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The near-term utility of quantum computers is hindered by hardware constraints in the
form of noise. One path to achieving noise resilience in hybrid quantum algorithms is to
decrease the required circuit depth — the number of applied gates — to solve a given
problem. This work demonstrates how to reduce circuit depth by combining the
transcorrelated (TC) approach with adaptive quantum ansatze and their
implementations in the context of variational quantum imaginary time evolution
(AVQITE). The combined TC-AVQITE method is used to calculate ground state energies
across the potential energy surfaces of H, LiH, and H,O. In particular, Hy is
a notoriously difficult case where unitary coupled cluster theory, including singles and
doubles excitations, fails to provide accurate results. Adding TC yields energies close to
the complete basis set (CBS) limit while reducing the number of necessary operators —
and thus circuit depth — in the adaptive ansatze. The reduced circuit depth furthermore
makes our algorithm more noise-resilient and accelerates convergence. Our study
demonstrates that combining the TC method with adaptive ansatze yields compact,
noise-resilient, and easy-to-optimize quantum circuits that yield accurate quantum
chemistry results close to the CBS limit.

. Introduction

The challenge at the heart of quantum chemistry is the electronic structure
problem. This problem, encapsulated in the Schrodinger equation, scales expo-
nentially with system size. Numerous computational approaches exist for tackling
this challenge, ranging from approximate mean-field theories like Hartree-Fock
(HF)," more accurate but costly methods like coupled cluster (CC),>* density
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matrix renormalization group (DMRG)**® and quantum Monte Carlo (QMC)
methods,” to exact, but exponentially-scaling, full configuration interaction
(FCI)/exact diagonalization (ED). In recent years, attempts have been made to
circumvent the unfavourable scaling of highly accurate quantum chemistry using
quantum computers. Quantum hardware is believed to be particularly well suited
for simulating quantum systems like molecules and may enable a significant
computational speedup.’®' However, given the existence of conventional
numerical methods that have been refined over decades, it is still uncertain if
quantum algorithms can provide a genuine quantum advantage over established
techniques.™

Unfortunately, noise severely limits practicable circuit depths on current and
near-term quantum processors. Furthermore, the number of qubits needed to
encode quantum chemistry on quantum hardware is proportional to the basis set
size or the number of orbitals in the case of an active space approach. Thus, the
achievable accuracy on quantum hardware is severely limited as either small,
often minimal, basis sets have to be used or calculations must be done with very
small active spaces to fit the problem on current quantum hardware. Despite
these constraints, quantum hardware may, in the future, outperform conven-
tional computation in specialized instances, such as modelling highly correlated
systems.*®

Various algorithms have been devised to advance toward practical quantum
advantage in the current noisy intermediate-scale quantum (NISQ) regime. Most
of these NISQ algorithms are variational, i.e., based on the variational theorem.
Variational quantum algorithms (VQAs)""*® can significantly reduce quantum
circuit depth by offloading calculations that do not strictly need quantum prop-
erties to a conventional computer. This idea follows naturally from trying to use
the quantum computer as little as possible. VQAs are heuristic and rely on an
ansatz circuit, which is optimized following some scheme. A considerable draw-
back of VQAs is that many measurements are needed for this optimization
procedure, a factor that may limit or remove the chances for practical quantum
advantage." Despite this drawback, for reasons related to the limitations of
current hardware, VQAs are by far the most investigated type of quantum algo-
rithm to date. The variational quantum eigensolver (VQE)**?*® is the most well-
known VQA. However, other methods, such as variational quantum imaginary
time evolution (VarQITE), are competitive alternatives.>

A myriad variations of and additions to these VQAs have been made to improve
them in search of practical quantum advantage. A non-exhaustive list of such
approaches includes reducing circuit depth by gradually building the ansatz
circuit to be only as deep as needed,**” reducing qubit requirements by similarity
transforms,***” or post-processing.*** Among these additions, explicitly corre-
lated methods**** like the transcorrelated (TC) method*** make it possible to
obtain more accurate results with smaller basis sets by incorporating the prob-
lematic electronic cusp condition® into the Hamiltonian. The TC approach also
has the added benefit of providing more compact ground state wavefunctions.>> A
consequence of this compactness is that the ground state of the TC Hamiltonian
is easier to prepare with shallower quantum circuits.?***%

Explicitly correlated and TC-based approaches have also recently been applied
to increase the accuracy while lowering the resource requirements of quantum
chemistry calculations on quantum hardware.”®3>%%* Motta et al. employed
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canonical transcorrelated F12 (CT-F12) theory®® to accurately calculate the ground
state energy of various small molecular systems with fewer required qubits.
Kumar et al. extended CT-F12 theory on quantum hardware to excited state
energies,*® and Schleich and coworkers used an explicitly correlated a posteriori
correction® to improve ground state energy estimates from VQE calculations.
McArdle and Tew® have merged the TC and VarQITE methods to study small
Hubbard lattices, utilizing the improved compactness of the ground state solu-
tion due to the TC approach.”® Some of the present authors have developed an
optimized TC-VarQITE approach® for ab initio problems that drastically reduces
the necessary qubit number to obtain accurate spectroscopic data of small
molecular systems on quantum hardware.*> Our previous work relied on pre-
determined and fixed quantum circuit ansitze like the unitary coupled cluster
(UcC)** or hardware efficient ansétze.”” However, full UCC ansétze are not
a viable option for current noisy quantum hardware due to their required long
circuit depths. On the other hand, hardware efficient ansétze can have conver-
gence problems due to their heuristic nature and lack of chemical/physical
motivation.

In this work, we present an extension of the TC-VarQITE approach by
combining Gomes et al.’s adaptive variational quantum imaginary time evolution
algorithm (AVQITE)** with the TC method. The rationale for this approach is that
the increased compactness of the ground state wavefunction due to the TC
method®-*> should lead to shallower adaptive quantum circuits. The capability
and strength of the resulting algorithm, transcorrelated adaptive variational
quantum imaginary time evolution (TC-AVQITE), is then evaluated through
simulations of near-term quantum devices.

This paper is structured as follows. First, we discuss in Section II the constit-
uent parts of the TC-AVQITE algorithm and introduce relevant terminology. Next,
we detail the implementation of TC-AVQITE in Section III, and provide compu-
tational details for the numerical studies. After discussing the numerical data in
Section IV, we conclude, address possible improvements, and outline future work.

II. Theory

TC-AVQITE is built upon multiple methods and algorithms. To begin with,
AVQITE is a combination of adaptive ansétze*** and VarQITE.'®*' VarQITE is, in
turn, a variational rephrasing of quantum imaginary time evolution (QITE).**" In
what follows, we briefly introduce the electronic structure problem, followed by
QITE, VarQITE, adaptive ansitze, and AVQITE. To conclude, we describe the TC
method.

A. The electronic structure problem

The electronic structure problem can often be reduced to solving the non-
relativistic Schrodinger equation, either in stationary form,

Hy) = ElY), 1)

with the system’s Hamiltonian H, eigenstates |v/), and corresponding eigene-
nergies E; or in time-dependent form (in other words, a dynamics simulation)
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Decoupling electronic and nuclear degrees of freedom is often justified by
invoking the Born-Oppenheimer approximation. When expressed within second
quantization, the electronic Hamiltonian then reads as

. 1
— i rs ot ot
H=3 Iaja, +33 Viadaas, 3)
Pq pqrs
R ——_
one-body terms two-body terms
where aﬁ) is the annihilation (creation) operator of an electron in spin-orbital i,

with the integrals

_
ri— Ry

2
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vr = J¢p(x1)¢4(X2)¢r(x1)¢s(xz) 45, d5, 5)

il
where ¢(¥) are the basis functions, Z; the charge number, ; the electron positions,
R, the nucleon positions. From the shape of these integrals, we can note that the
“one-body terms” include the kinetic energy and nuclear repulsion, while the

“two-body terms” describe the electron—-electron interaction.

B. Imaginary time evolution, QITE and VarQITE

QITE®*®* " is a quantum computer implementation of imaginary time evolution
(ITE),>*7> a method used in various fields of science, such as statistical
mechanics, cosmology, and quantum mechanics.”* In the context of electronic
structure theory, ITE works by expressing the time-dependent Schrédinger
equation, eqn (2), as dependent on imaginary time instead of time, ¢ — ir, in the
so-called Wick-rotated form”®

2 1y(w) = ~Hly(), ©

By integrating eqn (6) and given an initial state, |(0)), one can obtain the state
|/(7)) for any imaginary time t as

e [y(0))

JWO)|e 25 |y(0))

As T — o, the state |y(t)) converges to the ground state of the Hamiltonian H,
given that the initial state, |(0)), overlaps with the ground state.*" Fortunately, for
quantum chemistry problems, this requirement is usually not particularly
restrictive as easily preparable states with (in most cases) non-vanishing overlap
to the ground state exist. One example is the wave function obtained by solving

W(z)) =

(7)
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the Hartree-Fock equations. However, counterexamples to this assumption of
easily preparable states with non-vanishing overlap exist.*

ITE is a so-called projector method related to the power,”” Lanczos’® and
Davidson method,” which yields the ground state of a system by repeated
application of the operator e % on the initial state |¢(0)). Consequently, ITE does
not rely on the variational principle and thus can be used to obtain ground states
of non-Hermitian Hamiltonians, as present in open quantum systems,*”**!
transport problems,®** and the transcorrelated method.*"* )

To perform ITE on a quantum computer (i.e., QITE), the exponential e 7" is
approximated by its Taylor series for a small imaginary time step At.°® Imple-
menting QITE on quantum hardware is not straightforward because the operator
e s non-unitary. Consequently, e 7% must be approximated by unitary oper-
ations, which can require deep quantum circuits.®

An alternative to unitary approximation is to express QITE in variational form -
VarQITE.”" In VarQITE, one approximates the targeted state |y) with a quantum
circuit ansatz, U(6), that depends on a set of parameters 6 with elements 6;, i.e.
representing the angles of single qubit rotational gates (Fig. 1),

[W(0) = U0(1))0) = |$p(6(1)) = |$(2)). (8)

The ITE can then be approximated using McLachlan’s variational principle.'®#*
This approach minimizes the distance between the QITE evolution and the
approximated path in parameter space U(6),

o|(2+ - £ )| o, ©)

where ||¥)| = /(¥|¢). Eqn (9) minimizes the distance between the left-hand- and
right-hand-side of the Wick-rotated Schrodinger equation, eqn (6), and the energy
expectation value at imaginary time 7. E, = (y(t)|H|y(z)) ensures normalization.™
VarQITE iteratively steps through imaginary time, approximating the ideal path of
QITE. The update rule for each iteration can be obtained from first expanding eqn
(9) in the parameter space by inserting eqn (8), which simplifies to ****

p
0 —{=v0n Ry(0;,) |— —4—

O__[ Ry(6;) Ry(6;) |_ N E—

Quantum
circuit

0—| U(0) |

[¢(6)) = U(6)[0)

Fig. 1 Sketch of the quantum circuit ansatz |¢(6)) = U(6)|0) depending on a set of
parameters, 6, in form of single qubit rotations around the y-axis, Ry(6,).
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S 4,6, = C. (10)
J

= .
In eqn (10), 6 with elements 6; represents the imaginary time derivative of the
quantum circuit parameters 4 (Fig. 1), and

d{p(7)| 9|¢(1))
A”:Re< 9, a9, )

ci=Re( - 201900 ).

(11)

The matrix with elements A;; and vector with elements C;, which both depend
on the imaginary time 7, are the metric tensor in parameter space A(t)**® related
to the quantum Fisher information matrix*’-** and the gradient C(t), respectively.

From eqn (10), one can solve for v by inverting A, and then update 6 by i.e. the
Euler or Runge-Kutta methods.*®

The drawback of the VarQITE approximation compared to QITE is that the
strict convergence guarantee to the ground state is lost, as one is limited by how
expressive the employed ansatz U(6) is. When quantifying how close the iterative
VarQITE is to the QITE path, it is helpful to consider the McLachlan distance L,"®

L= \/ZA,,@,(?, — ZZC,ﬁ, + 2 Var(f[) . (12)
i i

Fig. 2 illustrates how the quantity L can be interpreted as the distance between
the optimal path of QITE and the approximate path of VarQITE.*® We will return
to describe why L is particularly important for TC-AVQITE when introducing our
method of choice for adaptive ansatz construction.

The cost in terms of circuit evaluations for measuring A on quantum hardware
scales as O(ny*), where n, is the number of ansatz parameters. Fortunately,
various approximations are available that reduce this scaling to linear,***”* or
even a constant cost.*® However, it was recently shown by van Straaten and

Fig.2 VarQITE is an approximation to QITE. The McLachlan distance, L (green) quantifies
how far a point on the manifold given by the ansatz U(f) (red) is from the ideal QITE path
(blue). VarQITE minimizes this distance after each small imaginary time step dr.
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Koczor'® that the measurement cost of the gradient will dominate for large-scale
quantum chemistry applications.

C. Adding adaptive ansitze

Adaptive ansitze are iteratively built to identify a circuit that is as shallow as
possible yet sufficiently deep to describe a given problem. Adaptive quantum
algorithms gradually add operators from a pre-defined operator pool to an initial,
easy-to-prepare ansatz circuit. Operator pools can be constructed in various
ways. " For example, they might include fermionic excitation operators® or
operators constructed from Pauli strings.”® Which operator(s) to append and
when to do so is decided iteratively based on some selection and expansion
criteria. Using an adaptive approach naturally decreases circuit depth compared
to a case in which all operators in the pool are used.

The first adaptive ansatz implementation was Adaptive Derivative-Assembled
Problem-Tailored ansatz (ADAPT)-VQE by Grimsley et al.,> which has been fol-
lowed by several variants.?*>*'% Herein, we rely on the adaptive algorithm AVQITE
by Gomes et al.,** which implements adaptive algorithms in the context of
VarQITE.

In AVQITE as implemented in ref. 24 and in our work, the operator pool
consists of all Pauli strings of a unitary coupled cluster singles doubles (UCCSD)
ansatz®® constructed for the problem. The AVQITE ansatz circuit is expanded by
selecting those operators that keep the VarQITE evolution as close to QITE as
possible. Operators are added when the McLachlan distance L, eqn (12), becomes
too large compared to some defined cutoff value L.

Adaptive ansétze have been shown to successfully decrease the circuit depth
compared to including the entire operator pool at the cost of more measure-
ments. The reason for these extra measurements is that the adaptive algorithm
needs to evaluate the expansion and selection criteria to keep track of when to
modify the ansatz circuit. However, as circuit depth is currently one of the most
limiting factors for NISQ hardware, there is much to be gained from the approach
despite the increased measurement cost. Additionally, work has been done to
reduce measurement costs,'*>'**'% for example, through classical shadows,'*
Pauli grouping,'”” ' and informationally complete positive operator valued

measures.*****

D. The transcorrelated method

The TC method introduced by Hirschelder,"”® Boys and Handy,**“'" is an
explicitly correlated method**~*® based on factorizing the electronic wave function
in Jastrow form,''®

) =ele), I = Ju(7. 7). (13)

i<j

where u is a symmetric correlation function over electron pairs and J; are opti-
mizable parameters. Eqn (15) allows us to recast the stationary Schrodinger
equation, eqn (1), in terms of |¢),

Hly) = Ely) = He'|g) = E€’|g) (14)
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=g fle ) = E|d) (15)
H

Note that eqn (15) is not an approximation but an exact similarity trans-
formation of the electronic Hamiltonian, eqn (3).”> However, and importantly,
this recasting is not a unitary transformation, so Hermiticity is lost.>® The
“normal” Rayleigh-Ritz variational principle requires Hermiticity, which means
many variational methods, such as the VQE, do not apply to (non-truncated)
transcorrelated Hamiltonians. There are ways to perform an approximate Her-
mitian truncation of a transcorrelated similarity transform if Hermiticity is
deemed essential, i.e. via CT-F12 theory'***** as used by Motta et al.*® and Kumar
et al.*® However, as a projective method, VarQITE can be used with both non-
Hermitian as well as Hermitian Hamiltonians.*>*

In quantum chemistry, explicitly correlated methods are essential for correctly
dealing with Kato’s cusp condition:***** that when two electrons approach each
other, they (should) give rise to a sharp, non-differentiable dip (cusp) in the wave
function (Fig. 3a). This sharp feature is one of the reasons why large basis sets are
needed in conventional quantum chemistry calculations. As basis sets are
generally composed of smooth functions, such as Gaussians, many basis func-
tions are needed to capture this cusp (Fig. 3a). However, through the TC method,
the cusp condition can be directly treated by choosing an appropriate Jastrow
factor J (see eqn (13) and Fig. 3b), so that the non-differentiable behaviour of |y)
can be incorporated in the Hamiltonian H. The cusp condition description has
then moved from the wave function into the Hamiltonian via the similarity
transformation, as seen in eqn (15).

Dealing with the cusp condition in the Hamiltonian instead of the wave-
function is why the TC method can provide results much closer to the complete
basis set (CBS) limit with smaller basis sets (Fig. 3b). This potential for lowering
computational resources is one reason behind the TC methods’ recent revival in
electronic structure theory.*>*»1?>713¢ Additionally, a smaller basis set means that
one needs significantly fewer qubits to obtain reliable and accurate quantum
chemistry results, as the number of qubits scales with active space size.”**>* This
resource reduction has recently been demonstrated by Motta et al.*® and Kumar
and coworkers® using CT-F12 theory, Schleich et al. using the [2]gs, correction
and by some of the present authors with an un-approximated TC-VarQITE
combination.?"*

® o . o wi{® (@) (b) [o({7})
§< ® OB e

> &

Energy

- Basis set/qubits

large

[7i =751

Fig. 3 (a) Sketch of how the cusp of the electronic wavefunction, y({r}), necessitates the
use of large Gaussian-type orbital basis sets. (b) Sketch of how factoring the electronic
wavefunction in Jastrow form, |[y({r})) = ej\qﬁ({ﬂ)), where e’ captures the cusp, leads to
better results for |¢({r})) in smaller basis sets.
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Moving the description of the cusp from the wave function to the Hamiltonian
does not come for free. The price we pay is that the Hamiltonian becomes more
complex, both in terms of the aforementioned non-Hermiticity (in the form of
modified two-body terms) as well as the appearance of three-body terms, see ref.
53 for details.

The additional three-body terms of the TC method raise the justified question
of whether applying the method will be beneficial at all - does the incurred cost
outweigh the benefits? Recent work'>>'*>*** has shown that the TC Hamiltonian
can be reduced to an O(N®) or even O(N*) scaling (with N being the number of
orbitals) by either neglecting three-body excitations with six unique indices'*
altogether or by neglecting the pure normal ordered*” three-body operators and
incorporating the remaining three-body contributions in the two-, one-, and zero-
body integrals.’** Additionally, in ref. 32, some of the present authors have
demonstrated that the resource reduction of the TC method (without approxi-
mations) outweighs the cost of additional measurements until (roughly) the 1000
qubit mark.

E. Conserved quantum numbers

The Jastrow factor ¢ , eqn (13), used in the TC approach is optimized for a state
with a specific chosen number of electrons, 7,0),">* usually corresponding to the
molecular ground state. Under certain extremal conditions, e.g., in the broken
bond regime, the TC similarity transformation, eqn (15), can cause sectors of the
Hamiltonian describing different electron numbers, which should have higher
energy, to be below the original ground state sector with n,,, electrons. Thus,
unless measures are taken to conserve the correct number of electrons, TC
calculations may converge to false ground states.

These Hamiltonian symmetry sector issues can be avoided by modifying the
energy calculation to include a penalty term, E' = E + Epenaiy- The energy penalty is
in this work given by

Epenalty = a<¢(§)|(1\7 - nmol)2|¢(§)>7 (16)
where N is the electron number operator, 1y, is the chosen number of electrons,
and « is a constant we have set to 1. Eqn (16) penalizes solutions with an electron
number different than the chosen, n # ny,,, by increasing their respective energy
expectation value E'. This penalty term ensures that TC-AVQITE converges to
physically/chemically sound solutions with the correct number of electrons, 7,1,
but does not affect the described physics or chemistry of the studied systems.

lll. Computational details

The combination of the TC method with AVQITE follows naturally by applying
each method sequentially: the TC method first produces a Hamiltonian H, which
can then be used in a modified AVQITE implementation. Our program for per-
forming TC-AVQITE is based on the code by Gomes et al., as implemented in ref.
24 and 133. Our development, available as a Python code,"** includes additions to
handle non-Hermiticity, generation of Hamiltonians and appropriate operator
pools and restartable calculations. Our implementation of TC-AVQITE relies on
Qiskit v.0.42.0, Qiskit Nature v.0.5.2,"*>*¢ and Qutip v.4.7.1 (ref. 137) to produce
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operator pools and obtain exact reference energies. TC Hamiltonians were
generated following the workflow outlined in ref. 32 and 125. PySCF v.2.4.0 (ref.
138-140) was used for the initial Hartree-Fock calculations to construct the
molecular orbital basis for generating the Hamiltonians and operator pools, as
well as the FCI/cc-p(C)VIZ and FCI/CBS estimate calculations.

We have performed noiseless, state-vector AVQITE and TC-AVQITE simula-
tions to compute the ground state energy of the three molecular test cases. To
limit costs associated with computing the six-body integrals in the TC approach
and the state-vector simulations, we have used a minimal STO-6G basis set in all
simulated systems. We note that more elaborate basis sets are required to
approach the CBS, even in TC-based approaches. As such, a cost-effective alter-
native would be using an active space approach combined with a larger basis set.
The use of minimal basis sets suffices for our goals here: to demonstrate the
circuit width and depth reduction made possible with TC-AVQITE.

In our calculations of the water molecule, the oxygen 1s orbital was frozen, i.e.,
omitted from the correlated description, which resulted in a reduction of two
qubits. To decrease calculation costs further, parity encoding** was used for all
systems to decrease the number of simulated qubits by two.

The TC-AVQITE iteration procedure is visualized in Fig. 4: first, we perform
a conventional HF calculation, and in the case of TC-AVQITE, we use the workflow
of ref. 125 to construct the TC Hamiltonian. In all cases except for broken-bond
H,O0, we use the single determinant HF state as the initial state, |¢(f,)). Since

Start, n = 0:
Initial HF calc.,
prepare (TC)
Hamiltonian

True E
Measure the energy:
L N If (B, — En_1)
B, = (¢(6.)|H|$0.)| 7| | <107 Ha

T False
\ 4

Measure A;;, C; as

Optain new values 60,, 1 defined in Eq. (11).
with the Euler method. Compute L as defined in
n—n+1 Eq. (12).
. False
Solve Eq. (10) for 8. [€~=""1 If L > Ley:
A H
True !

Expand ¢(§n) with new
operator which minimizes
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Fig. 4 The iteration procedure for TC-AVQITE.
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the HF solution is not a good approximation to the true ground state for H,O at
2.5 A, we use a single determinant open-shell initial state in this case. Then, we
enter the TC-AVQITE self-consistent loop by measuring the energy expectation
value of the current ansatz circuit. If this expectation value does not change by
more than 1 x 10~° Ha during the iteration procedure, we consider the calcula-
tion converged and exit the loop. If not, we measure the metric tensor with
elements A; and the gradient with elements C;, and from these, compute the
McLachlan distance L. If the McLachlan distance is larger than the defined cutoff
value, L > L., we expand the ansatz circuit with a new operator. We use the
operator with the largest decrease to L when added. This step is skipped if L <

Ley- Next, we solve eqn (10) to obtain 7, and obtain new parameter values § by the
Euler method. The loop is repeated until the energy convergence criterion is met.

We used At = 0.05 as the imaginary time step and L., = 1 x 10> for the
McLachlan distance cutoff in all AVQITE and TC-AVQITE calculations. Both TC-
AVQITE and the original AVQITE algorithm by Gomes et al.>* were tested and
found to be robust with respect to different parameter settings, details of which
can be found in the ESI.f TC-VarQITE calculations were performed as outlined in
ref. 32 using the same imaginary time step of At = 0.05.

Notes on convention: We follow the convention of ref. 142 and use the term
“computational accuracy” in this work when the difference of a quantum calcu-
lation and the exact solution in a given (finite) basis set do not exceed 10> Ha. We
highlight this nomenclature because a different term, chemical accuracy, is often
used in quantum chemistry to measure calculation quality. Chemical accuracy is
commonly defined as an error of 1 kcal mol™"' (approximately 10° Ha) with
respect to the exact (e.g., FCI/CBS) solution or experiment.'** In quantum
computing literature, this term is sometimes used instead of what we prefer to
call computational accuracy. Such a mix-up can be misleading - especially as
these energies usually differ significantly.'*

Furthermore, to avoid confusion, we want to make clear how we use the terms
FCI and ED in the remainder of the text: Both terms, FCI and ED, are somewhat
interchangeably used in computational chemistry and physics. They refer to
a given Hamiltonian’s exact ground state (energy) solution expressed in a specific
basis set. However, as stated above, the main benefit of explicitly correlated/TC
approaches is that they usually yield lower energies in a given basis set. To
avoid confusion, we refer to the energy obtained by exactly diagonalizing the TC
Hamiltonian (eqn (15)) as the ED - TC result (here only performed in the STO-6G
basis). Meanwhile, we resort to the “usual” convention FCI/basis when referring
to the exact solution of the original Hamiltonian (eqn (3)) in a specific basis set.
We want to note that these two energies agree in the CBS limit.

V. Results and discussion

One assumption motivating our development of TC-AVQITE is that by explicitly
dealing with Kato’s cusp condition with a TC transformation,**** total energies
should reach closer to the CBS limit compared to AVQITE. Furthermore, we expect
that transferring complexity from the wavefunction to the Hamiltonian in the TC
method (eqn (15)), should translate to shallower quantum circuits.** In other
words, the two metrics relevant for comparing TC-AVQITE and AVQITE are the
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computed energies and the number of operators adaptively appended to the
ansatz circuits.

To compare TC-AVQITE with AVQITE, we study bond dissociation in three test
cases: quadratic Hy, LiH and H,O. In the latter case, the bond dissociation is
defined with respect to symmetric stretching of the roy distances at a fixed angle
of /(HOH) = 104.4°. This test set was chosen so to include different kinds of
chemical bonds, including ionic (LiH) and polar covalent (H,0), as well as to
stress-test the methodology in strongly correlated systems (H,). In what follows,
we study different points along these systems’ potential energy surfaces to capture
behaviours of bonded, broken bond, and half-broken bond regimes. For bench-
marking purposes, all TC-AVQITE calculations are additionally compared to FCI
computations performed with different basis sets (STO-6G, cc-p(C)VTZ or CBS-
limit extrapolation) and our original TC-VarQITE implementation®+** using
a full UCCSD ansatz.

A. Convergence in imaginary time

Fig. 5 compares the imaginary time evolution of each tested molecule in the half-
broken bond regime.

Hg, 20 A LiH, 2.25 A H20,1.5 A
-754

—— AVQITE -7.90
—— TC-AVQITE -755
—— TCvarQTE 792

--- FCI-NoTC -758
----- ED-TC

!
o

Total energy [Ha]
| | |
© © ~
o
4044
© © ©
& 8 R

-75.7

-75.8

~8.00 -75.9 \

=20

150

=

N
2
3

100

Operator count [#]
s =

50

® ©

o -

20 40 60 80 100 0 10 20 30 40 50 0 5 10 15 20 25 30
T

Fig. 5 TC-AVQITE (green), AVQITE (red) and TC-VarQITE (blue) evolutions for Hy (left),
LiH (middle) and H,O (right column) in the half-broken bond regime using a STO-6G basis
set. Top row: Total energy vs. imaginary time 7. Middle row: Energy error of AVQITE relative
to FCI/STO-6G and TC-AVQITE/TC-VarQITE relative to the ED of the TC Hamiltonian in
the STO-6G basis. The shaded area indicates computational accuracy. Note the sharp
discontinuity of the energy error for H,O — this feature arises when the TC-AVQITE/TC-
VarQITE energy estimate crosses the ED — TC result. Bottom row: Number of adaptively
added operators vs. imaginary time. For clarity of demonstration, the number of operators
used by TC-VarQITE (the full UCCSD pool) is omitted. These numbers are 152 for H4 and
640 for LiH and H,O, respectively.
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The main strength of TC-AVQITE and TC-VarQITE is apparent from the first
row of Fig. 5: There is a substantial difference between the conventional FCI result
(FCI - No-TC) and the energy obtained by exactly diagonalizing the TC Hamilto-
nian (ED - TC), despite both using the same basis set. These improved energies
due to the TC approach are the primary cause of the difference between TC-
AVQITE/STO-6G and AVQITE/STO-6G when compared to FCI/CBS in Fig. 6,
which we will discuss below.

The second and third rows of Fig. 5 clearly illustrate how an initial rapid ramp-
up of appended operators corresponds to a sharp decline in error. After this initial
phase, the number of operators in the ansatz plateaus while the energy continues
to converge steadily. One anomaly is apparent in the energy error for the calcu-
lation of H,O. This sharp discontinuity arises because the energies of both TC-
VarQITE and TC-AVQITE cross the reference energy obtained by exactly diago-
nalizing the TC Hamiltonian, expressed in the STO-6G basis set (ED - TC). Such
crossings can occur because the non-Hermiticity of the TC Hamiltonian H
invalidates the Rayleigh-Ritz variational theorem. In such situations, the TC-
AVQITE and TC-VarQITE energy approaches the final ED - TC value from below
after the discontinuity. The final error of both adaptive methods (AVQITE and TC-
AVQITE) is well below computational accuracy concerning the corresponding
reference values (FCI - no-TC/ED - TC).

Opposed to TC-AVQITE, TC-VarQITE (using the entire operator pool) struggles
to converge for H, at 2.0 A and H,0 at 1.5 A, where it retains an energy error to the
ED - TC result of around 1 mH. This behaviour is consistent with previous
findings for ADAPT-VQE,” suggesting that adaptive ansitze can improve
convergence. In addition to the results shown here, we compare TC-VarQITE with
TC-AVQITE for all H, bond lengths, see the ESI for details.f In general, our results
indicate that TC-AVQITE is more accurate with respect to the ED - TC energy than
the TC-VarQITE calculation. The exception to this case is the broken-bond regime,
where both perform roughly equivalently.

The third row of Fig. 5 shows the lower operator count made possible with TC-
AVQITE. For perspective and to appreciate the power of adaptive methods for
reducing circuit depth without losing (and potentially even improving) accuracy,
we note that the number of available operators (the full pool) that TC-VarQITE
uses is 152 for H, and 640 for LiH and H,O.

Table 1 shows the final errors for FCI - No-TC/ED - TC results both to the STO-
6G basis and to FCI/CBS results, as well as corresponding estimates of required
quantum resources. The listed resource estimates assume full circuit connectivity
and are given as the total number of 1- and 2-qubit gates, the number of CNOTs,
and the circuit depth (the number of gates that cannot be performed in parallel).
Even for tiny target energy errors, |AE| < 10~°, the required CNOT count for TC-
AVQITE calculations is within reasonable limits of near-term quantum devices.
Due to the adaptive nature of TC-AVQITE, even lower CNOT counts are possible
for less tight target |AE|. In addition, specialised quantum circuited compilation/
transpilation methods*****¢ could significantly reduce the required gate counts
further.

These results demonstrate that using adaptive quantum ansétze in TC-AVQITE
improves convergence and drastically reduces the number of CNOTs and circuit
depth. The circuit depth using TC-AVQITE is reduced by an order of magnitude
for LiH and H, and a factor of 5 for H,O compared to TC-VarQITE.
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Table 1 Estimates of final quantum circuit requirements and final energy errors for the
calculations shown in Fig. 5. All results use parity encoding with a subsequent 2-qubit
reduction. We report the (final) number of used UCC operators and the corresponding
required total number of gates, the number of CNOTSs (obtained with Qiskit's count_ops)
function), and the circuit depth

Circuit |AE| to STO- |AE| to
System #Qubits Method #Operators #Gates #CNOTs depth 6G/FCI or ED CBS/FCI

H,, 2.0 6 AVQITE 15 271 118 161 9.078 x 10> 1.324 x 10 *
A TC- 15 269 116 151 2.167 x 107° 3.349 x 107>
AVQITE
TC- 152 2797 1250 1643  1.026 x 107> 3.452 x 10>
VarQITE
LiH, 10 AVQITE 105 2993 1246 1476  4.056 x 107° 1.141 x 10"
2.25A TC- 66 1752 704 842 9.487 x 10°°® 2.077 x 10?2
AVQITE
TC- 640 14570 7080 8468  1.308 x 10°° 2.077 x 10?2
VarQITE
H,O, 10 AVQITE 190 5724 2450 3069  2.082 x 10°° 5.898 x 107"
1.5 A TC- 174 4792 2054 2537 3.041 x 10°° 2.603 x 107"
AVQITE
TC- 640 14572 7080 8460  1.002 x 107> 2.593 x 10"
VarQITE

B. Bond dissociation

Next, we compare TC-AVQITE with AVQITE along our test set’s entire bond
dissociation curves. We omit direct comparison with TC-VarQITE here, as both TC-
AVQITE and TC-VarQITE target the same ED - TC energies. Fig. 6 demonstrates
a substantial advantage of TC-AVQITE, both in terms of lower total energies and
fewer adaptively added operators. The error with respect to FCI/CBS results is up to
an order of magnitude smaller using TC-AVQITE when applied to LiH across the
entire binding curve, as well as in the stretched and broken-bond regimes of H, and
H,O. These drastically improved total energies are remarkable considering that
only a minimal basis set is used, and clearly demonstrate the benefit of the TC
method in reducing quantum circuit width (i.e., the number of necessary qubits).

As shown in the bottom row of Fig. 6, this reduction in circuit width is
accompanied by a simultaneous contraction of the required circuit depth. The
benefit is modest for H, and H,O, where the number of final operators is reduced
by 8% to 26% on average, respectively. In the case of LiH, TC-AVQITE reduces the
needed circuit depth by half compared to AVQITE while yielding results consid-
erably closer to the CBS limit. However, there are exceptions. For example, for our
calculation of quadratic H, with a side length of 2.0 A, both TC-AVQITE and
AVQITE require 15 operators to reach convergence. We argue that the lack of
improvement in situations such as these is due to a combination of (a) the
minimal basis set size (only one spatial orbital per H atom); and (b) H, being
a notoriously difficult system for unitary coupled cluster theory limited to single
and double (UCCSD) excitations,* which our operator pool is based upon.

In the molecular disassociation limit of H, and H,O, a curious behaviour can be
observed: the TC-AVQITE energy errors to FCI/CBS are generally lower for larger
bond lengths. This behaviour is most likely a basis set effect as the utilized minimal
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basis can better describe disassociated atoms than molecules. The presence of
basis set effects motivates using larger basis sets, even with the TC method.

In Fig. 7, we look more closely at two challenging examples where the operator
count produced by TC-AVQITE might not look advantageous compared to AVQITE
at first glance.

First, in the case of the modest circuit depth reduction for quadratic H, at 1.0
A, TC-AVQITE adds something essential: in contrast to AVQITE, TC-AVQITE
actually converges to the ground state solution! In contrast, AVQITE struggles
to converge and retains a sizeable energy error exceeding 0.1 Ha at convergence.
The same convergence issue also occurs for AVQITE (though far less noticeably)
when applied to H, at a bond length of 3.0 A, where computational accuracy
cannot be reached; see the ESI for details.f By moving complexity from the
wavefunction to the Hamiltonian, TC-AVQITE converges well below computa-
tional accuracy while, at the same time, requiring two operators less to do so.

The second exception to circuit depth reduction seen in Fig. 6 is H,O at bond
length 2.5 A. In this case, the final operator count of TC-AVQITE is higher than the
count for AVQITE, seemingly contradicting our assumption that TC approaches
reduce circuit depth. However, a closer look at the imaginary time evolutions

Hy LiH H,0
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Fig. 6 Comparison of results from TC-AVQITE/STO-6G (green), AVQITE/STO-6G (red),
FCl/cc-p(C)VTZ (black) and FCI/CBS results (blue) for Hy (left column), LiH (middle
column) and H,O (right column). (Top row) Total energy as a function of bond distance.
(Middle row) Energy error with respect to FCI/CBS estimates as a function of bond
distance. (Bottom row) The final number of adaptively added operators in AVQITE and TC-
AVQITE calculations as a function of bond distance. Note: For visualization purposes, the
bar plots in the middle and bottom rows are plotted as a function of bond distance.
Adjacent pairs of red (AVQITE) and green (TC-AVQITE) bars correspond to the distances of
the corresponding markers in the top row. Corresponding imaginary time trajectories are
provided in ESI.{
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(Fig. 7 left column) reveals that similar to H, at 1.0 A, AVQITE here fails to
converge to the FCI/STO-6G ground state. In other words, the high operator count
for TC-AVQITE in these examples is caused by the algorithm successfully iden-
tifying suitable operators to append. If AVQITE were to converge in this example
(for H,O at 2.5 A), we expect its final operator count to be substantially larger.

Similar as in the case for H, at 2.0 A and H,0 at 1.5 A (Fig. 5), TC-VarQITE also
fails to converge for H,O at 2.5 A. This case demonstrates that using adaptive
ansdtze in TC-AVQITE reduces circuit depth and improves convergence for
strongly correlated systems like stretched H,O.

The examples we have discussed highlight the strengths of the TC method -
how a similarity transformation can simplify the solution by transferring
complexity from the wavefunction to the Hamiltonian. In other words, results
from our test set of calculations support our premise that TC-AVQITE reduces
both circuit width and depth, by yielding better results with smaller basis sets and
shallower quantum circuits. At the same time, TC-AVQITE can improve conver-
gence behaviour compared to TC-VarQITE, which uses a full and pre-defined
UCCSD operator pool.

Hq, 1.0 A H,0,2.5A

0
7.5
125
& 150
€125 100
S AVQITE 75
5 10.0
] —— TC-AVQITE 5
g 75 | —— TC-VarQITE
o --= FCI-NoTC 25
50 | aaeas ED-TC b
) 0 )
0 25 50 75 0 100 200
T T

Fig. 7 Two examples where convergence was not reached for AVQITE: H4 with bond
length 1.0 A (left) and H»O with bond length 2.5 A (right column), where TC-VarQITE also
fails to converge, using a STO-6G basis. Top row: A comparison between the TC-AVQITE,
TC-VarQITE and AVQITE total energies. Middle row: energy error of AVQITE relative to
FCI/STO-6G and TC-AVQITE/TC-VarQITE with respect to ED of the TC Hamiltonian in
the STO-6G basis. Bottom row: operator counts for the two adaptive methods.
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V. Conclusion

The most significant barrier to the practical quantum computation of chemistry is
the performance of current hardware, which imparts particularly harsh restric-
tions on the quantum circuit width (number of qubits) and depth. This work
demonstrates that combining an explicitly correlated approach, the trans-
correlated (TC) method, with adaptive quantum ansétze in the context of varia-
tional quantum imaginary time evolution (AVQITE) significantly reduces the
necessary circuit depth and width.

The TC method transfers complexity away from the wave function by incor-
porating Kato’s cusp condition into the Hamiltonian description of a system.
Consequently, the transformed TC Hamiltonian’s eigenfunctions are easier to
represent with smaller basis sets and require shallower adaptive quantum circuit
ansatze. This quantum resource reduction enhances noise resilience and enables
higher accuracy in calculating ground state energies for small molecular systems.

By applying TC-AVQITE to the electronic structure problems of H,, LiH, and
H,0, we demonstrate a close agreement with complete basis set limit results
despite using a minimal basis set; in stark contrast to traditional (non-
transcorrelated) methods. Additionally, we show that, by transferring
complexity from the wavefunction into the Hamiltonian, TC-AVQITE is able to
converge when applied to strongly correlated systems (H,, stretched H,0), where
“conventional” AVQITE or non-adaptive approaches (TC-VarQITE) fail. Addi-
tionally, for the systems studied in this work, TC with adaptive quantum ansétze
reduces the required quantum resources by a factor of 5 to 10 compared to a fixed
quantum ansatz strategy employed in TC-VarQITE.

While the current study focuses on small molecular systems, we emphasise
that TC-AVQITE holds promise for addressing larger, more complex quantum
chemistry problems in the future. To achieve such up-scaling, we intend to
combine the TC approach with more elaborate basis sets, active space approaches
and self-consistent orbital optimization,***** embedding methods,"**>*** as well
as spin-conserving schemes.'****%® Because the TC method coupled with
adaptive ansétze leads to more compact quantum circuits, the method should be
inherently less susceptible to noise. Therefore, another future research direction
will be to study the effect of hardware noise on the method’s performance,
moving closer to practical quantum chemistry applications.
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