulfur clusters from a combination of quantum chemistry calculations and
experimental spectroscopy.7–9 However, the computational challenge of treating
the strongly correlated electronic structure at a quantitative level means that the
precise nature of the ground-state of the important FeMo cofactor (where
nitrogen reduction takes place) is not fully resolved.

Computing the electronic ground state, although a useful reference point, is
still of limited value in deciphering the mechanism. More directly useful, while
still computationally accessible, quantities are the zero-temperature relative
energetics e.g. to determine proton binding sites and protonation states of the Fe–
S clusters and their environments. This requires simulating not just the isolated
Fe–S clusters but also the surrounding residues, a simulation scale of a few
hundred atoms.10 The only practical quantum chemistry method for this task
currently is density functional theory. Although it is well known that DFT can yield
erroneous predictions in transition metal systems, one can still obtain useful
information by looking for consistent results between different DFT approxima-
tions and constraining the results by experimental data. There is great need for
improvement in density functionals (or other methods) that can be applied at the
scale of these problems which will impact our understanding here. Looking
beyond zero-temperature energies to free energies, there are monumental chal-
lenges to overcome similar to those discussed for ligand binding free energies,
but now with the additional complications of the non-trivial electronic structure.

2.7.3 Ambient pressure high-temperature superconductivity. As our last
example, we consider the problem of ambient pressure high-temperature super-
conductivity, as exemplied by the cuprate materials. Cuprates involve strongly
correlated electron physics driven by the narrow Cu 3d electron bands. Here there
are a plethora of questions, ranging from the mechanism underlying
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 17
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superconductivity to the nature of different exotic phases observed in these
materials. In the chemical setting, a particularly relevant question is how to
design new material structures and compositions to exhibit higher super-
conducting transition temperatures.

While many mysteries of high temperature superconductors remain unex-
plained, it is important to recognize that aer almost four decades of work, there
is substantial partial understanding from both theory and experiment. Limiting
oneself only to ground-states and static properties, in the context of simple
models such as the 1-band (Fermi)–Hubbard model, numerical calculations
nowadays give a fairly comprehensive view of the potential ground-states,
although in some parts of the phase diagram it is not entirely clear what the
true ground-state order is due to close competition between different orders.11–13

We also note that none of the proposed ground-states are of some qualitatively
“classically intractable variety” (i.e. the orders still have a succinct classical
description, see Section 4.4); but the uncertainty arises because the precise
renement of their energies requires too large a cost. For the zero-temperature
states, in the author’s view achieving a 10× improvement in accuracy over the
current state-of-the-art would likely resolve most outstanding questions about
this energetic competition.

In the context of material specic predictions, by neglecting some of the
physics it is also becoming possible to perform concrete calculations of the low-
temperature properties of different material structures. Both parametrized
Hamiltonians14,15 as well as fully multi-orbital ab initio approaches16,17 have been
deployed for this task, and predictions can be made of modest quality. The
techniques involved are extensions of the simulation methods used with simpler
models, with a polynomial increase in computational complexity associated with
the increased material realism. On the other hand, in practice one still needs to
make choices about what physics to include and what to neglect. Much work
remains to improve all aspects of these simulation methods in terms of speed,
accuracy, and generality (e.g. to simultaneously include correlated electron,
phonon, and nite temperature effects). We are still quite far from being able to
make precise predictions about Tc in calculations that cover all microscopic
mechanisms of potential interest.
2.8 Summary

We can summarize our brief introduction to quantum effects in chemistry and
our survey of problems as follows. The rst is that quantum mechanics is not
necessary to understand all of chemistry, but in the cases where it is needed, there
are indeed many open problems which challenge current classical approximate
quantum chemistry methods, both in terms of the speed required and in terms of
accuracy. From a complexity perspective, this oen appears to involve either large
constant prefactors (e.g. in the problem of sampling free energies) or (as we argue
in more detail later, see Section 4.5) polynomial factors e.g. when seeking
improved accuracy in strongly correlated problems. At the same time, the classical
approximate methods we have, combined in some cases with experimental
knowledge, are already remarkably successful across a range of difficult prob-
lems. New algorithms and new simulation tools must compete successfully with
these existing heuristics to have an impact in the chemical setting.
18 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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3 Classical heuristic quantum chemistry
3.1 Energy scales in the electronic Schrödinger equation

We now turn to an overview of classical electronic structure methods in quantum
chemistry. These are necessarily approximate methods, and they either implicitly
or explicitly assume some features of the solution. Thus we also refer to these
approximations as classical heuristics. We assume that the computational task is
to solve for the ground- and/or low-lying electronic states, where low-lying could
mean e.g. thermally accessible, or accessible by applying some perturbation, such
as a laser.

The (non-relativistic) electronic Hamiltonian is written in atomic units as

H ¼
X
i

�
� 1

2
Vi

2 þ vextðriÞ
�
þ
X
i. j

1

rij
þ ENN (8)

where we have dropped the “el” superscript, vext is the eld external to the elec-
trons (which in the absence of an applied eld, is the nuclear–electron potential
vnuc–el) and ENN is, for the purposes of determining the electronic wavefunction at
a given nuclear geometry, a constant, which we drop when convenient in the
discussions below. We will be interested in eigenstates with N electrons, where N
makes the system charge neutral (or close to neutral). Of course the 1-electron
part of the Hamiltonian leads to trivial eigenstates, and it is the 2-electron part of
the Hamiltonian (the Coulomb repulsion) that leads to correlated electronic
structure, the central source of complexity. This general structure of the Hamil-
tonian and the energy scales of the 1-electron and 2-electron terms in different
systems sets up the qualitative aspects of the electronic structure of the ground-
and low-lying states.

As basic intuition, we rst consider the energy scales of electrons in atoms.
Atomic orbitals are dened as eigenstates of an (effective) 1-particle Hamiltonian
(see mean-eld methods below, Section 3.3), and we typically divide the orbitals
into core, valence, Rydberg, and continuum states. The core states lie at an energy
of O(Z2) (where Z is the nuclear charge); valence states at energies of O(1); Rydberg
states at close to 0, and the continuum states at positive energies.

Chemistry mainly involves the valence orbitals. As atoms come together in
a bond (in a single-particle mean-eld description) the valence orbitals interact
with each other and their energies split, and the range of splittings takes a range
of values, say O(0.01–1) (atomic units, i.e. Hartrees) in chemically relevant
systems; we might denote this energy scale as t. The Coulomb matrix elements of
the valence orbitals (on the same atom) are typically in the range of O(0.1–1)
(atomic units); we can denote this U. Thus the effect of the Coulomb interactions
on the mean-eld picture of electronic structure can be understood in terms of
the ratio of these energies U/t; for large U/t the Coulomb interaction is non-
perturbative, or “strong”, while for small U/t it is a perturbation, or “weak”. We
emphasize that in a material, it is the full range of splittings, not an individual
energy level splitting such as the bandgap, which determines if the Coulomb
interaction should be thought of as strong. This is because the number of elec-
trons immediately around the bandgap (or Fermi surface) is vanishingly small
compared to the total number of electrons and does not determine the overall
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 19
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electronic structure. The correct ratio is thus that of the Coulomb interaction to
the bandwidth, which is O(U/t).

The implication of the weak and strong limits of the Coulomb interaction is
that they lend themselves to different kinds of approximations. Note that strong
does not necessarily mean qualitatively complicated, because non-perturbative
effects may be captured by a modied starting point, such as a different mean-
eld theory. We return to this in Sections 3.3 and 4.4.

3.2 Basis sets

Moving to a computational discussion, classical numerical algorithms (other
than some quantum Monte Carlo algorithms, briey discussed in Section 3.9) do
not directly target the continuum Hamiltonian in eqn (8). Instead one rst solves
the electronic Schrödinger equation in a discrete Hilbert space associated with
a single particle basis {cp(r)}. The N-electron wavefunction lives in the antisym-
metric product space of the single-particle basis.

Fortunately, in the low-lying electronic states in chemical matter, the electrons
are largely conned. This greatly simplies basis construction because (i) we
know where the electrons are spatially localized and (ii) we know the feature size
of the electrons.

The most popular basis functions have historically been chosen to simplify the
required Hamiltonian matrix elements in the basis. They include atomic basis
sets (commonly Gaussian basis sets) and plane wave basis sets. In Gaussian bases,
a linear combination of Gaussian functions are centered on each nucleus of the
problem, i.e.

c(r) = (x − Ax)
i(y − Ay)

j(z − Az)
ke−a(r − A)2 (9)

where A is the position of the nucleus and i, j, k are integers. In addition to
knowing the nuclear positions A, (i) and (ii) above mean that max(i, j, k) can be
restricted to be small, and the range of a limited. These atomic-centred bases
offer precise control over the location and shape of the basis functions but are
non-orthogonal, which leads to some numerical complications.

Plane wave bases are constructed by placing the system of interest in a nite
box of volume V (say cubic, for simplicity) with periodic boundary conditions.
This suggests a natural basis function of the form

cGðrÞ ¼
1ffiffiffiffi
V

p e�iG$r (10)

with the wavevectors G chosen to satisfy the boundary conditions. Here, (i) means
that Gmax is limited. Plane waves uniformly resolve space and are orthogonal,
which leads to well-conditioned numerical algorithms with systematic conver-
gence, although they are not as compact as atomic bases.

Regardless of the choice of single-particle basis, it is the sharpest features of
the function to be represented that dominate the asymptotic rate of convergence.
If the function is not innitely differentiable, then in general the error of a basis
expansion will converge algebraically with the number of basis functions M. In
the eigenstates of the Hamiltonian, non-differentiable features arise when the
Hamiltonian is singular. For mean-eld theories, such as Hartree–Fock theory
and density functional theory (Section 3.3) where the goal is to determine the
20 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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single particle orbitals f(r), the sharp features are the orbital cusps at the nuclei,
which is not innitely differentiable. Plane wave expansions then converge
algebraically, but because in a Gaussian basis the functions can be centered on
the nucleus, and the exponents can be chosen in a non-uniform manner,
superalgebraic convergence can be achieved.

In the many-body wavefunction however, there is another cusp in the inter-
electronic coordinate due to the electron–electron Coulomb singularity at coin-
cidence. The presence of this cusp leads to a convergence with respect to basis
size M that is ∼O(1/M) regardless of the choice of single-particle basis function
above (for a longer discussion that gathers some of the known results, see
Appendix E of ref. 18). This slow rate of convergence is known as the basis set
problem, and remedies to this problem, in the form of introducing analytic
functions with an explicit dependence on the inter-electron coordinate, are
known as explicit correlation methods.19

Because electrons are identical particles, it is convenient to rewrite the
Hamiltonian in terms of second quantization. Once we have chosen a basis (and
assuming the basis has been orthogonalized e.g. in the case of Gaussian), the
Hamiltonian becomes

H ¼
X
ij

tija
†
i aj þ

1

2

X
ijkl

vijkla
†
i a

†
j alak (11)

where tij, vijkl are referred to as the 1- and 2-electron integrals, and a†, a, are the
electron creation and annihilation operators.
3.3 Mean-eld methods

With a numerical representation of H, we now turn to how the low-lying eigen-
states are computed. The starting point for most classical quantum chemistry
methods (and most chemical intuition) uses a simple product form for the
eigenstates,

jFi ¼
YN
m¼1

c†mj0i (12)

where the creation operators create the molecular orbitals {fm(r)}, rather than the
computational basis functions above, i.e.

c†m ¼
X
i

Cmia
†
i (13)

The simple product wavefunction jFi is usually called a Slater determinant
(named aer the rst quantized form of its amplitudes). The ansatz eqn (12) and
methods to determine the molecular orbitals are referred to in quantum chem-
istry as simply “mean-eld theory”, even though this is of course only one possible
kind of mean-eld theory.

Conceptually, the simplest mean-eld theory is Hartree–Fock theory. Here, the
molecular orbitals are determined by variationally minimizing the energy E =

hFjHjFi/hFjFi, which leads to a non-linear eigenvalue problem, the Hartree–Fock
equations. In an orthogonal basis this takes the form

F(C)C = C3 (14)
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 21
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where F is the one-electron Fock operator, C contains the molecular orbital
coefficients appearing in eqn (13), and 3 are the molecular orbital energies (which
we already referred to in our intuitive discussion of energy scales in Section 3.1).

Another common mean-eld theory, closely related to Hartree–Fock theory, is
Kohn–Sham density functional theory. Because all information in a Slater
determinant (other than its absolute phase) is contained in the single particle
density matrix gij ¼ hFja†i ajjFi, the Hartree–Fock approximation to the energy is
a functional of the single-particle density matrix; E h E[g]. Density functional
theory takes this one step further and writes the ground-state energy as a func-
tional of the single-particle real-space density, r(r) =

P
ijgijfi(r)fj(r); E h E[r].

Intuitively, this functional dependence is achieved because it is valid only for the
ground-state, and because the set of electronic Hamiltonians can be labelled by
the single particle potentials vext(r), a label of the same dimensionality as r(r).

In the Kohn–Sham version of density functional theory, which is the most
widely applied form (and what people mean by DFT without further qualication)
this energy is broken into several components

E[r] = Ts[r] + Vne[r] + J[r] + Exc[r] (15)

where the rst 3 terms (the Kohn–Sham kinetic energy, nuclear–electron attrac-
tion, and classical Coulomb repulsion) are known in a computationally efficient
form, but Exc[r] (the exchange–correlation functional) is not. Eqn (15) is an
identity, so one can take the perspective that DFT is exact, one only needs to know
Exc[r], but of course that offers no computational simplication, and in practice
Exc[r] is some numerical approximation that gives the resulting DFT simulation
the avour of mean-eld theory. The minimization of E[r] is achieved by solving
the Kohn–Sham equations for the orbitals which constitute the density. The
Kohn–Sham equations in a basis take the same form as the Hartree–Fock equa-
tions in eqn (14).

The cost of Hartree–Fock and DFT calculations can be summarized as the cost
to evaluate the energy in a basis (which is related to the cost of computing the
Hamiltonian matrix elements) together with the cost to minimize (to a local
minimum or stationary point) the Hartree–Fock or DFT energy. The most
common way to nd a minimizing solution is to solve the Hartree–Fock or Kohn–
Sham non-linear eigenvalue problem. Depending on the basis representation,
building the Fock matrix can be done in O(N3) − O(N4) time, while solving the
Fock equations can be performed as a set of self-consistent diagonalizations, each
of which takes O(N3) time. The number of iterations is unknown and this
procedure only guarantees a stationary point of the energy; formally nding the
global minimum, being a non-convex optimization, is computationally NP hard.

The formal NP hardness of mean-eld optimization, however, provides an
important example of the difference in intuition offered by worst case complexity
and the practical experience of quantum chemists. In practice, we have a lot of
information about the kinds of solutions we are looking for. For example, the
principle of locality (see Section 3.7) suggests that it is useful to assemble a guess
of the Hartree–Fock solution from solutions of atomic Hartree–Fock calculations,
and starting from such guesses oen provides quick convergence to a local
minimum. In large systems, locality also reduces the cost in other ways, due to the
sparsity of the Hamiltonian in a local basis. And of course, one can argue that
22 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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large physical systems cannot reach their global minimum anyways, if such
a minimum is hard to nd.
3.4 The role of mean-eld theories in quantum chemistry

Themean-eld description of the low-lying eigenstates is conceptually simple and
attractive. In quantitative calculations also, the modeling of any problem almost
always starts with a mean-eld calculation. This is in part testament to the power
of empirical density functional parametrizations which can achieve the remark-
able accuracy of a few kcal mol−1 on standardized (albeit limited in diversity)
small molecule thermochemistry datasets.20 This level of accuracy is oen enough
to inform experimentalists, for example, to distinguish between reaction path-
ways, or predict the correct products. But even in the cases where Hartree–Fock
and density functional methods fail, they still form the starting point for more
complex calculations. This is mainly for two reasons.

The rst is that oen in real chemical applications, even if one is interested in
only the zero-temperature energy differences, multiple electronic structure
calculations must be performed to optimize the nuclear positions and explore the
potential energy surface (see e.g. Section 2.7). Mean-eld methods therefore enter
as an initial, if imperfect, guide to this landscape.

The second reason is arguably deeper, and is related to the existence of
different types of mean-eld solutions. The non-convexity of the Hartree–Fock (or
approximate Kohn–Sham) energy optimization means that multiple low-energy
local minima can exist. As every Slater determinant is a type of classical state,
in the sense that it has no entanglement in themolecular orbital basis, this means
that there are many potential “classical” approximations to the quantum ground-
state. In general, the local minimizing Slater determinants need not transform as
an irreducible representation of the symmetry group of H. When they do not, we
say the mean-eld solution is a broken symmetry solution. But in the thermo-
dynamic limit, the true ground-state may indeed also break symmetry,
a phenomenon known as spontaneous symmetry breaking. (In fact, symmetry
breaking characterizes many of the common electronic phases of matter, such as
ferromagnets, antiferromagnets, superconductors and others).

Consequently, although a given mean-eld calculation may not provide
a reasonable description of the system of interest, the set of low-energy mean-eld
states may still contain an appropriate qualitative classical description among
them. Selecting the appropriate mean-eld reference recovers a simple and
intuitive picture of the eigenstate that may be the starting point for more
advanced treatments. We return to this below.
3.5 Qualitative electron correlation: weak uctuations

Moving beyond the mean-eld description of quantum chemistry, we now
consider how to include electron correlation. The mean-eld Slater determinant
is an eigenstate of the Fock operator, thus correlation consists of the uctuations
generated by H − F. For quantum chemistry calculations that start from a mean-
eld starting point, we can use similar intuition to that expressed in Section 3.1,
replacing t by F, and U by W = H − F, to distinguish between weak and strong
correlations.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 23
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Weak correlations are sometimes referred to as “dynamic” correlations. On the
atomic scale, they arise as uctuations of occupancy between orbitals that are
widely separated in energy (such as the valence and the continuum). On longer
scales, they also include uctuations involving orbitals which are spatially widely
separated (and thus weakly coupled).

Although individually such uctuations are small they can add up to a large
effect, for example, by integrating over the continuum of orbitals to excite, or over
a large domain in space. In practice, dynamic correlations are thus always
quantitatively important. A traditional rule of thumb is that dynamic correlation
introduces about 1 eV of correlation energy per pair of electrons in an occupied
orbital.21 Excitations to high energy continuum states can modify the wave-
function on small length scales and thus help to capture features near the
singularity of the electron–electron cusp in the wavefunction. Because of the need
to describe excitations to the continuum, dynamic correlation requires large basis
sets to capture faithfully.
3.6 Qualitative electron correlation: strong uctuations

Strong uctuations from the mean-eld reference lead to strong mixing between
different valence electron congurations of the mean-eld orbitals. For this
reason, strong correlation is also known as multireference correlation. Its pres-
ence signals a breakdown of the original mean-eld description. The loss of an
essentially classical starting point might seem to leave one at the mercy of the full
complexity of the quantum many-body problem. However, in practice, one
encounters one of several simplications in actual chemical matter. (We note, of
course, that even if these simplications indeed cover all scenarios, this does not
render all problems tractable in practice).

The rst is that the degeneracy of valence electron congurations (on the scale
of the uctuations) may only involve a few orbitals. This is encountered in
chemical processes such as bond breaking, where the stretching of a given bond
causes the valence orbitals associated only with that bond to become strongly
correlated, or in a molecular photoexcitation, where only specic orbitals are
involved in the excitation process, or in a nite magnetically coupled molecule,
with a nite number of coupled spins. Since only a small number of orbitals are
involved in any given bond or the excitation or in the spin couplings, this limits
the possible degeneracy.

The second simplication occurs when there is a large number of nearly
degenerate valence orbitals in a material, as occurs for example, when there are
d or f orbital bands. One might worry that one needs an asymptotically expo-
nentially large number of congurations to mix, but this is a scenario where it is
useful to consider the entire set of low-energy mean-eld solutions, including the
broken symmetry solutions. If there is only a small (i.e. non-exponentially
growing) number of low-energy mean-eld broken-symmetry solutions, then for
many problems one can assume that the true ground-state in fact is described by
one of them, spontaneously breaking symmetry. For example, imagine that for
a lattice translationally invariant (crystal) Hamiltonian, one nds a set of trans-
lational symmetry breaking mean-eld states at low energy. As the system size
increases, if these states differ by more and more uctuations because they
correspond to spatial electronic patterns which are globally displaced with respect
24 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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to each other, then they will not couple via a nite power of the Hamiltonian in
the thermodynamic limit, and one can choose any one of them as the starting
point to describe the eigenstate. (Should one wish to restore the translational
invariance, one can apply the translation operator to the symmetry broken state,
generating a linear, i.e. not exponentially large, number of additional congura-
tions). There is an intrinsic length-scale introduced by the symmetry breaking
mechanism: once the system size is sufficiently large that the coupling between
different broken-symmetry solutions is smaller than the energy accuracy we care
about (or our control over the energy of the state in experiment), typically O(kT),
then we might as well choose to describe the system with a symmetry broken
mean-eld state. Then once the appropriate mean-eld state is chosen, one can
view the remaining correlation as weak correlation.

A third simplication applies even where there is an exponential degeneracy
(or near-degeneracy) in the (broken symmetry) mean-eld congurations. While
this type of exponential degeneracy is not much encountered in systems that are
currently of most interest in chemistry, we discuss it here because it does arise in
real chemical matter, particularly in the context of magnetism, where it is referred
to as frustration. The main simplication that appears here is that even when
there is frustration, correlations in chemical matter remain quite local. This
makes it possible to represent the low-energy eigenstates with techniques that
forgo any mean-eld starting point but build in locality, for example the tensor
networks discussed in Section 3.9.
3.7 Qualitative electron correlation: locality

Locality is a central simplifying concept in chemical matter. In terms of correla-
tions, we might dene a system with (spatial) locality as one where quantum
correlation functions hO(r1)O(r2)i − hO(r1)ihO(r2)i decay rapidly with r12. In cases
where the ground-state has a gap to excitations, we expect these correlations to
decay like e−O(r12), while in critical systems, we can observe algebraic decay,
O(r12

−a) for positive a, e.g. in the density matrix elements of a metal22 or the spin-
correlation of an antiferromagnet23 (associated respectively with gapless modes).

The vast majority of problems studied in chemical matter are gapped, even if
only because they have a nite size. But it is important to note that even in critical
systems, the correlations still decay at long distances, and thus are not as non-
local as they could potentially be.

Another way to characterize quantum correlations is via the (bipartite)
entanglement entropy S of the state. This counts the (logarithm of) the number of
quantum degrees of freedom that are entangled across a spatial dividing surface
(the “boundary”). In terms of entanglement entropy, locality is associated with an
area law of entanglement entropy, S ∼ O(L), where L is the area of the dividing
surface (i.e. only degrees of freedom near a surface can be entangled with the
degrees of freedom on the other side). Critical systems show a small correction to
the area law, S ∼ O(L log L).24

The main intuition for locality is simple, namely it stems from the (electronic)
Hamiltonian operator, which in a local basis, is quite local. For example, taking
the second quantized expression in eqn (11), the one-electron matrix elements in
an exponentially localized basis decay exponentially with the separation between
basis functions i and j. The two-electron matrix elements that derive from the
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 25
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Coulomb interaction decay somewhat slowly like 1/r12, but in electrically neutral
matter, the presence of the nuclear charges on average eliminates the longest
range effects. We are then interested in the low-energy eigenstates of the
Hamiltonian with this local interaction. Because the ground-state can be obtained
as a function of the Hamiltonian (think about the projector onto the ground-state
e−bH as b / N), or so the intuition goes, then the low-energy eigenstates inherit
this locality in their correlations.

But the above argument is not rigorously right and proving locality of ground-
states for different classes of Hamiltonians without additional strong assump-
tions is notoriously difficult. To see where the difficulty might arise, consider the
ground-state as limb/Ne−bHjFi (where jFi is some arbitrary state). b is here
imaginary time, which is naively analogous to an inverse temperature, so we
might think that the “temperature” need only be signicantly below the gap to the
rst excited state. But for a system of size L, even if we assume that the Hamil-
tonian has a constant gap between the ground and rst excited state (i.e. inde-
pendent of L) then one needs b ∼ O(L) to avoid the orthogonality catastrophe, as
the overlap of jFi with the true ground-state jJ0i is e−O(L). Then, because the
Hamiltonian is being applied O(L) times (e.g. in a polynomial approximation to
e−bH), these repeated applications could in principle generate longer and longer
correlations.

Regardless of this formal difficulty, chemical intuition is that for most prob-
lems we can view the ground-state of a chemical system as indistinguishable from
that of a system at a low nite temperature (and, of course, all experiments are
performed at a nite temperature). More precisely, this means we really want to
model the canonical density operator G = e−bH at some large but system-size
independent b (i.e. a xed low temperature), and the empirical nding is that
this will not yield very different properties from the ground-state. The use of
a xed, rather than system-size dependent, b is consistent with locality, but the
statement that e−bH and the ground-state yield similar predictions for observables
is only true if there is not some very large (exponential in the thermodynamic
limit) number of excited states lying just above the ground-state (which would
otherwise dominate due to entropy). (For formal connections between the density
of states and area laws, see e.g. ref. 25.) This is violated in some frustrated
quantum problems, such as quantum spin glasses, but these are not the typical
systems encountered in chemical matter.

Ultimately, we can make a case that locality is prevalent in chemical matter for
the combination of reasons that the electronic Hamiltonian is naturally local, and
because of a lack of precise control: we do not actually simulate the ground-state,
nor do we commonly control chemical experiments and matter sufficiently well,
to model Hamiltonians where the low-temperature thermal state and ground-
state yield different predictions. Precise quantum control of atoms and mole-
cules is improving in the context of quantum computing. These intuitions about
chemical matter may thus need to change in the future if and when the nature of
chemical experiments also changes.

Finally, we observe that the locality of quantum correlations does not itself
mean that solving the electronic structure problem to nd the ground state can
immediately be restricted to the cutoff length associated with the correlations
alone. This is because even if there are no quantum correlations at all, there can
still be non-trivial classical correlations over long distances.
26 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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As a simple example, we can consider a classical Ising model with antiferro-
magnetic interactions on a geometrically frustrated lattice (e.g. one with trian-
gles). Then the ground-state is a classical state where the connected correlation
functions all vanish, i.e. it is some arrangement of up and down spins, that is
simply a product state. But we cannot nd this product state just by satisfying
antiferromagnetic constraints around each triangle (since they cannot be
simultaneously satised, i.e. it is frustrated). Instead, nding the ground-state
requires looking over longer length scales to minimize the frustration. In the
worst case, encountered in classical spin glasses, one needs to consider the
exponential space of congurations.

Regardless, in many kinds of chemical matter, nding the ground-state locally
in some nite subregion (e.g. measuring observables by simulating a portion of
a molecule) does yield results compatible with simulating the ground-state
problem as a whole. We can refer to this deeper manifestation of locality as
strong locality. In the case of strong locality, the need to model quantum effects is
entirely limited to the subregion itself.
3.8 Evaluating classical heuristics

Encapsulating the above intuitions within classical algorithms for quantum
chemistry is essentially the job of classical heuristics for electron correlation.
(Note that there are other simplifying structures in quantum systems which we
did not describe above, for example, those associated with sign-free Hamilto-
nians.) There is a very long list of classical quantum chemistry correlation
methods, and we only cover some of the most important ones in the sections
below. However, in understanding such methods (and when devising new ones),
it is useful to analyze them with respect to a few different axes:

� do they capture weak (dynamic) correlation, strong (multireference) corre-
lation, or both,

� are they systematically improvable,
� is the energy extensive (i.e. does one obtain meaningful predictions for

a large number of atoms or in the thermodynamic limit of materials),
� what is the cost scaling as a function of system size and as a function of

accuracy,
� what is the absolute cost (i.e. what are the computational prefactors?),
� is the method applicable to lattice models only or can it be used with realistic

Hamiltonians?
3.9 A brief tour of approximate classical quantum chemistry methods

3.9.1 Conguration interaction. This is one of the oldest electron correlation
methods in quantum chemistry.26 It represents the ground-state as a linear
combination of different Slater determinants,

jJi ¼
X
I

cI jFI i (16)

where the coefficients cI are determined by diagonalizing the Hamiltonian pro-
jected into the space {FI}. If all determinants are included, the method is called
full conguration in quantum chemistry and exact diagonalization in the physics
community.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 27
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Table 1 Characteristics of configuration interaction methods

Weak and strong Both
Systematically improvable Yes
Extensive energy Only with exponential cost
Cost scaling Poly. to exp. depending on truncation
Prefactors Very low
Lattice models and ab initio Both
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The characteristics of conguration interaction methods are listed in Table 1.
Today, it is commonly used in molecular applications to describe strong corre-
lation in valence orbitals (oen an “active” space, i.e. all valence congurations),
but it has also seen a resurgence of interest in the form of selected conguration,
where jFIi is chosen in a problem specic manner to sparsely span the Hilbert
space, and the number of congurations (in a small molecule) is treated as
a convergence parameter, to converge to the exact result.27,28 The lack of exten-
sivity limits the application of conguration interaction to small problems.

3.9.2 Perturbation theory and diagrammatic methods. Another class of
techniques is based on perturbation theory. In its simplest form, one evaluates
the Taylor expansion (to nite order) of the ground-state energy E(l) corre-
sponding to the Hamiltonian H(l) = F + lW, with E(n) being the nth order Taylor
coefficient. In a more sophisticated (diagrammatic) form, we rst write the energy
as

E ¼ hF0jHT e
�
Ð b

0
dsVI ðsÞjF0i

hF0jT e
�
Ð b

0
dsVI ðsÞjF0i

¼ hF0jHT e
�
Ð b

0
dsVI ðsÞjF0ic (17)

where VI is in the imaginary time interaction picture of F, b is an imaginary time
taken in the limit b/N, and T is the time-ordering operator. The diagrammatic
structure arises by taking advantage of the simple ground-state for l = 0, i.e. jF0i
is a Slater determinant, to recognize that the contributions at each order in
perturbation theory to E can be evaluated using Wick’s theorem and visualized as
a sum of diagrams. The second equality, and the subscript c reects the fact that
only graphically fully connected diagrams survive the cancellation between the
numerator and denominator.

Perturbation theory has a number of nice properties as illustrated in Table 2.
For example, it leads to an extensive energy (because E(l) is extensive, so its
derivatives are extensive). As the sum of the zeroth and rst-order energies is just
the Hartree–Fock energy, the lowest non-trivial order is the second-order
correction to the energy, conventionally denoted MP2 (Moller–Plesset second
Table 2 Characteristics of perturbation theory and diagrammatic methods

Weak and strong Weak (unless used with other
methods)

Systematically improvable Yes (if converges)
Extensive energy Yes
Cost scaling Poly.
Prefactors Very low
Lattice models and ab initio Both

28 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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order perturbation theory). This is a fast and oen qualitatively accurate correc-
tion to the Hartree–Fock results in systems where the Hartree–Fock energy gap is
large (as is oen true in small molecules).29 Applying perturbation theory to
higher order rapidly becomes expensive, and need not lead to a better result
because the theory usually diverges.30 Higher order perturbation theory contri-
butions therefore usually come from one or more iterative techniques to resum
certain classes of connected diagrams: these methods yield partial contributions
to each order of perturbation theory up to innite order.31

3.9.3 Coupled cluster theory. The Hartree–Fock state can be viewed as
generating an optimized Slater determinant in terms of another Slater determi-
nant through the Thouless expression

jFHFi ¼ e

P
pq

Apqc
†
pcq jF0i (18)

The coupled cluster ansatz can be thought of as a generalization of the exponent,
leading to the form

jJi ¼ eT jF0i ¼ e

P
pq

Apqc
†
pcqþ

P
pqrs

Apqrsc
†
pc

†
qcrcsþ.

jF0i (19)

where T is known as the cluster operator. T is expanded as a sum of terms in
a many-body expansion where each term creates an individual uctuation away
from the jF0i, but the exponentiation of T means that jJi contains global uc-
tuations parametrized as a product of uctuations of smaller numbers (clusters)
of particles. In quantum chemistry applications, T is further restricted to allow for
the efficient evaluation of the needed computational expressions. For example,
the excitation operator is restricted to be of the form

T ¼
X
ia

tiac
†
aci þ

X
ijab

tijabc
†
ac

†
bcicj þ. (20)

where i, j label orbitals that are occupied in jF0i and a, b label orbitals that are
not.

Coupled cluster theory, for some low-order truncation of T (usually to the rst
two terms in eqn (20), denoted singles and doubles, and with an approximate
correction for the next term, the triples, known as CCSD(T)) is the most widely
used many-electron wavefunction method in quantum chemistry.32 This is
because it has good formal and practical properties and provides a good balance
between cost and accuracy (see Table 3); for example, when truncated to the
singles and doubles level, the coupled cluster ansatz it is still exact for any
problem that breaks down into sets of independent two-electron problems. In
practice, for problems that are not too strongly correlated, CCSD(T) gives results
for ground-state energy differences approaching “chemical accuracy” and, even
for more strongly correlated problems, assuming an appropriate Slater
Table 3 Characteristics of coupled cluster methods

Weak and strong Weak to medium
Systematically improvable Yes
Extensive energy Yes
Cost scaling Poly.
Prefactors Low
Lattice models and ab initio Both
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determinant starting point can be found (see Section 3.6) it provides a reasonably
accurate treatment of the quantum uctuations around such a determinant. The
main drawbacks of coupled cluster are that its costs grows exponentially with the
truncation order, and thus it can become impractically expensive when one does
not have a good single Slater determinant starting point. (It can fail also in more
signicant ways that have not been fully analyzed, such as having no real valued
solutions at a given truncation order,33 and also the solution conditions can be
hard to converge.) These weaknesses manifest even if only a small number of
Slater determinants are required in the multireference treatment if the partici-
pating determinants are separated by large number of excitations, perhaps as few
as two. As a practical method, therefore, it does not extend to the full set of
problems covered by the simplications discussed in the context of strong
correlation in Section 3.6.

3.9.4 Matrix product states, density matrix renormalization group, and
tensor networks. Matrix product states (MPS)34 are a class of wavefunctions that
are dened by a system-size independent amount of bipartite entanglement.
Writing jJi in the occupation representation of some single particle basis, with K
orbitals,

jJi ¼
X
fng

Jn1.nK jn1n2.nKi (21)

a matrix product state factorizes the amplitudes as a matrix product

Jn1.nK ¼
X
fig

A
n1
i1
A

n2
i1 i2

.AnK
iK

(22)

where the rst and last matrices are vectors (so that the product is a scalar). For
a given dimension of the “bond” indices i1.iK, dim(i)= D, the MPS can capture at
most entanglement entropy of log2D between any le/right cut of the system
between orbitals i1.il, il+1.iK.

The structure of the MPS is quite different from that of the approximations so
far discussed, which are based on limiting the complexity of excitations relative to
a given Slater determinant jF0i, such as the Hartree–Fock reference.35 Assuming
the occupancy basis in eqn (22) is the Hartree–Fock orbital basis, the Hartree–
Fock reference enters as just one of the possible occupancies, on much the same
footing as the others. On the other hand, the exibility of the amplitudes is
severely limited as they must satisfy the near-product structure, and there is an
inherent one-dimensional nature to the ansatz: more correlations can be
captured between orbitals with indices i, j if ji − jj is small. In other words, MPS
provide a parametrization of quantum states that efficiently enforce the correct
structure of locality in one dimension. In model systems, it can be proved that the
ground-states of gapped local Hamiltonians in 1D have an efficient representa-
tion as a matrix product state.36 This means that the bond-dimension needed to
represent the state to some accuracy is independent of system size.

In practice, however, MPS and the density matrix renormalization group
(DMRG) algorithm that provides a practical way to variationally optimize MPS37,38

have found applications signicantly outside of pure 1D model Hamiltonians.39

The ansatz is always exact as D is increased, and this, coupled with the efficient
formulation in terms of matrix multiplications, and the lack of bias towards
a Hartree–Fock (or other mean-eld) reference, means that it is a good
30 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Table 4 Characteristics of matrix product state (MPS), density matrix renormalization
group (DMRG), and tensor network (TN) methods

Weak and strong Both; less efficient than other methods for weak
Systematically improvable Yes
Extensive energy Yes
Cost scaling Poly. for xed D
Prefactors High (DMRG), very high (TN)
Lattice models and ab initio Both for MPS/DMRG, lattice for TN
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replacement for full conguration interaction/exact diagonalization for problem
sizes that are too large for such methods and when there is not another simpler
alternative ansatz (Table 4). In quantum chemistry, it was one of the rst widely
used techniques for molecules with a large number of strongly correlated
electrons,40–43 and remains an important technique for challenging problems
today.44,45

Tensor networks refer to the natural generalization of the matrix product state
beyond the 1D entanglement structure.46 Different kinds of tensor networks exist
and some, such as projected entangled pair states, are now widely used with
model Hamiltonians in two dimensions where they are a powerful alternative to
MPS/DMRG. However, the algorithms that have been developed to work with
them are currently only practical for model Hamiltonians; the overhead of more
complicated long-range interactions is a formidable challenge.47 Extending these
techniques to ab initio Hamiltonians remains an open scientic problem.

3.9.5 Variational and projector Monte Carlo. The methods mentioned so far
are most commonly used in a deterministic setting. Another class of approximate
methods can be formulated based on stochastic algorithms: these are known as
quantum Monte Carlo algorithms (Table 5).48 There are two main families of
quantumMonte Carlo algorithms used in quantum chemistry. The simplest is the
variational Monte Carlo algorithm. This is based on sampling the amplitudeJ(n)
h hnjJi from the distribution jJ(n)j2, where here jni is now considered to be the
occupancy vector jn1n2.nKi. While one can nd wavefunctions from which J(n)
can be directly sampled, the Metropolis algorithm (assuming fast mixing) is all
that is needed to evaluate J(n). Given such samples, the energy can be evaluated
as

E ¼ hJjHjJi ¼
X
nn

0
jJðnÞj2hnjH��n0�J�

n
0�

JðnÞ (23)

The advantage of variational Monte Carlo is that very general functional forms
can be used: it is oen easier to nd functions for which J(n) can be efficiently
Table 5 Characteristics of quantum Monte Carlo methods used in quantum chemistry

Weak and strong Both, may require special trial
Systematically improvable Yes (if trial is)
Extensive energy Yes (if trial is)
Cost scaling Poly. (if trial is)
Prefactors High to very high
Lattice models and ab initio Both
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evaluated, than to nd ones for which hJjJi can be evaluated. (The rst is
analogous to evaluating a high-dimensional function value, while the second is
analogous to evaluating a high-dimensional integral.) In recent years, the rapid
development of neural networks as general function approximators has led to the
use of neural network parametrizations of J(n), which have been termed neural
quantum states.49–52 Note that the amplitudes can be written in the antisymmetric
space of Slater determinants, or simply in the space of product functions: in the
latter case, caremust be taken to ensure thatJ(n) is antisymmetric with respect to
particle intercharge.

Usually, evaluating a sampleJ(n) in variational Monte Carlo scales better than
the cost to deterministically evaluate the energy using another approximate
method. Common variants exhibit the same sample scaling as mean-eld theory.
On the other hand, one needs to have a sufficient number of samples to control
the stochastic error, and in large systems with many parameters, one needs to
optimize them in the presence of the stochastic error. Since stochastic errors in
different systems do not generally cancel, it is oen necessary to compute ener-
gies to a xed precision, rather than a xed precision per particle. For a system
size L, this adds an additional L2 scaling to the computational cost.

One special aspect of quantum Monte Carlo methods, including variational
Monte Carlo, is that it is the only method so far discussed that can work in
a continuous space (e.g. by specifying a N-particle basis state by 3N continuous
numbers, the list of positions of the electrons).53 Thus quantum Monte Carlo
methods need not use a single particle basis.

The second main family of ground-state quantum Monte Carlo methods are
projector quantum Monte Carlo methods.48,53,54 These are based on an implicit
representation of the ground-state wavefunction as limb/N exp(−bH)jF0i, with
a stochastic representation of e−bH. The general idea is to write

e�bH jF0i ¼ e�3He�3H.e�3H jF0i ¼
X

m1.mT

	
pm1Om1


	
pm2Om2



.
	
pmTOmT



jF0i (24)

where pmi
is a probability distribution with

P
mpmOm = e−3H, and the operators Om

are chosen to have the property that when acting on a Slater determinant they
produce another (unnormalized) Slater determinant. Each Monte Carlo sample of
the indices m!hm1.mT yields an elementwise choice of operators Om1

/OmT
that

may be thought of as a path through imaginary time, and produces a represen-
tation of the nal wavefunction as

jJi ¼
X
m
/

wm

���F
m
/

E
(25)

where F
m
/ need not be unique (i.e. different paths can give the same determinant,

or determinants which are not orthogonal). However, because the weights wm can
have either sign (or even be complex, depending on the decomposition into
operators Om) and in general wm spans an exponentially large range (coming from
the multiplication of many numbers), the nal representation of jJi emerges
from the cancellation of large weights. This is the fermion sign problem.

The sign problem is generally removed by introducing a trial wavefunction
which contains information on the sign; the way in which the trial wavefunction is
used to remove the sign depends on the type of projector Monte Carlo, but in all
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cases the outcome of the walk no longer samples the exact wavefunction but some
approximation to it. However, all methods employing a trial wavefunction
converge to the exact result as the trial wavefunction improves.

Projector Monte Carlo avoids the need to optimize a large number of variables
as in variational Monte Carlo. When a simple trial state is sufficient it thus
inherits some of the favourable scaling of quantum Monte Carlo methods, and it
also has the exibility to incorporate complicated trial states which capture
features of strong correlation, although the need to beat down the stochastic error
with a large number of samples remains.
3.10 Summary

We briey summarize our survey of classical heuristics in quantum chemistry and
the intuition behind them. The main intuition is provided by mean-eld theory
(most commonly density functional theory) where the state of interest is viewed as
an essentially classical (non-entangled) state in an appropriate optimized basis.
This intuition serves well for many problems. For example, even in cases of strong
correlation when a specic low-energy mean-eld reference is inappropriate, the
electronic structure may still be understandable in terms of the low-lying mani-
fold of different mean-eld solutions, or a linear combination of a small number
of them to reect uctuations from a locally strong perturbation. In cases where
even the latter picture breaks down, locality remains a useful simplication and is
the basis for more advanced heuristics. Although one can imagine quantum
ground-states where these intuitions do not apply (for slightly more discussion,
see Section 5.1) in the author’s experience, the above three scenarios cover the
vast majority of problems currently studied in quantum chemistry.

In the numerical simulations of electron correlation beyondmean-eld theory,
there are a wide variety of approximate methods that can be applied. Surveying
the tables of characteristics of methods discussed, however, we can identify some
immediate gaps, in particular in the treatment of systems with both a large
amount of strong and weak correlation. This gap may not be one of principle: for
example, there is no reason a priori to expect that tensor networks cannot be used
in a more continuum like (complete basis) description,55 and perhaps, truncated
coupled cluster methods with sufficiently high levels of truncation can be used to
describe the strongly correlated problems of interest in chemistry; but such
methods do not yet exist today, and will certainly need new ideas if they are to be
practical in the future. We return to this point in Section 4.5.

The fact that there is a gap in capabilities does not conict with the possibility
of achieving an intuitive understanding of correlated electron systems: even for
problems where mean-eld methods are an appropriate description of the elec-
tronic structure (for example, in the ligand-binding example in Section 2.7) there
can still be a formidable computational gap to making quantitatively precise
predictions. At the same time, some of these gaps (particularly in the systems with
both substantial strong and weak correlations44) seem to arise because the current
set of classical heuristics do not fully embody the intuitive simplications that
exist in physical systems. This suggests that there are new conceptual directions
to explore.

The methods above as usually employed are polynomial cost heuristics. Aside
from the tensor network methods, the techniques do not incorporate locality as
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 33
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an assumption from the outset. Variants of these approaches that further incor-
porate locality can be devised, and under the (oen chemically reasonable)
assumption of strong locality (see Section 3.7), these reduce the cost scaling to
linear in the system size. Although there is no formal theory of error associated
with these heuristics, there is a lot of empirical understanding of when they work
and when they do not. Thus the judicious application of these methods, some-
times in concert with each other, has helped establish the success of computa-
tional quantum chemistry.
4 The complexity of quantum chemistry using
classical heuristics

In the prior sections we have briey described the intellectual framework of
quantum chemistry in the context of the electronic structure problem and the
intuition that can be established about the low-energy states. In the current
section, we consider the consequences of the conjectured behaviour of chemical
matter on the classical complexity of quantum chemistry. For example, given all
these assumptions, should we consider the simulation of quantum chemistry
using classical heuristics to be easy or hard?

Heuristics are usually run with polynomial cost, but without a detailed
understanding of the error, but to discuss the complexity one needs to under-
stand the associated error as well. In other words, we seek to obtain the cost C of
running a heuristic to some desired error 3, for a given system size L, the function
C = f(L, 3).
4.1 An aside on absolute and relative errors and chemical accuracy

We rst discuss what kind of error we usually desire. Today the term chemical
accuracy oenmeans an error in the total electronic energy of 1 kcal mol−1 (about
kT at room temperature, the ambient chemical temperature). But the signicance
of kT is related to energy differences, not the total energy (which aer all contains
arbitrary constants, for example, the nuclear–nuclear energy at a xed geometry).
Furthermore, if one considers a large system (or even a system in the thermo-
dynamic limit, where the energy diverges) it does not seem sensible to compute
the total energy to 1 kcal mol−1.

The term chemical accuracy was originally coined in the context of chemical
energy differences.56 When applied to total energies, one could argue that a more
reasonable denition of chemical accuracy is in terms of the relative error 3�= 3/N
(and up to a multiplicative factor, 3/L). Ideally this applies to the energy of the
valence electrons (where chemistry takes place) but in practice it is difficult to
separate out such an energy component. Leaving that aside, the relative error is
a more appropriate metric for chemical reactions, as these involve local changes,
and it is also consistent with assuming equivalence of statistical mechanical
ensembles in the thermodynamic limit.

Nonetheless, almost all numerical calculations compute the total energy of
a problem rather than the relative energies directly: relative energies are obtained
as the difference of the total energies. We might then wonder whether compu-
tations should target a relative error or an absolute error in the total energy?
34 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Because of the observed locality of chemical matter, it turns out that many
heuristics for total energy computation can yield useful answers even if one only
targets the relative error rather than the total error. For example, consider the
basis set error in a chemical reaction. The basis set error in the total energy is
a global quantity which (for a given basis resolution) simply increases with the
size of a system. However, in a chemical reaction, where changes are only
occurring locally, then the energies of the regions far away cancel out between,
say, the reactants, and the products. Under the setting of strong locality, most of
the classical approximations with the “extensivity” property in Section 3.9
produce an energy error which is approximately additive across the atoms in the
simulation. Then only the local error matters in modeling a chemical reaction.

The main exception to the above is stochastic errors, which (without using
special types of sampling) are uncorrelated between different calculations.
Uncorrelated stochastic errors in calculations where an energy difference is to be
takenmust therefore be converged to a given absolute error, in order to obtain the
same order of error in the energy differences.
4.2 The role of asymptotic analysis

We have previously expressed intuitions that argue for a nite length scale of
relevant quantum simulations (be it from the nite problem size, an effective
symmetry breaking past some size, or arising from the intrinsic locality of
interactions). We have also argued for a nite desired accuracy due to both
limited experimental control and the relevant conditions, roughly O(kT) at
ambient temperature. Since complexity usually refers to asymptotic behaviour
with respect to L and 3, how relevant is asymptotic analysis?

Although the limit of L / N, 3 / 0 is not chemically very relevant, it is still
useful to understand the scaling of costs and errors up to the relevant cutoff
scales, which we might denote Lc and 3c. Of course it is difficult to agree exactly
what these cutoffs are, especially for Lc. To limit the scope of discussion, we can
consider only the case of modeling electron correlation in ab initio calculations.
Then, one pragmatic perspective is that we would like to model correlated elec-
tron effects for the same systems that one can routinely perform mean-eld
calculations for, say ∼O(1000) atoms and O(10 000) electrons, or a linear
dimension of O(10) atoms in a three-dimensional problem. (Under chemical
conditions, the minimum spacing of atoms is O(1) atomic units, thus this
translates into a length scale as well.)

If a system exhibits strong locality, then one would expect that on scales larger
than the associated Lc, the cost to simulate the system is O(L). If there were no
physical structure to the problem before the cutoff scale is reached, then up to
size Lc, the observed C(L)∼ eO(L); subsequently across a class of problems where Lc
can be tuned, the cost scaling would be expected to grow like eO(Lc). But in the
author’s experience, this is too pessimistic, as the various physical structures of
correlation impose themselves before Lc is reached. For example, in the weak
correlation limit, a truncated coupled cluster calculation may be sufficient, with
O(poly(L)) scaling, before systems sizes of O(Lc), while e.g. in tensor networks, as
one tunes correlation functions towards a critical system (thereby increasing Lc),
the ground-state entanglement does not change from an area-law entanglement
to a volume-law entanglement at the critical point, but only acquires logarithmic
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 35

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fd00141a


Faraday Discussions Paper
O

pe
n 

A
cc

es
s 

A
rt

ic
le

. P
ub

lis
he

d 
on

 1
1 

Ju
ly

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
1/

1/
20

26
 3

:0
1:

19
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
corrections. Thus for a given error, we expect to see a smooth crossover between
the functional form of C(L) at small L and for L > Lc.
4.3 Two kinds of error from classical heuristics

We now suggest that it is useful to think about classical heuristics as exhibiting
two kinds of errors. The rst is a “reference” error. In the language of quantum
algorithms discussed later, we might view this as related to state preparation, as
we will discuss. The second is a renement error.

We have already described the various kinds of electronic structure observed in
the ground- and low-lying excited states in Section 3.9. These different qualitative
starting points might be thought of as the references. Thus the reference error is
associated with constructing an appropriate choice of starting point. The
renement error is the error associated with applying a heuristic aer that
starting point has been constructed.

In a molecule, a prototypical example of these two types of errors can be seen
in the case of stretching a chemical bond. Consider the case of using the coupled
cluster heuristic. This requires a Slater determinant starting point (such as the
restricted Hartree–Fock reference) which we observe is usually qualitatively
correct near the equilibrium geometry but becomes increasingly poor as the bond
is stretched. The coupled cluster calculation (truncated to singles and doubles) is
then very accurate at the equilibrium geometry, and the remaining error from the
exact calculation (in this basis) can be viewed as the renement error. However,
the same coupled cluster calculation becomes poor as the bond is stretched.

Because the coupled cluster method is systematically improvable, we could in
principle improve the result at long bond lengths by increasing the truncation
level at additional cost. But, in the stretched region, one nds that another type of
Hartree–Fock solution can be found (the unrestricted Hartree–Fock solution) and
this qualitatively describes the energetics of the bond dissociation. Introducing
the coupled cluster ansatz on top of the unrestricted Hartree–Fock solution then
leads to much more accurate energies at stretched geometries (see Fig. 1).

Alternatively, we could construct a reference consisting of the important
congurations around the Hartree–Fock reference. If we include all the valence
excitations, associated with the triple bond breaking, we obtain the complete
active space self-consistent eld (CASSCF)) reference.26 This reference state
contains (but is not limited to) all Slater determinants that become degenerate or
nearly degenerate at long distance. We see that its energy is now qualitatively
correct both at short and long bond lengths. Rening this now by including
singles and doubles type uctuations on top of it (the MRCISD26 curve) yields an
almost exact result.

Thus we can see that it is useful to think of the error associated with the choice
of reference as a distinct error from the error associated with rening it. In the
coupled cluster truncation, this is because the cost to nd another Hartree–Fock
solution that is appropriate for longer bond lengths will be much less than the
cost to improve the coupled cluster calculation starting from a poor choice of
reference. In the case of using the CASSCF reference, it is the fact that we are
making an appropriate choice of Slater determinants to linearly combine which
leads to the qualitatively correct curve; the renement on top of this then requires
only low-order uctuations. In the materials setting, we can regard the idea of
36 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Fig. 1 The dissociation curve of the N2 molecule, computed in the cc-pVDZ basis. 3
references are shown: the restricted Hartree–Fock (RHF) and unrestricted Hartree–Fock
(UHF) references, which are both Slater determinants, and the complete active space self-
consistent field (CASSCF) reference, which includes all excitations of the valence elec-
trons. On top of the Hartree–Fock references, we show results from the coupled cluster
with singles and doubles (CCSD) ansatz, while on top of the CASSCF reference, we show
results from the uncontracted multireference configuration interaction with singles and
doubles (MRCISD) method.
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starting from the correct reference point as starting from a state that is in the
correct quantum phase.

Accepting that there are these two types of errors, we may view a classical
heuristic algorithm as containing two steps: rst, nding the appropriate refer-
ence state (state preparation) and second, preparing it and rening its energy. The
cost function then takes the form

C = Rstate prep × Crefinement (26)

Here Rstate prep refers to the number of different kinds of states that must be
prepared to nd the correct starting point (the number of times state preparation
is repeated) – this is not the same thing as the number of determinants in a multi-
reference state that is a linear combination of determinants, as a multi-reference
state is a single state in this accounting; but in the case of the coupled cluster
calculations above where we tried both a restricted Hartree–Fock reference and an
unrestricted Hartree–Fock reference, Rstate prep = 2. The actual cost of preparing
the given state is contained in Crenement, which contains this cost and that of the
subsequent heuristic applied on top of it. We now examine these two pieces in
more detail.

4.4 The difficulty of state preparation in classical heuristics

How difficult is it to write down a good starting point for a classical quantum
chemistry heuristic?

There are two logical possibilities. The rst is that the starting point is
intrinsically hard to describe classically i.e. the quantum state does not even have
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 37
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a succinct classical description. (By classically succinct we mean here that the
state can be stored with a polynomial amount of classical information and that its
relevant properties extracted with a polynomial amount of classical computation).

If there is no such succinct description, that means that the state cannot be
qualitatively expressed or interrogated in a faithful form without a beyond clas-
sical, i.e. quantum, computer. It would be some kind of black box for which, at
least for certain properties, we could not write down a “theory” in the usual sense.
Although such states can certainly be imagined (and manipulated, say, on
a quantum computer) to the best of the author’s knowledge, they have never been
observed in the low energy states of chemical matter. Indeed, it is a remarkable
feature of Nature that despite the vastness of the Hilbert space of a material in the
thermodynamic limit, the number of ground-state phases observed is relatively
small (e.g. insulators, metals, superconductors, various topological orders etc.) –
at least compared to the size of the Hilbert space. Furthermore, simple qualitative
wavefunctions (and theories) have been formulated to describe the observed
phases, such as Fermi liquid theory, Landau’s theory of symmetry broken phases,
the Bardeen–Cooper–Schrieffer wavefunction, the Laughlin wavefunction, and so
on. As argued already in Section 3.6, we can even make an empirical claim that
much of the chemical matter actively studied in chemistry can be thought of as
qualitatively close to some mean-eld state, perhaps with a broken symmetry, or
with a polynomial number of connected uctuations away from it. Thus, we
conjecture that in chemical matter the starting point can be expressed in a clas-
sically succinct manner.

With the above assumption, the main remaining challenge comes from
nding this classical starting point. One strategy is to search over the possibilities,
i.e. enumerate the different starting points, apply a renement (using one of the
many classical heuristics) and see which yields the best answer (i.e. the lowest
energy). Indeed, this is what is done in practice in particularly challenging
problems. For example, in the study of the Fe–S clusters in nitrogenase, in
practice one generates many different broken-symmetry mean-eld solutions,10,57

which each can then be rened using more sophisticated techniques, such as the
density matrix renormalization group.8 Similarly, in condensed matter simula-
tions of the Hubbard model, one applies different kinds of pinning elds and
boundary conditions to “prepare” different ordered phases which are in close
competition in the phase diagram.11

While we do not have a rigorous enumeration of the possible phases of matter,
it seems reasonable to assume that in the worst case (over systems of chemical
relevance) we can search over a number of possibilities that is exponential in
system size. This exponential complexity is realized in nding the ground-state of
classical spin glasses, for example, where the complexity class for ground-state
determination is NP hard. Given that we expect the starting point to be classi-
cally succinct, we can conjecture additionally that the state-preparation problem
in chemical matter is then in fact NP hard (loosely, classically exponentially hard).
This is a simplication of the QMA hardness (i.e. quantumly exponentially hard)
that is expected for the general ground-state problem, and which is realized in
quantum spin glasses. (In essence, this simplication is equivalent to stating the
worst case quantum spin glass problems are not in the set of today’s chemically
relevant problems.)
38 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Of course, all the above discussion also does not mean that we will always
encounter exponential complexity of state preparation in practice: most chemical
systems studied are not spin glasses of any type. In those cases where empirical
inference tells us that we can prepare a simple mean-eld state, or perhaps,
a linear combination of such mean-eld references e.g. to describe a bond
breaking, Rstate prep = 1.
4.5 The cost of renement

Given a reasonable starting point, how well do classical heuristics rene the
result? In other words, given a desired error 3 or relative error 3�, what is the
functional dependence of C on the error? Despite the long history of quantum
chemistry, unfortunately, this has not been much studied in the community, and
it constitutes an important open area of research. Note that while the author’s
opinion is that there is likely always a classically succinct starting point in
chemical matter (as discussed above) this does not guarantee that we can effi-
ciently rene the energy from it. For example, the error scaling may be imprac-
tically poor, such as eO(1/3�), or there may simply be no heuristic to rene the error
at all! Below we will summarize some partial results to address this question from
ref. 58, and we present some new analysis as well.

In ref. 58, we rst considered a set of molecules for which the Hartree–Fock
reference is a good starting point, where the energy is further rened using
coupled cluster theory. We can plot the error of the coupled cluster theory as
a function of the truncation order, and estimate the cost of the associated coupled
cluster calculation (from the cost of the most expensive tensor contraction). (To
be precise, this is not a perfect accounting of costs as (i) it does not account for the
number of such contraction terms or (ii) the number of iterations needed to solve
the amplitude equations. To our knowledge, (i) has not previously been examined,
but for the most common case where the number of virtual (unoccupied) orbitals
is much larger than the number of occupied orbitals, the number of such terms is
O(1).)

In Fig. 2 we show data for the nitrogen molecule and the water molecule, at
various bond lengths and (in the case of the nitrogen molecule) starting from
restricted and unrestricted Hartree–Fock references. (The data for N2 starting
from the unrestricted Hartree–Fock reference at the equilibrium geometry was
previously discussed in ref. 58, but is here presented with a more precise
accounting of computational cost.)

The straight line ts for the N2 and H2O molecules on the log–log plot of error
(relative to the full conguration interaction result in the given basis) versus cost
indicates that the functional form of the cost is O(poly(1/3)). Because of the
exponential ansatz formulation of coupled cluster theory, for a gas of such non-
interacting molecules, using the same parameters in the exponential operator
yields the same relative error, thus the total empirical cost of coupled cluster for
a gas of these molecules is O(poly(L)poly(1/3�)) which translates to a cost of
O(poly(L)poly(1/3)). We might conjecture that this is the cost scaling of coupled
cluster theory for so-called single reference problems. In ref. 58, we give further
evidence, using local coupled cluster theory,60 that indeed this is the appropriate
scaling in large organic molecules.
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 39
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Fig. 2 Energy error of nitrogen and water molecules at equilibrium re and stretched
(multiples of re) bond lengths, as a function of the level of coupled cluster truncation,
against a computational cost metric. (a) and (b) show the data computed using RHF/CC
and UHF/CC, respectively. Data taken from ref. 35 and 59.
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An important feature of these error plots, however, is that the slope of the
curves shows substantial system dependence, on the molecule, the bond length,
and the starting reference that is chosen. At the equilibrium geometries, the slope
is large, indicating a modest polynomial dependence on 1/3� close to O(1/3�2).
However, as the bond lengths are stretched (to some multiple of re, the equilib-
rium lengths), and the problem is more and more multireference, the conver-
gence becomes slower. For some (but not all) stretched bond lengths, the
convergence is less systematic than at the equilibrium geometry, and the effective
error scaling, for the longest nitrogen bond length, is as poor as O(1/3�7).

Taking now a rather different limit, wemay consider systems for which a single
mean-eld reference is certainly a poor qualitative description. In Fig. 3, we show
the error convergence of a tensor network ansatz (the projected entangled pair
state, PEPS) for the 2D frustrated J1–J2 Heisenberg model, and the 4-leg and 8-leg
40 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Fig. 3 The log–log plot of energy accuracy 3�versus PEPS bond dimension D for (a) the
spin-1/2 frustrated J1–J2 Heisenberg model at J2/J1 = 0.5 on 16 × 16 with PEPS D = 10
energy as the reference,61 and (b) the 2D Hubbard model with onsite repulsive interaction
U = 8 at 1/8 hole doping with extrapolated DMRG energies as the reference.62 For both
cases the computational cost scales asO(D6). The linear fits of log 3�versus logD give 3�∼ 1/
D4 for the J1–J2 model (red dashed line) and 3�∼ 1/D1.5 for the Hubbard model.
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2DHubbard model. The data on the J1–J2 model is analyzed here for the rst time,
as is that for the 2D Hubbard model for the 8-leg ladder. Additional data, for the
3D Heisenberg model, can be found in ref. 58.

We nd that as a function of the exibility of the ansatz, as expressed by the
tensor bond dimension D, the relative error behaves like 3�∼ poly(1/D). Then since
the computational cost is O(Lpoly(D)), more precisely, O(LD6) in the variational
Monte Carlo PEPS formulation used here,63 the overall cost of renement is O(L/
3�1.5) in the J1–J2 Heisenberg model, and O(L/3�4) in the 2D Hubbard model, both
consistent with O(poly(L)poly(1/3)) renement cost. However, as observed in the
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 41
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coupled cluster examples, there is a range of exponents observed, consistent with
the general understanding that fermionic systems are harder to simulate than
spin systems with tensor network methods.

The above constitutes a very limited set of examples. In particular, while the
calculations on strongly correlated models with tensor networks, and those on
molecular systems with coupled cluster methods, correspond to two limits of
strong and weak correlation (and are also representative of material versus nite
molecular systems) we do not have much data for strongly correlated ab initio
problems, where one needs to converge the description of both strong and weak
correlation. This reects the gap in current methodologies discussed in Section
3.9. Nonetheless, if we take the evidence in hand, and with a certain degree of
optimism that this author possesses, we can argue that the empirical error
convergence of appropriate classical heuristics to rene the energy will be
O(poly(L)poly(1/3)), although it is likely that in some problems there is a rather
high power dependence on the inverse error.
4.6 Summary

This section has attempted to formalize the intuition expressed in the earlier part
of this essay into some statements about the empirical complexity of using
quantum chemistry heuristics. We now briey summarize the key points.

Classical heuristics are methods that are used with O(poly(L)) runtimes,
essentially by denition. However, the errors from running the heuristics will
need to be better characterized for a full understanding of their effectiveness.

It appears to be useful to separate the error into two categories: a reference
error, and a renement error. We conjecture that the reference error can be
eliminated by simply constructing an appropriate reference, which is some
classically succinct state. Oen, constructing such an appropriate reference is
easy (e.g. one can just take a mean-eld reference), but there are also problems
where nding the reference will involve a classical search over a set of possibili-
ties, whichmay be exponentially large in some difficult problems. The search over
reference states may be where the exponential complexity of quantum chemistry
ultimately lies, but our conjecture suggests that it is a type of classical exponential
hardness, rather than a quantum exponential hardness.

Once a suitable reference is identied, limited numerical data suggests that
the renement can be done efficiently (although perhaps not practically) by
current classical heuristics. The cost of classical approaches under these
assumptions thus takes the conjectured form Rstate prep × O(poly(L)poly(1/3)). We
refer to this hence as the classical heuristic cost conjecture.
5 Quantum algorithms and quantum advantage
in quantum chemistry

So far, this essay has focused only on classical algorithms for quantum chemistry,
as these are methods that can be applied today and form the basis for existing
chemical intuition. However, as we look towards the future, we can seek to
understand the potential role of quantum algorithms in the problems of simu-
lating chemical matter. While we can only touch on the surface of this emerging
eld and limit ourselves to the problem of electronic structure, we will attempt to
42 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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present some sense of where one can look for quantum advantage assuming that
quantum chemistry follows the intuitions conjectured above. We will assume
throughout that the quantum hardware we are using is perfect (i.e. fault tolerant
or fully error corrected).

To formalize the notion of advantage, we dene the computational task as that
of nding the ground-state energy of a many-electron quantum chemical problem
of size L (for the kinds of chemical Hamiltonians we have been discussing) to some
desired error 3. Then, quantum advantage refers to a favourable relationship
between the classical and quantum costs for this task. Usually, the most desirable
advantage and the one most discussed is an asymptotic exponential quantum
advantage (EQA).58 One way to dene advantage is as the ratio of costs, then EQA
means that asymptotically the ratio is eO(L). EQA is clearly achieved if the quantum
algorithm has polynomial cost but the classical algorithm has exponential cost, but
under this denition, if the classical and quantum algorithms both have expo-
nential cost, we still obtain an exponential advantage if the exponent in the
quantum case is smaller. A different way to assess advantage is to dene the clas-
sical cost as a function of the quantum cost, i.e. Cclassical= f(Cquantum) and ask if this
is a polynomial or exponential function. Under this denition, if say Cclassical = ecL

and Cquantum = ecL/2, one would say that there is quadratic speedup and no EQA.
The latter denition is probably more common (but note that ref. 58 uses the rst
denition). We also note that there are other kinds of advantage, such as poly-
nomial quantum advantage or even constant factor advantage.

In principle, under common complexity assumptions, quantum computation
provides a strict superset of classical computational power. Thus, assuming
a quantum computer has the option to execute the classical algorithm at the same
speed as the classical computer, there must always be an asymptotic theoretical
advantage to using a quantum computer. However, there is more to establishing
quantum advantage in the quantum chemistry setting than this theoretical
statement because we are generally interested only up to nite sizes and nite
errors, as discussed in Section 4.2. As a consequence, the detailed form of
speedup, including the prefactors, is important. While asymptotic analysis to date
has usually ignored these details, in part because some of the subleading costs
result from the implementations of the algorithms on hardware that has yet to
exist, it is clear that non-asymptotic analysis must play an important role in
demonstrating quantum advantage in the quantum chemistry.

There are currently two main kinds of algorithms that have been proposed for
simulating the quantum chemistry problem (i) variational (or hybrid) algorithms
and (ii) algorithms based on phase estimation or quantum linear algebra.
Although the rst class of algorithms is oen discussed in the context of noisy,
non-error-corrected quantum computers, we assume below they are executed on
perfect quantum hardware.
5.1 How to search for quantum advantage in chemical matter

As summarized in Section 4.6, we argue that empirical observations suggest that
classical quantum chemistry methods satisfy the classical heuristic cost conjec-
ture, namely, they can be applied with an empirical complexity Rstate prep × C-

renement, where the rst takes the form of a search, and the latter is of the form
O(poly(L)poly(1/3)). For classes of problems where Rstate prep = O(1) (e.g. the
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 43
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organic systems considered in ref. 58) the classical heuristic cost conjecture leaves
no apparent room for an asymptotic exponential quantum advantage. However,
whereas the asymptotic O(poly(L)) component of the classical cost is strongly
supported by the empirical observation of the local behaviour of matter, from the
perspective of searching for quantum advantage, the polynomial inverse error
dependence of classical heuristics has much weaker support as a conjecture and
is thus a good place to look.

Indeed, it is clear that not every plausible classical heuristic has polynomial
inverse error dependence, even under strong assumptions about the behaviour of
chemical matter. For example, in a system exhibiting strict locality, one might
choose to simulate the system as a set of non-overlapping fragments and add the
fragment energies together; and one could, for example, use a full conguration
interaction solver to simulate the ground state of each fragment. For any xed
fragment size M, the scaling of the method is then O(poly(L)) in system size (the
polynomial dependence above linear arising from the long-range Coulomb
interaction) but each fragment can be expected to have an energy error propor-
tional to its surface to volume ratio, and since the cost to compute a fragment’s
energy when using a full conguration interaction solver is eO(M), the relative error
scaling of the method becomes eO(1/3�), translating to an overall total cost of
eO(L)eO(1/3) when considering the absolute error. This then provides room for
a quantum algorithm to achieve EQA. Obtaining O(poly(1/3)) error clearly requires
a careful heuristic approach, and we cannot prove that such a heuristic exists for
all chemical matter.

Even if the classical heuristic cost conjecture holds, i.e. we can always nd
methods with O(poly(1/3)) renement error, the polynomial power may also be
very large. This is seen in some of the numerical examples in Section 4.5 and
presents a situation where a quantum algorithm can potentially achieve a large
polynomial speedup. Given that we should always consider there to be a nite size
cutoff Lc in chemistry anyways, a large polynomial speedup up to sizes of O(Lc)
might be viewed as a more appropriate target than asymptotic exponential
quantum advantage.

There is also the class of problems where Rstate prep ∼ eO(L). For these problems,
there is again the possibility that the subsequent classical renement is ineffi-
cient, leading to a similar mechanism for quantum speedup as described above.
But assuming the classical energy can be rened efficiently, then another possi-
bility is that there is a quantum speedup that arises from eliminating the repeated
classical state preparation. However, in the author’s view, problems of this kind
arise mainly when there are competing references (competing phases in a mate-
rial) and such problems have characteristics of spin glasses, where it is already
known that quantum algorithms for ground states must themselves have
a similar exponential cost, essentially due to a similar state preparation problem.
Spin glasses offer no room for exponential speedup arising from the state prep-
aration, although EQA (in terms of the rst denition) is still possible in terms of
a ratio of exponential costs. While one might search for more exotic matter where
the quantum state preparation problem is exponentially easier than the classical
one (and there are certainly articial Hamiltonians where this can be made to be
the case64) we do not know of a chemically relevant example, and arguably, nding
such a ne-tuned case has limited impact in the discipline of quantum chemistry.
44 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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Table 6 Some conjectured manifestations of quantum speedup in quantum chemistry
simulations and their proposed likelihood across problems of chemical relevance.
Advantage here refers to the functional form of Cclassical = f(Cquantum). 3�= 3/L

Classical Quantum speedup Advantage Likelihood

Rstate prep × O(poly(L)poly(1/3)) Renement Poly. Common
Rstate prep × O(poly(L)exp(O(1/3�)) Renement Exp. Possible
eO(poly(L)) × Crenement State prep. Poly. Common
eO(L) × Crenement State prep. Exp. Unlikely
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5.2 Conjectured sources of quantum advantage from common to uncommon

From the above analysis, we can conjecture what the different manifestations of
quantum advantage in quantum chemistry simulations of chemical matter look
like. The most common case will be systems where the classical heuristic cost
conjecture of this essay holds; then by understanding the relative error conver-
gence of classical versus quantum algorithms across chemical matter, we can nd
a subset where a polynomial advantage can be achieved. The second case requires
a failure of the renement part of the cost conjecture, namely we must identify
problems where there is a classically succinct reference, but the classical rene-
ment cannot be efficiently performed, thus giving the possibility for an expo-
nential quantum advantage. The nal case is where the speedup arises primarily
from state preparation. A large advantage in this case would require nding
problems where a classically succinct reference does not exist, or where quantum
state preparation is much easier than classical state preparation. These different
sources of speedup are summarized in Table 6.
5.3 Advantage in hybrid and variational quantum algorithms

Hybrid algorithms are quantum algorithms which contain an important element
of classical computation in conjunction with quantum operations: the classical
and quantum computing hardware are expected to exchange a (small amount) of
classical data in a self-consistent loop.65–67 The largest family of such algorithms
are the variational algorithms,65 which perform the minimization

E ¼ min
q
h0jU†ðqÞHUðqÞj0i (27)

where U(q) is a parametrized quantum circuit, q are the variational parameters,
and j0i is some simple initial state on the quantum device. The energy is
measured (with statistical shot noise) on the quantum device by expressing H as
a sum of terms (i.e. individual second quantized operators, such as a†i a

†
j akal,

which, under some particular fermion encoding, is represented as a Pauli string)
and the total energy is minimized.

Variational algorithms, such as the variational quantum eigensolver,65 have
elicited an enormous amount of attention and are extremely popular. To some
extent, this can be attributed to the fact that are easy to understand: any circuit
parametrization yields a viable ansatz which may even be tested on one of today’s
existing noisy quantum devices. On the other hand, they contain a non-linear
optimization and involve very large prefactors due to the number of measure-
ments required to reduce the statistical error (for some examples of numbers, see
This journal is © The Royal Society of Chemistry 2024 Faraday Discuss., 2024, 254, 11–52 | 45
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ref. 68). Even disregarding these constant prefactors it is currently difficult to nd
quantitative evidence of quantum advantage with variational algorithms in
problems of chemical matter. In principle, a circuit ansatz must be able to
represent states that cannot be efficiently represented on a classical device.
However, this by itself does not mean there is a quantum advantage, because one
needs to (i) rst nd the circuit representation that yields such a state through the
optimization in eqn (27) and (ii) ensure that there is not some other classical
representation of the wavefunction that yields a similar quality of the energy or
other observable, with a lower cost.

The rst issue has been much discussed in the quantum literature because, in
general, optimizing unitary circuits is difficult, due to the “barren plateau”
problem, where a gradient algorithm gets stuck in some high-energy local
minimum.69 Indeed, this has led some to question the value of variational
quantum algorithms.70 Here we might appeal to the classical intuitions estab-
lished above to ameliorate this problem, namely we can initialize with the same
classically succinct reference states used in classical quantum chemistry: this
might be viewed as the state preparation step of a variational quantum algorithm.
Whether this solves or ameliorates the barren plateau problem remains to be
established. Under the assumption that it does, there is still a possibility for
polynomial quantum advantage with respect to the search over classical refer-
ences (although the size of this advantagemay be small). Given the above strategy,
the cost of a variational algorithm may be analyzed as

C = Rinit × Crefinement (28)

where Rinit is the number of different initial guesses (here assumed to be classi-
cally succinct states) that must be tried.

We can then assess the possibility of quantum advantage using a variational
quantum circuit for energy renement. One study which attempts to do this is ref.
71, which compares variational quantum algorithms with different circuit
architectures to classical MPS calculations on 1D (and pseudo-1D) model
Hamiltonians. Because DMRG and MPS are recognized as some of the best
classical algorithms in the 1D context, we can argue that this is a reasonable
classical comparison. Ref. 71 examined the expressivity (the number of varia-
tional parameters) and the theoretical cost needed to reach a desired accuracy in
the ground-state energy. Extrapolating to high accuracy, and neglecting the
difficulty of optimization, it showed that for certain kinds of circuit ansatz, there
is a small polynomial advantage in the best circuit ansatz considered relative to
a standard classical MPS. For example, for the standard MPS, the theoretical cost
in the Heisenberg model (a rectangular strip, xed system size) the relative
precision of 3 was estimated to be roughly C∼ O(1/3�3.1), while with the best circuit
structure, it was found that C ∼ O(1/3�2.9).

The above study provides partial evidence of a very modest polynomial
quantum advantage in variational quantum algorithms coming from the error
renement task. But it should also be noted that the advantage is achieved in part
because the chosen quantum circuit is a more structured and restricted ansatz
than the classical MPS to which it is compared and it remains to be seen whether
analogous simplications used in the classical setting eliminate this advantage.
Further studies of this kind, which compare the asymptotic expressiveness and
46 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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computational costs of different variational circuits against competing classical
methods, are clearly needed.
5.4 Advantage in phase estimation and quantum linear algebra based
algorithms

The second class of algorithms are ones that use some form of quantum linear
algebra or quantum phase estimation to obtain the ground-state. We will focus on
quantum phase estimation72 since the complexity is representative (up to poly-
nomial factors73) of these approaches. The total cost of quantum phase estimation
for the ground state is of the form

C = Rstate prep × Cphase estimation (29)

where phase estimation (approximately) provides a projective measurement onto
the ground-state of H with a success probability depending on the quality of the
initial state prepared. The cost can thus be written as

C ∼ poly(1/S) × poly(L) × poly(1/3) (30)

where S = hFjJ0i, with jFi being the initial state prepared.
Much has been made of the complexity of ground-state preparation for phase

estimation because for an arbitrary Hamiltonian it is known that preparing a state
with good overlap with the desired ground-state is generally hard even for
a quantum computer (i.e. QMA hard). But, assuming the intuitions we have
argued above, this is a red herring for chemical matter: no problem of real-world
chemical relevance appears to have QMA hard state preparation complexity.

As an aside, we note that preparing a state for phase estimation is both
a harder and (potentially) an easier task than preparing a standard classical
reference state. It is a harder task because one wants to prepare a state with
asymptotically large overlap with the ground-state (i.e. at worst O(poly(1/L)), while
the usual standard classical reference states (such as a mean-eld state, a coupled
cluster wavefunction with xed truncation order, or a tensor network state of
some xed bond dimension) actually have exponentially small overlap with the
true state as L / N, giving exponential cost in the phase estimation algorithm
from the poly(1/S) factor. Thus one needs to prepare an initial state that is
asymptotically better than standard classical reference states.

On the other hand it is potentially an easier task, because the task of preparing
a state of good overlap could, in principle, be easier than nding a reference from
which a classical heuristic can easily rene an energy. To see an example of this,
we can consider the difficulty of preparing a classical reference state such that
perturbation theory converges, compared to that of performing adiabatic state
preparation. In the perturbation theory case, we consider the Hamiltonian H(l) =
H0 + lH1 (with the desired Hamiltonian corresponding to l = 1) and the energy
E(l). Then for perturbation theory to converge, E(l) must be analytic in the
complex circle for jlj < 1, which requires the gap not to close in the complex circle.
On the other hand, in the case of adiabatic state preparation, we consider an
adiabatic path such as H(l) = (1 − l)H0 + lH1, and we only require that the gap
does not close along the path, a presumably weaker requirement.
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However, in ref. 58, we suggest that at least in chemical matter, the difficulty of
state preparation for classical heuristics and for phase estimation are closely
related. For example, systems in which a classical search over reference states
needs to be performed to nd a reference for classical heuristics (such as the Fe–S
clusters in nitrogenase) appear to engender a similar level of complexity in
quantum state preparation methods for phase estimation, such as adiabatic state
preparation. On the other hand once a suitable classical reference for classical
heuristics is known (which can be expected to have exponentially small overlap
for large systems) the subsequent application of classical renement not only
rapidly improves the energy, but also rapidly improves the overlap, yielding a state
that may then be prepared on a quantum computer for phase estimation.

Moving on from the state preparation aspect, we now consider the energy
renement which is performed by the phase estimation measurement. Phase
estimation gives what is termed the Heisenberg limited error costO(1/3) – and this
is generically the best error scaling one can get for a quantum algorithm. Under
the classical heuristic cost conjecture, we assume a classical error scaling of
O(poly(1/3)), but it is possible for the polynomial exponent to be both <1 and thus
better than what is seen in phase estimation (e.g. as observed in the 1D Heisen-
berg model in ref. 55) and also much greater than 1, as seen in some of the
examples in Section 4.5.

Overall, however, the well-understood and provable error scaling of quantum
phase estimation provides a potential source of polynomial quantum advantage
in a wide range of chemical matter even under the assumptions of the classical
heuristic cost conjecture (and of course potentially even more advantage if the
conjecture breaks down). Given the diversity of the polynomial inverse error
dependence seen in classical simulations, establishing this advantage concretely
will require studying a wide range of examples. Because of the non-asymptotic
nature of the actual chemical problems of chemical matter, the quantum algo-
rithmsmust also be fully characterized with respect to their non-asymptotic costs.
5.5 Summary

In the above, we have considered how to search for quantum advantage under the
constraints of chemical matter. We can summarize these constraints in the form
of the classical heuristic cost conjecture introduced in Section 4.6. Then search-
ing for quantum advantage requires understanding the types of advantage that
are available when (and if) the conjecture holds, as well as the ways in which the
conjecture can fail, and the subsequent advantages that then appear. With respect
to the failure of the classical heuristic cost conjecture, we argue that it is useful to
distinguish between two modes; failure of the classical state preparation and
failure of the classical renement. For the widely applicable quantum advantage
in chemically relevant systems, we suggest that focusing on quantum advantage
in renement will be key.

We apply this reasoning to two families of quantum algorithms, variational
quantum algorithms and quantum phase estimation (and related quantum
algorithms). Both can be formulated in terms of a state preparation piece and
a renement component, thus creating a parallel functional form of the cost
between classical heuristics, variational quantum algorithms, and quantum
phase estimation. While the error convergence of variational quantum algorithms
48 | Faraday Discuss., 2024, 254, 11–52 This journal is © The Royal Society of Chemistry 2024
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must be better established to understand the advantage that can be achieved,
algorithms such as phase estimation, through their rigorous Heisenberg limited
error scaling, present a strong case for looking for quantum advantage in
renement. Certainly we can expect to see polynomial speedups in some prob-
lems, and searching for a breakdown of classical renement and the classical
heuristic cost conjecture is an avenue to exponential speedup. However, under-
standing the specic type of advantage will require analysis beyond asymptotics.
6 Conclusions

In this essay we have attempted to provide an overview of quantum chemistry,
surveying the problems, methods, intuitions, and complexity of both classical and
quantum methods. For the quantum chemistry reader, we hope this essay has
illustrated some new ways to think about the computational complexity of
chemical problems that may help to solidify existing intuitions and lead to new
ones. For the quantum information theory reader, we hope this work has
provided a guide to the diversity of chemical problems and the rich lore of
chemical intuition that has laid the foundations of the quantum chemistry eld.

Ultimately, chemistry is an experimental science, and the domain of its
problems and the associated complexities has been dened not by mathematics,
but by the examples in nature and our experimental control. In formulating the
conjectures of this essay, we have tried to capture some essence of the behaviour
of chemical matter that is amenable to mathematical analysis. We look forward to
new developments in these directions.
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