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Chemical demand prediction is important for water management and the environment. This study aimed

to select and apply suitable data-driven models based on real-world big data for dosage prediction towards

improved automated control of water treatment plant management. Coagulation is a prominent process in

normal water treatment plants (WTP). The chemical reactions are complex and the amount of coagulant

dosage required was affected by many factors which makes it difficult to determine the optimal dosage

effectively. Additionally, the coagulant process is a typical non-linear, multi-variable, large time-delay, non-

stationary, strong coupling and time-varying system. Accurately determining the amount of coagulant

added has become one of the most significant challenges. Some studies build a prediction model that only

uses current water quality parameters, the previous time sequences were ignored and lacked consideration

of multivariate time series and multiple water quality parameters simultaneously, resulting in unsatisfactory

prediction accuracy. This study not only takes current water quality parameters into account during the

modelling but also considers historical time-series water quality features. We found that the attention-

based encoder-decoder of the recurrent neural network framework is an effective model in the area of

intelligent water management. In this paper, we studied real-world data with 4 different machine learning

models. Compared to the other three potential competitive machine learning algorithm models (random

forest, multiple linear regression, and long short term memory), the experiment results demonstrated the

best performance for predictive analysis with a highest coefficient of determination (R2) of 0.9908 and

lowest values of root mean squared error (RMSE), mean absolute error (MAE), and mean absolute

percentage error (MAPE) (1.2524%, 1.1263%, and 1.01%, respectively) in the DA_RNN algorithm.

Consequently, this study provides a more reliable and accurate approach for forecasting wastewater

coagulation dosage, which is pivotal in terms of the socio-economic aspects of wastewater management.

1. Introduction

Every day, the world needs to treat an incredible amount of
wastewater (about 1 billion m3 per day of wastewater), with
the development of society, the treatment load is expected

to increase by 24% by 2030 and 50% by 2050.1 The
chemicals usage varies from 1 to 13 g m−3 regarding the
feeding management and real water quality (inlet status and
outlet requirement) in a real wastewater treatment plant
(WWTP).2 However, machine learning (ML) instead of
relying on workers' experience is claimed to save chemicals
in water management.3 The worldwide treatment wastewater
market is expected to increase from 283.5 billion US dollars
a year in 2021 to 465 in 2028,4 thus, the financial benefits
of chemical saving are significant. The consumption of
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Water impact

Every cubic meter of water needs to consume about 13 g of chemicals in water processing and the dosage will change depending on design, water use,
water quality, treatment process, etc. Based on multivariate time series and multiple water quality parameters, we built a deep learning model to improve
dosage prediction accuracy in wastewater treatment plants, which saves resources and improves economic efficiency.
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chemicals has also been greatly improved, which cause
secondary pollution to the environment and waste huge
amounts of energy resources. Considering applying ML in
more accurate dosage demands requires understanding that
coagulation is one of the most widespread water treatment
methods,5 and the coagulant process is a typical non-linear,
multi-variable, large time-delay, non-stationary, strong
coupling, time-varying system.6,7 Meanwhile, the complexity
of the coagulation chemical theory is affected by many
factors (turbidity (TUR), pH value (PH), electrical
conductivity (CON), flow rate, total phosphorus, total
nitrogen, ammonia nitrogen (AN), chemical oxygen demand,
etc.), which means it is difficult to accurately determine the
amount of coagulant added.8 Data-driven solutions for
maintenance or efficiency improvement have been proven to
have a positive impact on social and environment aspects
in real-world projects,9 with the advancement of data
analytical tools and their interdisciplinary applications in
environmental science and engineering, powerful computer-
based ML and artificial neural networks (ANN) have shown
great potential for prediction and optimization of process
control for wastewater treatment.3,10,11

With the rapid development of ML algorithms, a
favourable tool for precise dosing control is provided.12–15

Heddam16 proposed an extremely randomized tree, random
forest (RF) and multiple linear regression (MLR) for
predicting coagulant dosage in the Boudouaou drinking
water treatment plant (DWPT). Wang17 combined a genetic
algorithm-based and particle swarm optimization technique
with regression model analyses implemented to optimize the
coagulation dosage. Icke18 applied a self-learning feed-
forward algorithm to improve chemical dosing accuracy and
reduce energy consumption. Xu3 employed eight ML models
to predict the chemical dosage WWTP and compared the
performance of each model. Fang19 utilized the light gradient
boosting machine algorithms to forecast dosage in WWPT,
and relatively good results were achieved. Wang20 compared
principal component regression (PCR), support vector
regression (SVR) and long short-term memory (LSTM) neural
networks to build predictive models, and the results show
that the LSTM algorithm outperforms both PCR and SVR.
However, the wastewater treatment process is a typical non-
linear, multi-variable, time-lapse system involving complex
removal mechanisms influenced by a multiplicity of factors
such as coagulant types, properties and source water origin.
Traditional machine learning algorithms under-perform
when solving this kind of problem.

Artificial neural networks (ANN) have proven to be an
effective way to solve various non-linear problems.21–25

Heddam26 and Hong27 adopted an adaptive neuro-fuzzy
inference system model with pH, TUR, dissolved oxygen
(DO), CON, and temperature as model input parameters for
coagulant dosage in DWPT. Wadkar28 applied a cascade feeds
forward neural network to predict coagulant dose. Haghiri29

used PH, temperature, alkalinity, and TUR as training
parameters for the multi-layer perceptron model to determine

the coagulation dosage in WWTP. Wu30 explored the effects
of data normalization and inherent factors on the decision of
optimal coagulant dosage in WWT by using the ANN
algorithm. Wang31 used the Elman neural network (ENN) to
predict coagulant dosage in the DWTP. Although these
models have achieved better results compared to ML
algorithms in dealing with nonlinear problems, nevertheless,
these models were used to treat original data as discrete data,
the water quality parameters of the previous time sequence
information were ignored and were not transformed into a
time series prediction problem, resulting in the prediction
accuracy being not satisfactory.

The sewage treatment process is a continuous addition of
drugs into the water stream and the collected data are the
time sequence. Simply using the current water quality
parameters to forecast dosage ignores the implied
information of the time series. As a result, the
aforementioned methods cannot reach accurate prediction
results. The amount of coagulant required at the current time
is not only related to the water quality parameters at the
current time but also related to the water quality parameters
at the previous time. Therefore, the problem of coagulant
dosage can be solved by time series prediction. Recurrent
neural network (RNN)32 is a kind of dealing with time series
task neural network, LSTM33 is a special type of RNN that
solves the vanishing gradient problem. Fang34 used the LSTM
algorithm model to predict the dosage of coagulant in
WWTP. Liu6 proposed a based-LSTM adjusting accumulated
error automatically and time-consistent term to determine
coagulant dosage in different data sources, better
experimental results are obtained. Based on the RNN and
attention mechanism,35 Qin36 proposed a dual-stage
attention-based recurrent neural network (DA-RNN), which
demonstrated great success in temporal forecasting, it seems
the fitness of this model regarding the features of water
quality is matched but it needs deeper research. Jing37

combined historical time-series data of COVID-19 with
geographic and local factors in the DA-RNN model to predict
COVID-19 cases, the model has better performance than
support-vector-regression and the encoder–decoder network
on the experimental datasets. Huang38 exactly forecasts wind
power generation by historical power and wind speed
information in DA-RNN. Liu39 proposed a dual-stage two-
phase attention-based recurrent neural network for long-term
and multivariate time series prediction, the experimental
results demonstrate that the model can be successfully used
to develop expert or intelligent systems. Due to the successful
performance of the DA-RNN model on other time series
problems interdisciplinary applications, we attempt to apply
it to more accurate predicted dosing control in the
wastewater treatment process.

The main contributions are summarized as follows: (1) a
detailed comprehensive review of the advantages and
disadvantages of addition prediction methods in WWTP. (2)
RNN-based models were able to capture the nonlinear and time
sequence relationship between chemical dose and source water
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quality changes. (3) Not only current water quality parameters
but also the historical time-series water quality feature data are
taken into account to construct a multivariate time series
prediction model. (4) Compared to three potential competitive
algorithm models (RF, MLR, LSTM), experimental results
demonstrate that the present work can be successfully used to
predict coagulation in WWTP.

After the literature review, the remainder of this paper is
organized as follows: in section 2, we present the wastewater
treatment relevant materials and preliminary knowledge of
the proposed method. The DA-RNN model for dosage
prediction in WWT is presented in section 3 in detail. In
section 4, the experimental design, assessment criteria,
experimental results analysis, and analyzed parameter
sensitivity were evaluated for model algorithm comparison
purposes. To assess the predictive accuracy of the models, we
also compared the predicted performance of RF, MLR, and
LSTM methods, and the datasets were mathematically
evaluated by calculating the following evaluation criteria:
coefficient of determination (R2), root mean squared error
(RMSE), mean relative error (MRE) and mean absolute
percentage error (MAPE). Section 5 is the conclusion.

2. Materials and preliminary
knowledge
2.1 Description of the wastewater treatment plant

Fig. 1 exhibits the partial process and DA-RNN unit of the
WWTP. The raw water was textile printing and dyeing
wastewater from a printing and dyeing mill in Jiaxing city of
Zhejiang province, China. The stirring unit used
polyaluminum chloride (PAC) as a coagulant and the DA-
RNN unit installed here is to predict the optimal dosage for
this process. Usually, the wastewater treatment process
involves physical, chemical, and biological reactions that
transform raw water into sewage discharge standards.
Physical handling is first, the coarse grid is the first
treatment procedure of sewage after influent, its purpose is
to filter out large, suspended pollutants. After the coarse grid,
the wastewater flows into the thin grid, by the coarse grid
and the thin grid, most of the solid pollutants were removed.
The pre-treated wastewater was pumped into the coagulation
reaction pool. In the coagulation reaction pool, by adding
coagulants in the sewage to destroy the stability of the

colloid, the fine suspended particles and colloidal particles
aggregate into larger particles and settle and separate from
the wastewater. In this process, the wastewater characteristics
including PH, TUR, CON and flow rate were measured by the
sensor. Due to the factory being a constant temperature
workshop, the wastewater temperature was stable, so we did
not collect the temperature feature of the wastewater. The
DA-RNN algorithm model is trained by four kinds of
parameter characteristics and previous time sequence
features, according to the water quality parameter input, the
coagulant prediction algorithms will automatically adjust
dosage volume to lower costs and optimizing chemical usage,
thereby cutting the operating costs of the water treatment
process. The mixer was employed to keep the liquor
completely mixed in the coagulant reaction pool. Wastewater
had a sufficient reaction of coagulation-flocculation and
sedimentation in the integrative reactor, and the effluent of
the super-stratum wastewater was poured into an aeration
pool for the biological treatment stage. The electromagnetic
valve at the bottom of the reactor was used for discharging
the sludge.

2.2 Data collection and characterization

To test the performance of different methods for coagulation
dosage prediction, we collected every 5 min real-world data
from the remote sensing data collector from the WWTP. The
plant mainly needs to treat different dyeing and post-
processing of fabrics because of the industrial needs for
dyeing and post-processing of fabrics. The data collection
period was from June 4 to September 27, 2019. The total data
samples collected is 26 064 during the real operation period.
Although the output data were collected daily as 24 hour
pulses, there lacks some data due to missing data or
interruptions. In this case, after cleaning the noisy data,
25 930 effective data samples of the model test were analyzed.
The raw water variables collected include the flow rate of the
wastewater, the pH of the incoming wastewater, the electrical
conductivity of the incoming wastewater, the turbidity of the
incoming wastewater, and the coagulation dosages. The
coagulation dosages were calibrated to the best possible
performance. The ranges of the available online data and
statistical properties of the data are presented in Table 1.

2.3 Recurrent neural network

The recurrent neural network uses neurons with self-feedback,
it employed sequential information to capture information
about what has been calculated so far and can process an

Fig. 1 Flow chart of the wastewater treatment process.

Table 1 Statistical summary of raw HongHe water data

Variable Unit Min Max Mean Variance

pH — 6.80 7.76 7.34 0.04
TUR NTU 2.00 100 54.22 1396.97
CON μs m−1 6.89 12.27 9.69 1.15
Flow rate M3 s−1 2.90 3.11 2.90 0.01
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arbitrary length of time series data. Meanwhile, it performs the
same task for every element of a sequence, with the output
being dependent on the previous computations. Given an input
sequence (x1,T = x1, x2, …, xt, …, xT) RNN by formula ht = f (ht−1,
xt) the activity value ht of the hidden layer can be updated with
feedback and h0 = 0, f (·) is a nonlinear function, it could be a
feed-forward network. Theoretically, a fully connected RNN can
approximate any non-linear dynamical system. When the input
sequence is long, there will be gradient explosions and
disappearance problems. To solve these problems, one of the
most effective ways is to improve the cited gating mechanism.
It can control the cumulative speed of information, including
the selective addition of new information and selective
forgetting of previously accumulated information. The long
short-term memory (LSTM) cell is a famous instance of RNN.

2.4 Long short term memory

LSTM can effectively solve the problem of gradient explosion
or disappearance of recurrent neural networks. LSTM
network introduces a gating mechanism to control the path
of information transmission. The specific structure of the
LSTM unit is shown in Fig. 2. Each LSTM cell consists of an
input gate it, forgotten gate ft, and output gate ot, they can be
obtained by the eqn (1)–(3).

it ¼ σ w*i xt; ht−1½ � þ bi
� �

(1)

f t ¼ σ w*f xt; ht−1½ � þ b f
� �

(2)

ot ¼ σ w*o xt; ht−1½ � þ bo
� �

(3)

ct−1 is the memory unit of the previous moment, c̃t is the
candidate state obtained by nonlinear function by eqn (4)

c̃t ¼ tanh w*i xt; ht−1½ � þ bi
� �

(4)

ht is the hidden state at the time t, which is defined as eqn (5)

ht ¼ o*t tanh ct (5)

ct is the cell state at the time t, which is defined as eqn (6)

ct ¼ f *tct−1 þ i*tct (6)

In the formula xt, is the input at the time t, ht−1 is the hidden
state of the layer at time t – 1 or the initial hidden state at

time 0, ot is the output gate, which controls how much ct
outputs to the next hidden state ht, wi, wf, wf, wo are the
weight matrices. bi, bf, bo, bc, bi are the bias vector, σ is the
sigmoid function and * is the vector elements product.

2.5 Attention encoder decoder

Based on LSTM or gated recurrent unit (GRU), encode-
decoder networks40 have become popular due to their success
in machine translation. The encoder extracts a fixed-length
representation from a variable-length input sentence and the
decoder generates a correct translation from this
representation. Cho40 proposed an attention-based encoder–
decoder network that employs an attention mechanism to
select parts of hidden states across all the time steps. It
solved the problem that their performance will deteriorate
rapidly as the length of the input sequence increases.
Inspired by some theories of human attention, Hübner41

posits that human behaviour is well-modelled by a two-stage
attention mechanism. Qin36 proposed a novel dual-stage
attention-based recurrent neural network (DA-RNN) to
perform time series prediction, the challenge of features
transferring from water quality in time series could possibly
be addressed by this algorithm because they share similar
feature characteristics but this needs more research.

3. Modelling approaches

Fig. 3 is the graphical illustration of the DA-RNN model for
dosage prediction in WWTP. The model includes the input of
data, the learning of the DA_RNN model and the output of
predicted values of dosing. The input of data includes feature
input and label input. Feature input that is input four driving
series, i.e. x = (x1, x2, x3, x4)T = (x1, x2, …, xt) ∈ 4×T, there
are representative PH, TUR, CON and flow rate, where T is
the length of window size, use xk = (x1

k, x2
k, ·, xT

k)T ∈ T to
represent a driving series of length T and employ xt = (xt

1, xt
2,

xt
3, xt

4)T ∈ 4 to denote a vector of four input series at time
t. The label input that is given the previous values of the

Fig. 2 The structure of the LSTM cell.
Fig. 3 Graphical illustration of DA-RNN to predict dosage for the
wastewater treatment plant.
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target series, i.e., (y1, y2, …, yt−1) with yt ∈ , which are the
values of dosing.

The model learning section contains two stages, in the
first stage, a new attention mechanism was designed to
adaptively extract the relevant driving series at each time step
by referring to the previous encoder hidden state. The input
attention layer calculates the attention weights αt for multiple
feature time series xt conditioned on the previous hidden
state ht−1 in the encoder and then feeds the computed x̃t into
the encoder RNN layer. The calculation formula is as follows:
x̃t = at

TXt. In the second stage, a temporal attention
mechanism is used to select relevant encoder hidden states
across all time steps. The temporal attention system then
calculates the attention weights based on the previous
decoder hidden state dt−1 and represents the input
information as a weighted sum of the encoder hidden states
across all the time steps. The generated context vector ct is
then used as an input to the decoder RNN layer.

The predicted values of dosing are the output results. The
DA_RNN model aims to learn a nonlinear mapping to the
current value of the target series yT: ỹT = F(y1, …, yT−1, x1, …,
xT). Where F(·) is the nonlinear mapping function we aim to
learn by model training. The output ỹt of the last decoder cell
is the predicted dosing result at time t.

4. Results and discussion
4.1 Experimental setup and parameter settings

Our experiment environment uses TensorFlow running as a
backend and Keras API in Python3.7 version is used for
model training and building. In this study, 25 930 effective
data samples were used for validation of the algorithmic
model. Every sample of data input feature includes the PH,
TUR, CON, flow rate, and the coagulation dosages of the
predicted label. 70% of the dataset was divided into the
training set, 20% of the dataset was used for the validation
set and the remaining 10% of the dataset is used as a test set
for evaluating the performance of the model prediction.

Xnorm ¼ X −Xmin

Xmax −Xmin
(7)

X = (Xmax − Xmin) × Xnorm + Xmin (8)

Because the data collected by various sensors have different
dimensions and magnitudes, to avoid the situation of slow
model training speed and large training errors caused by
different dimensions, in this paper, the input and output
data are normalized by the method max-min. Convert the
data to the range [0,1], data recovery will be carried out after
the prediction. Max–min normalization formula as eqn (8).
Xnorm is normalized data by eqn (7). X is original data, Xmax is
the maximum value of the data and Xmin is the minimum
value of the data.

In the experiment settings, the loss function used here is
mean square error loss, the optimizer function we used the

Adam method. In the activation function, we used the tanh
function. The batch size is 64, the epoch is 50, and the size
of hidden states for the encoder and hidden states for the
decoder is 64.

4.2 Assessment criteria

To verify the reliability of different algorithms, we evaluated
the performance of models by the coefficient of
determination (R2), root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE). R2 is a mathematical calculation of the square of the
correlation coefficient, also called the determination
coefficient, as shown in the formula (9). It is an easy-to-
calculate and very intuitive metric for measuring correlation.
The corresponding value is between 0 and 1. The larger the
value of R2, the better the performance of the model. RMSE
is the square root of the ratio of the square sum of the
deviation between the observed value and the true value to
the number of observations, as shown in the formula (10). Its
value is always non-negative, typically, a lower RMSE is better
than a higher RMSE. MAE represents the average of absolute
errors between predicted and observed values, as shown in
formula (11), the error cancellations can be avoided and the
actual prediction error can be accurately reflected. MAPE is
used to measure the relative errors between the average test
value and the real value on the test set, it is defined as
formula (12). The smaller the MAPE, the better the accuracy
of the prediction model.

R2 ¼
Pn
i¼1

cti − ct—ð Þ· cpi − cp—
� �� �2

Pn
i¼1

cti − ct—ð Þ2·Pn
i¼1

cpi − cp—
� �2 (9)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

cti − cpi
� �2s

(10)

MAE ¼ 1
n

Xn
i¼1

cti − cpi
� ��� �� (11)

MAPE ¼ 100
n

Xn
i¼1

cti − cpi
� �

cti

����
���� (12)

In the formula, n is the number of data, cti is the true value of
the drug dosage at the ith sample point; cpi is the predicted
value of the drug dosage at the ith sample point and is the
average of the predicted results and the real results.

4.3 Experimental results and analysis

To verify the effectiveness of the DA-RNN for dosage
prediction in WWTP, we compare the DA-RNN against three
different algorithm models, which are RF, MLR and LSTM.
Fig. 4 shows the comparison between the predicted coagulant
dosage and the actual dosage in four algorithm models. Fig. 4
shows that the amount of dosing required fluctuates widely,
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there are no obvious specific patterns and it shows nonlinear
and non-stationary characteristics. The red line represents the
actual recorded dosage, and the green line represents the
predicted coagulant dosage in the algorithm model. The DA-
RNN algorithms model seems to be very suitable for dosage
prediction because all evaluation metrics (R2 is 0.9908, RMSE
is 1.2524, MAE is 1.1263, and MAPE is 1.01%) were better
than the other 3 algorithms (see Table 2). As shown in
Fig. 4(a), the predicted dosage and actual dosage are not
perfectly matched and the coincidence of the two lines is
relatively low (MAPE of RF is 8.29% compared to that of DA-
RNN is 1.01%; the R2 is only 0.9082 compared to 0.9908 for
DA-RNN). It shows that the RF algorithm performs poorly in
the regression task of time series data. Besides, Fig. 4(b)
shows that the coincidence of the two lines is relatively low
(MAPE of MLR is about 3.19%, which is less than that of RF
but double that of DA-RNN; the R2 is only 0.9174, although it
is slightly better than the RF algorithm, it is still not best
choice). Because of the complex characteristics of the
coagulant–flocculant reaction, the relationship between
coagulant dosage and sewage characteristics is also nonlinear,
this shows that it is not suitable to solve the problem of
nonlinear prediction with a linear model. Moreover, Fig. 4(c)
presents the experimental results of the LSTM algorithm
model, it is observed that the predictive performance is better
than RF and MLR (for which MAPE is 1.76% compared to
8.29% and 3.19% of those two algorithms, separately).
Additionally, the line of prediction dosage and actual dosage

have a relatively high degree of overlap (MAPE of LSTM is
1.76%; the R2 is about 0.9627, but the RMSE 3.3871 is about
double of that of the DA-RNN algorithm), and it demonstrated
that the neural network algorithm has a strong nonlinear
fitting ability and the LSTM algorithm has comparably higher
efficiency to fit the time series model. Fig. 4(d) presents the
experimental results of the DA-RNN algorithm model, the line
of prediction dosage and actual dosage have an almost perfect
overlap, there are only very few points of error, and the error
values are quite small. It is shown that this algorithmic model
has strong multivariate timing prediction capabilities, and
good experimental results were obtained in these four
algorithmic models.

The scatter plot is an advantageous method in regression
forecasting analysis. Corresponding to Fig. 4 and 5 presents
the scatter plots of actual versus predicted values for the four
algorithm models, RF, MLR, LSTM, and DA_RNN in turn. As
shown in Fig. 5(a), there are many points outside the
regression line, and the predicted value deviation is also
relatively large. Fig. 5(b) is the same as Fig. 5(a). This
indicated that RF and MLR algorithm performs poorly for
dosage prediction in WWTP. In Fig. 5(c), a small number of
predicted deviations was observed, and the margin of error
seems acceptable. Viewing the whole picture, it is clear that
the scatter plot is largely around the regression line, with
only a very few forecast deviations. The result of the DA-RNN
algorithm model achieved the best fitting degree in Fig. 5(d).
It is shown that the DA-RNN algorithm presents a more

Fig. 4 The comparisons of the predicted and actual dosing in
different models. (a) RF (b) MLR (c) LSTM and (d) DA-RNN.

Table 2 The results of the different models

Model R2 RMSE MAE MAPE

RF 0.9082 9.6459 6.4793 8.29%
MLR 0.9174 8.5686 5.3936 3.19%
LSTM 0.9627 3.3871 2.2202 1.76%
DA-RNN 0.9908 1.2524 1.1263 1.01%

Fig. 5 The scatter diagram of the predicted and actual dosing in
different models. (a) RF, (b) MLR, (c) LSTM and (d) DA-RNN.
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reliable performance by using multi-variable time series
prediction model than a single time-series model.

The predicted results assessment criteria of different
methods are listed in Table 2. From Table 2, the performance
of each algorithm model can be compared more accurately
by a quantitative evaluation index value. In the prediction
result of the RF model, the value of R2 reached the lowest of
0.9082, and the value of RMSE, MAE, and MAPE obtained
were the highest, 9.6459%, 6.4793%, and 8.29%, which
performed worst in the four models. In the prediction result
of the MLR model, the value of R2 is 0.9174, and the values
of RMSE, MAE, and MAPE are 8.5686%, 5.3936%, and 3.19%,
resulting in a prediction slightly better than the RF model. In
the prediction result of the LSTM model, the value of R2 is
0.9627 and the values of RMSE, MAE, and MAPE are
3.3871%, 2.2202%, and 1.76%, compared with the RF model,
which was improved by 0.0453, 5.1815%, 3.1734%, and
6.53%, respectively. Qualitative analysis of the predictions of
the LSTM algorithm compared to RF and MLR showed a
significant improvement in evaluation criteria, it shows that
the LSTM algorithm is stronger than the RF algorithm and
MLR algorithm when dealing with nonlinear predictions. In
the prediction result of the DA-RNN model, the value of R2

reaches the highest value of 0.9908 and the values of RMSE,
MAE, and MAPE obtained are the lowest at 1.2524%,
1.1263%, and 1.01%, respectively. Compared with the RF
model, which was improved by 0.0826, 8.3953%, 5.353%, and
7.28%, respectively, all kinds of evaluation indicators have
been greatly improved. Compared with LSTM, the same
neural network model was improved by 0.0281, 2.1347%,
1.0939%, and 0.75%, respectively. By quantitative analysis,
considering multivariate time series and multiple water
quality parameters simultaneously in the DA-RNN algorithm
model, experiments verify the effectiveness of model DA-RNN
in WWT for predicting the coagulant dosage.

4.4 Comparison with existing methods

We compared the prediction result of the DA-RNN method
with some existing methods, as shown in Table 3. In Table 3,
we listed the location of data collection, algorithm model,
input variable features and four kinds of evaluation metrics
for each existing method. The regions cover many parts of

the world and methods include ML and neural network
methods. Salim-Heddam's16,26,44 experimental research
regarded coagulation dosage prediction coagulant dosage
rate in Boudouaou DWPT, Algeria. It used TUR, PH, DO,
CON, and temperature as input variable features and RF,
MLR, ANFIS, and RBFNN methods to conduct experimental
research, respectively. The experimental result shows that the
ANN methods prediction result is better than the traditional
ML algorithm and consistent with our experimental results,
which manifested that the neural network algorithm has a
strong nonlinear prediction ability. Kim43 applied generalized
regression neural network (GRNN) to determine the
coagulant dosage at Bansong drinking WTP, and determined
that the RMSE and R2 of the test data were 2.52% and 0.92.
Wu42 used TUR, temperature, colour, and PH as input
variables to construct the neural network model and
discussed the data normalization, neurons of hidden layer
and inherent-factor influence on experimental results. CD
Jayaweera45 applied ELM to determine the coagulant dosage
in Malaysia and obtained the R2 of the test data of 0.87. For
the time series prediction model, to solve the shortcoming of
the LSTM, Liu6 utilized automatically adjusting (AA) the
cumulative error in training and adds a time-consistent (TC)
in the loss function, abbreviated to the AATC_LSTM model,
to guarantee stable prediction, which obtained good results.
We use the most advanced time series prediction algorithm
model DA_RNN, which has the best results so far.

4.5 Parameter sensitivity

We plot the RMSE versus different lengths of time steps in
the window T in Fig. 6. The influence of DA-RNN with the
hyper-parameter and the length of time steps T was studied.
We kept the others fixed when we vary T, by setting beach
size and the size of hidden states to change the structure of
the encoder-decode network. The corresponding RMSE was
compared to different lengths of time steps in window T in
Fig. 6. It is easily observed that the performance of DA-RNN
will be worse when the length of time steps is too short or
too long. DA-RNN usually achieves the best performance
when T = 15, it demonstrated that the wastewater quality
parameters within 15 minutes were useful for the prediction
results. As a result, the dosage prediction changes irregularly

Table 3 Performance comparison of the different existing methods

Articles Location Method Input variables RMSE R2 MAE MAPE

Salim Heddam26 Algeria ANFIS TUR, PH, DO, CON, temperature 1.95 0.92 2.74 —
Guandu Wu42 Taiwan ANN TUR, temperature, colour, PH 1.46 0.76
Sadaf Haghiri29 Iran ANN PH, temperature, TUR 0.85
Kim43 South Korea GRNN TUR, temperature, PH, CON 2.52 0.92
Wang31 Suzhou ENN DO, PH, temperature, flow, TUR 1.89 0.89 5.01
Salim Heddam44 Algeria RBFNN TUR, PH, DO, temperature, CON 3.05 0.90
CD Jayaweera45 Malaysia ELM PH, TUR, color, alkalinity 0.87
Yiqun Liu6 Shanghai AATC_LSTM PH, DO, AN, CON, TUR 1.81 0.90 3.63
Salim Heddam16 Algeria RF PH, TUR, DO, temperature, CON 5.63 0.66 4.28
Salim Heddam16 Algeria MLR PH, TUR, DO, temperature, CON 7.58 0.23 6.80
Author Jiaxing DA_RNN TUR, PH, CON, flow 1.25 0.99 1.12 1.01
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but is highly related to both present and historical water
quality data. This implied information from previous time
series contributes to improving the accuracy of dosage
prediction in WWTP.

5. Conclusions

This paper has demonstrated the potential of deep neural
network models for applications in coagulant dosage control
in WWTPs. Compared to the fourth competitive artificial
intelligence algorithm model (RF, MLR, LSTM, DA_RNN), RF
and MLR are traditional ML methods, owing to the datasets
with nonlinearity and time sequences, it did not achieve good
experimental predicted results. LSTM and DA_RNN are deep
neural network methods, they rely on the strong predictive
and analytical ability of deep learning for nonlinearity and
timing sequence, we transform the dosing prediction into a
time series prediction problem, and the experimental results
also demonstrated that the predictive power of these two
methods is superior to RF and MLR methods. Compared with
LSTM, which introduce two attention mechanisms, the DA-
RNN can not only adaptively select the most relevant input
features but can also capture the long-term temporal
dependencies of a time series appropriately. Experimental
results demonstrate that the DA-RNN algorithm model can
obtain state-of-the-art prediction accuracy. In the meantime,
we analyzed the effect of the sensitivity of the hyper-
parameters and the length of time steps T on the predicted
results. By using the DA RNN algorithm to accurately predict
the dosage, we shed light on the optimization of wastewater
treatment efficiency. This is pivotal concerning the
socioeconomic aspects of wastewater management. Although
the experimental results were satisfactory, many limitations
should be addressed in the future to further warrant the
successful application of neural networks algorithm for WWP
prediction. The priority is a necessity to collect more data
from different industry WWTPs to ensure the neural
network's algorithms are generalized. The second is to
optimize the computation time of the algorithm to guarantee
real-time prediction. Finally, it is necessary to explore the
application of more advanced algorithms in the dosing
control of sewage treatment.

Author contributions

Conceptualization, X. F. and J. Z.; methodology X. F. J. Z. and
L. Z.; software, X. F.; validation J. Z.; writing-original draft
preparation by J. Z. and X. F.; writing-review and editing, J.
Z.; supervision, J. Z.; project administration Z. Z. and J. Z.;
proof-reading Z. S. and Y. L. All the authors have read and
agreed to the published version of the manuscript.

Conflicts of interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper. There
are no conflicts to declare.

Acknowledgements

This work has been supported by the Zhejiang Province 2019
Key Research and Development Plan Project (Grant no.
MY80), Science and Technology Innovation Development
Fund Project by the 36th Research Institute of China
Electronics Technology Group Corporation (Grant no.
MK2101S). We also want to show great thanks to Honghe
(Jiaxing) sewage treatment plant for providing the required
data and the OEICDI fund (Grant no. B13041) for supporting
research needs. Additionally, we would like to thank Special
Funding for Post-doctoral Research Project support from
RLSBJ Chongqing.

Notes and references

1 M. Qadir, P. Drechsel, B. Jiménez Cisneros, Y. Kim, A.
Pramanik, P. Mehta and O. Olaniyan, Global and regional
potential of wastewater as a water, nutrient and energy
source, Nat. Resour. Forum, 2021, 44, 40–51.

2 J. Zang, M. Kumar and D. Werner, Real-world sustainability
analysis of an innovative decentralized water system with
rainwater harvesting and wastewater reclamation, J. Environ.
Manage., 2021, 280, 111639.

3 Y. Xu, X. Zeng, S. Bernard and Z. He, Data-driven prediction
of neutralizer pH and valve position towards precise control
of chemical dosage in a wastewater treatment plant,
J. Cleaner Prod., 2022, 348, 131360.

4 L. Tiseo, Water and wastewater treatment market size
worldwide in 2020, with a forecast to 2028, Energy Environ.,
2021, 5, 47.

5 A. Sonune and R. Ghate, Developments in wastewater
treatment methods, Desalination, 2004, 167, 55–63.

6 Y. Liu, Y. He, S. Li, Z. Dong, J. Zhang and U. Kruger, An
Auto-Adjustable and Time-Consistent Model for
Determining Coagulant Dosage Based on Operators'
Experience, IEEE Trans. Syst. Man. Cybern. Syst., 2019, 51,
5614–5625.

7 G. Muthuraman and S. Sasikala, Removal of turbidity from
drinking water using natural coagulants, J. Ind. Eng. Chem.,
2014, 20, 1727–1731.

Fig. 6 RMSE vs. length of time steps T.

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 9
/8

/2
02

4 
7:

45
:3

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ew00560c


898 | Environ. Sci.: Water Res. Technol., 2023, 9, 890–899 This journal is © The Royal Society of Chemistry 2023

8 B. Lamrini and E.-K. Lakhal, A survey of deep learning
methods for WTP control and monitoring, Desalin. Water
Treat., 2018, 15, 298–299.

9 J. Zang, M. Royapoor, K. Acharya, J. Jonczyk and D. Werner,
Performance gaps of sustainability features in green award-
winning university buildings, Build. Environ., 2022, 207,
108417.

10 Q. V. Ly, V. H. Truong, B. Ji, X. C. Nguyen, K. H. Cho, H. H.
Ngo and Z. Zhang, Exploring potential machine learning
application based on big data for prediction of wastewater
quality from different full-scale wastewater treatment plants,
Sci. Total Environ., 2022, 832, 154930.

11 F. C. R. dos Santos, A. F. H. Librantz, C. G. Dias and S. G.
Rodrigues, < b> Intelligent system for improving dosage
control, Acta Sci., Technol., 2017, 39, 33–38.

12 S. Amali, N.-E. E. L. Faddouli and A. Boutoulout, Machine
learning and graph theory to optimize drinking water,
Procedia Comput. Sci., 2018, 127, 310–319.

13 C. M. Kim and M. Parnichkun, Prediction of settled water
turbidity and optimal coagulant dosage in drinking water
treatment plant using a hybrid model of k-means clustering
and adaptive neuro-fuzzy inference system, Appl. Water Sci.,
2017, 7, 3885–3902.

14 F. Muharemi, D. Logofătu and F. Leon, Machine learning
approaches for anomaly detection of water quality on a real-
world data set, Journal of Information and Telecommunication,
2019, 3, 294–307.

15 K. Zhang, G. Achari, H. Li, A. Zargar and R. Sadiq, Machine
learning approaches to predict coagulant dosage in water
treatment plants, Int. J. Syst. Assur. Eng. Manag., 2013, 4,
205–214.

16 S. Heddam, Extremely randomized tree: a new machines
learning method for predicting coagulant dosage in drinking
water treatment plant, Water Engineering Modeling and
Mathematic Tools, 2021, pp. 475–489.

17 K.-J. Wang, P.-S. Wang and H.-P. Nguyen, A data-driven
optimization model for coagulant dosage decision in
industrial wastewater treatment, Comput. Chem. Eng.,
2021, 152, 107383.

18 O. Icke, D. M. van Es, M. F. de Koning, J. J. G. Wuister, J. Ng,
K. M. Phua, Y. K. K. Koh, W. J. Chan and G. Tao,
Performance improvement of wastewater treatment
processes by application of machine learning, Water Sci.
Technol., 2020, 82, 2671–2680.

19 X. Fang, Z. Zhai, J. Zang and Y. Zhu, An Intelligent Dosing
Algorithm Model for Wastewater Treatment Plant, J. Phys.:
Conf. Ser., 2022, 2224, 012027.

20 H. Wang, T. Asefa and J. Thornburgh, Integrating water
quality and streamflow into prediction of chemical dosage
in a drinking water treatment plant using machine learning
algorithms, Water Sci. Technol.: Water Supply, 2022, 22,
2803–2815.

21 A. J. León-Luque, C. L. Barajas and C. A. Peña-Guzmán,
Determination of the optimal dosage of Aluminum Sulfate
in the coagulation-flocculation process using an Artificial
Neural Network, Int. J. Environ. Sci. Dev., 2016, 7, 346–350.

22 A. S. Kote and D. V. Wadkar, Modeling of chlorine and
coagulant dose in a water treatment plant by artificial neural
networks, Eng. Technol. Appl. Sci. Res., 2019, 9, 4176–4181.

23 N. Bekkari and A. Zeddouri, Using artificial neural network
for predicting and controlling the effluent chemical oxygen
demand in wastewater treatment plant, Manag. Environ.
Qual., 2017, 30, 593–608.

24 H. H. Loc, Q. H. Do, A. A. Cokro and K. N. Irvine, Deep
neural network analyses of water quality time series
associated with water sensitive urban design (WSUD)
features, J. Appl. Water Eng. Res., 2020, 8, 313–332.

25 G. O'Reilly, C. C. Bezuidenhout and J. J. Bezuidenhout,
Artificial neural networks: applications in the drinking water
sector, Water Sci. Technol.: Water Supply, 2018, 18, 1869–1887.

26 S. Heddam, A. Bermad and N. Dechemi, ANFIS-based
modelling for coagulant dosage in drinking water treatment
plant: a case study, Environ. Monit. Assess., 2012, 184,
1953–1971.

27 E. Hong, A. M. Yeneneh, T. K. Sen, H. M. Ang and A.
Kayaalp, ANFIS based Modelling of dewatering performance
and polymer dose optimization in a wastewater treatment
plant, J. Environ. Chem. Eng., 2018, 6, 1957–1968.

28 D. V. Wadkar, R. S. Karale and M. P. Wagh, Application of
cascade feed forward neural network to predict coagulant
dose, J. Appl. Water Eng. Res., 2022, 10, 87–100.

29 S. Haghiri, A. Daghighi and S. Moharramzadeh, Optimum
coagulant forecasting by modeling jar test experiments using
ANNs, Drinking Water Eng. Sci., 2018, 11, 1–8.

30 Y. Wu, J. M. Hernández-Lobato and G. Zoubin,
Dynamic covariance models for multivariate financial
time series, International Conference on Machine
Learning, 2013, pp. 558–566.

31 D. Wang, X. Chang and K. Ma, Predicting flocculant dosage
in the drinking water treatment process using Elman neural
network, Environ. Sci. Pollut. Res., 2022, 29, 7014–7024.

32 W. Zaremba, I. Sutskever and O. Vinyals, Recurrent neural
network regularization, arXiv, 2014, preprint, arXiv:1409.2329,
DOI: 10.48550/arXiv.1409.2329.

33 A. Graves, Long short-term memory, Supervised sequence
labelling with recurrent neural networks, 2012, pp. 37–45.

34 X. Fang, Z. Zhai, R. Xiong, L. Zhang and B. Gao, LSTM-based
Modelling for Coagulant Dosage Prediction in Wastewater
Treatment Plant, J. Phys.: Conf. Ser., 2022, 2224, 23–27.

35 D. Bahdanau, K. Cho and Y. Bengio, Neural machine
translation by jointly learning to align and translate, arXiv,
2014, preprint, arXiv:1409.0473, DOI: 10.48550/arXiv.1409.0473.

36 Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang and G. Cottrell,
A dual-stage attention-based recurrent neural network
for time series prediction, arXiv, 2017, preprint,
arXiv:1704.02971, DOI: 10.48550/arXiv.1704.02971.

37 N. Jing, Z. Shi, Y. Hu and J. Yuan, Cross-sectional analysis
and data-driven forecasting of confirmed COVID-19 cases,
Appl. Intell., 2022, 52, 3303–3318.

38 B. Huang, Y. Liang and X. Qiu, Wind power forecasting
using attention-based recurrent neural networks: a
comparative study, IEEE Access, 2021, 9, 40432–40444.

Environmental Science: Water Research & TechnologyPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 9
/8

/2
02

4 
7:

45
:3

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.48550/arXiv.1409.2329
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.48550/arXiv.1704.02971
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ew00560c


Environ. Sci.: Water Res. Technol., 2023, 9, 890–899 | 899This journal is © The Royal Society of Chemistry 2023

39 Y. Liu, C. Gong, L. Yang and Y. Chen, DSTP-RNN: A dual-
stage two-phase attention-based recurrent neural network
for long-term and multivariate time series prediction, Expert
Syst. Appl., 2020, 143, 113082.

40 K. Cho, B. Van Merriënboer, D. Bahdanau and Y. Bengio, On
the properties of neural machine translation: Encoder-
decoder approaches, arXiv, 2014, preprint, arXiv:1409.1259,
DOI: 10.48550/arXiv.1409.1259.

41 R. Hübner, M. Steinhauser and C. Lehle, A dual-stage two-
phase model of selective attention, Psychol. Rev., 2010, 117, 759.

42 G.-D. Wu and S.-L. Lo, Effects of data normalization and
inherent-factor on decision of optimal coagulant dosage in
water treatment by artificial neural network, Expert Syst.
Appl., 2010, 37, 4974–4983.

43 C. M. Kim and M. Parnichkun, MLP, ANFIS, and GRNN
based real-time coagulant dosage determination and
accuracy comparison using full-scale data of a water
treatment plant, J. Water Supply: Res. Technol.–AQUA,
2017, 66, 49–61.

44 S. Heddam, A. Bermad and N. Dechemi, Applications of
radial-basis function and generalized regression neural
networks for modeling of coagulant dosage in a drinking
water-treatment plant: comparative study, J. Environ. Eng.,
2011, 137, 1209–1214.

45 C. D. Jayaweera, M. R. Othman and N. Aziz, Improved
predictive capability of coagulation process by extreme
learning machine with radial basis function, J. Water Process
Eng., 2019, 32, 100977.

Environmental Science: Water Research & Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

23
. D

ow
nl

oa
de

d 
on

 9
/8

/2
02

4 
7:

45
:3

7 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.48550/arXiv.1409.1259
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2ew00560c

	crossmark: 


