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Metabolic alterations in dairy cattle with lameness
revealed by untargeted metabolomics of dried
milk spots using direct infusion-tandem mass
spectrometry and the triangulation of multiple
machine learning models†

Wenshi He, a Ana S. Cardoso,b Robert M. Hyde,b Martin J. Green, b

David J. Scurr,a Rian L. Griffiths, a Laura V. Randall *b and Dong-Hyun Kim *a

Lameness is a major challenge in the dairy cattle industry in terms of animal welfare and economic impli-

cations. Better understanding of metabolic alteration associated with lameness could lead to early diag-

nosis and effective treatment, there-fore reducing its prevalence. To determine whether metabolic signa-

tures associated with lameness could be discovered with untargeted metabolomics, we developed a

novel workflow using direct infusion-tandem mass spectrometry to rapidly analyse (2 min per sample)

dried milk spots (DMS) that were stored on commercially available Whatman® FTA® DMPK cards for a

prolonged period (8 and 16 days). An orthogonal partial least squares-discriminant analysis (OPLS-DA)

method validated by triangulation of multiple machine learning (ML) models and stability selection was

employed to reliably identify important discriminative metabolites. With this approach, we were able to

differentiate between lame and healthy cows based on a set of lipid molecules and several small metab-

olites. Among the discriminative molecules, we identified phosphatidylglycerol (PG 35:4) as the strongest

and most sensitive lameness indicator based on stability selection. Overall, this untargeted metabolomics

workflow is found to be a fast, robust, and discriminating method for determining lameness in DMS

samples. The DMS cards can be potentially used as a convenient and cost-effective sample matrix for

larger scale research and future routine screening for lameness.

Introduction

Lameness is a major health issue of dairy cows. It impairs sus-
tainability due to animal health and welfare impacts, and
therefore has economic and ethical implications.1 Despite the
recent efforts by the dairy industry to reduce lameness levels, a
recent study showed that the average prevalence in the UK is
as high as 30.1%.2,3 Early detection and timely treatment are
essential to mitigate the impacts of lameness.4 The current
mainstream method of diagnosis is mobility scoring based on
visual assessment of gait by trained observers.5 However, pain
experienced by lame cows is often masked by their instinctive

stoicism, which makes it difficult to diagnose the disease
before the appearance of clinical signs.6 Another major limit-
ation of this method is intra- and inter-observer variability.7

Other authors have reported that pro-inflammatory cytokines
and acute-phase proteins (APPs) can be used as biomarkers.8,9

However, because of the high cost of ELISA tests required for
detecting these immune-related molecules, alternative rapid and
robust approaches are urgently required for routine screening.

Metabolomics has become an increasingly popular “omics”
approach to biomarker discovery.10 State-of-the-art metabolo-
mics techniques allow the detection of hundreds to thousands
of metabolites with a minimal amount of sample.11 It is
believed that metabolomics can deliver remarkable achieve-
ment in livestock research due to its capability of fast, effective
and quantitative metabolic phenotyping.12 However, few
studies have been reported regarding metabolic alteration
associated with lameness. Zheng et al. utilised nuclear-mag-
netic-resonance (NMR)-based metabolomics to investigate
metabolic difference between healthy and cows with footrot
from blood samples.13 Dervishi et al. used gas chromato-
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graphy-mass spectrometry (GC-MS) to investigate the meta-
bolic signatures from serum samples of lame cows during
different stages of lameness development.14 Eckel et al.
showed that metabolic alterations during disease development
could be identified from cow’s urine using liquid chromato-
graphy (LC)-MS.15 However, metabolic alterations in lame cows
have not yet been investigated using milk, which is a desired
source as it is easily accessible and can be collected in a non-
invasive manner.

In real-world settings, farmers may face logistical chal-
lenges sending samples from farms to laboratories for lame-
ness diagnosis using metabolomics techniques. This arises
from the need for temperature regulations (usually at −80 °C)
during storage and transportation of conventional liquid bio-
logical samples. Hence, dried matrix (i.e., blood, urine, milk)
spots on paper is a more attractive sample type because of low
sample volume required, ease of collection, room–temperature
storage, and low–cost postal shipping. Although dried blood
spots (DBSs) have been used in a wide range of research
including metabolomics studies,16 few studies explored the
use of different dried milk spots systems,17–19 and none for
veterinary or agricultural applications. These established dried
milk spot (DMS) systems studied human breast milk and often
require pre-treatment of papers using different protocols
which can introduce extra inconsistencies between studies.
Here, we propose that the commercially available Whatman®
FTA® DMPK cards, which is originally designed for DBSs, can
be potentially used as a simpler way of collecting, preserving,
and storing bovine milk samples for metabolomics research.

In metabolomics research, popular statistical approaches of
identifying metabolic differences between classes are multi-
variate analysis techniques such as orthogonal partial least
squares (OPLS) and univariate analysis (e.g. Student’s
t-test20–23). However, these “conventional” methods have
innate limitations, especially when handling complex metabo-
lomic data. Firstly, OPLS tends to construct prediction models
that remove systematic variation that does not agree with the
assigned group classification, therefore, force scores-space sep-
aration.24 Without rigorous validation, the “significant” results
and “important” variables could be generated by the model
solely by chance. Secondly, for Student’s t-test, the idea of
hypothesising “there is a difference” based on the concept of
statistical significance and p values has been increasingly criti-
cised, as it provides fairly limited information about the data,
and can be easily misinterpreted.25 The triangulation of mul-
tiple machine learning methods can yield valuable insights on
the reliability of the results generated from the statistical work-
flow described above. It can also mitigate the issue of results
being method-dependent and improve the likelihood of identi-
fying truly important variables.26 Furthermore, since covariate
selection using conventional regression approaches often have
high variability and relatively low reproducibility, stability
selection could be incorporated into prediction models.27–30

This strategy can help identify the most stable predicators
under resampling that are likely to be the strongest candidates
as disease indicators among significant metabolites.

Here, we investigated the metabolic alterations in lame
cows compared with non-lame cows and assess the suitability
of Whatman® cards as a DMS media by using a direct infusion
method with TriVersa NanoMate sampling system coupled to
high-resolution MS. This direct infusion method allows high-
speed analysis (2 min per sample) in ambient environment.31

This feature allows rapid screening for potential biomarkers
which may also make it possible to conduct large-scale
research and routine lameness testing for dairy cows in the
future. Furthermore, with the strategy of using triangulation of
multiple statistical models, we were able to identify potential
disease predictors.

Experimental
DMS sample preparation

Milk drops were collected directly onto Whatman® FTA®
DMPK cards (Fig. 1) from 10 lame cows and 11 healthy cows
from one dairy farm based at the Centre for Dairy Science
Innovation (CDSI), University of Nottingham. It was a research
dairy herd containing 300 cows that produce milk commer-
cially. Cows were housed continuously with sand bedded cubi-
cles and slatted flooring. Lame and healthy control cows were
identified based on visual assessment using the Agriculture
and Horticulture Development Board (AHDB) scoring system
(0 to 3) where lame was defined as score ≥2 and healthy (non-
lame) defined as score <2.32 Each spot on the FTA® DMPK
cards contained one drop of milk (∼20 µL). The DMS cards
were air-dried, then stored in plastic seal bags at room temp-
erature. After 8 days, part of each spot was removed from the
cards into 1.5 mL Eppendorf tubes (Eppendorf AG, Hamburg,
Germany) using a 6 mm hole puncher. Extraction of metab-
olites from each sample was conducted with a 500 µL mixture
of 70% v/v methanol (VWR, West Sussex, UK) and 30% v/v
water to which MS-grade formic acid (Optima LC−MS grade;
Fisher Scientific, Loughborough, UK) was added (final concen-
tration, 0.1% v/v). Deionised water was prepared using a Milli-
Q water purification system (Millipore, MA, USA). After mixing
and incubating in the extraction solvent for 20 min, the
samples were centrifuged (MiniSpin®, Eppendorf AG,
Hamburg, Germany) for 10 min at 6708g. Then, 200 µL super-

Fig. 1 Example of dried milk spots on a Whatman® FTA® DMPK card.
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natants were transferred to clean Eppendorf tubes. To dilute
the extracted metabolites, a further 800 µL extraction solvent
was added to each sample. The procedure was adopted from a
metabolite extraction method using dried blood spots by
Trifonova et al.33 To assess the sample stability during a pro-
longed storage time at room temperature, the same metabolite
extraction procedure was repeated on day 16 using adjacent
milk spots.

Mass spectrometry analysis

The solvents containing extracted metabolites were transferred
into a 96-well plate, then 10 µL were directly infused into a
high-resolution Q-Exactive plus Orbitrap spectrometer
(Thermo Fisher Scientific, Hemel Hempstead, UK) via chip-
based nanoelectrospray ionisation (Advion Biosciences, Ithaca,
NY) at 1.5 kV and 0.6 psi gas pressure. Data was acquired for
1 min for each polarity using a scan range of m/z 70–1050. In
full MS mode, the resolution was set to 140 000 at m/z 200, and
the AGC target was set to 3 × 106 with a maximum ion injec-
tion time of 200 ms. The top 10 most intense ions were iso-
lated within a 0.5 m/z window for data-dependent acquisition
(DDA) at a resolution of 17 500, AGC target of 1 × 106 and a
maximum ion injection time of 50 ms. For data-independent
acquisition (DIA), the pre-selected ions were isolated within
a 0.4 m/z window at a resolution of 35 000 and AGC target of
2 × 105. Stepped normalized collision energy (NCE) of 20, 30
and 40 was applied in both DDA and DIA. The pooled QC
samples were analysed intermittently for the duration of the
MS analysis.

Peak picking and alignment

The .RAW data files from Xcalibur were converted to .mzXML
format using ProteoWizard.34 Peaks with intensities above
100 000 were picked and aligned within a 5 ppm m/z window
using an in-house MATLAB (R2020a, The MathWorks, Inc.,
Natick, MA) script.11 Features with more than 20% missing
values across all samples were removed. The remaining
missing values were imputed using k-nearest neighbour (knn)
imputation (k = 10).35 Individual ion intensity matrices from
both polarities were concatenated using a low-level data fusion
strategy.36

Multivariate and univariate analysis

Following the feature extraction workflow, the data were nor-
malised to total ion count, log-transformed and Pareto
scaled.37 Principal component analysis (PCA) and orthogonal
partial least squares discriminant analysis (OPLS-DA) models
were constructed using SIMCA 16 software (Umetrics, Sweden).
Selection of discriminative variables was based on a variable’s
importance in projection (VIP) score > 1 in OPLS-DA models.
The models were validated using the built-in function of leave-
one-out cross validation (LOOCV) procedure and permutation
test. Student’s t-test with controlled false discovery rate (FDR)
(q < 0.05) was performed in MetaboAnalyst 5.0.38,39 A p-value <
0.05 was considered significant.

Machine learning and stability selection

Following the feature extraction workflow, the data were nor-
malised to total ion count and standardised. Four common
supervised machine learning (ML) techniques were performed
in R,40 including random forest (RF),41 elastic net,42 partial
least squares (PLS),43 and support vector machine (SVM).44

Prediction accuracy of each model was assessed using LOOCV:
for each ML algorithm, 1 cow was chosen as test set and the
remaining cows were used as training set. This procedure was
repeated 20 times for each model. Recursive feature elimin-
ation (RFE) was used for all algorithms to identify the smallest
set of metabolites that provided maximum predictive accuracy;
this was conducted external to the LOOCV procedure to ensure
no selection bias occurred.45

Stability selection was performed using the stabiliser
package.46 Three penalised models: elastic net,42 minimax
convex penalty (MCP)47 and least absolute shrinkage and selec-
tion operator regression (Lasso)48 were constructed. Selection
stability was evaluated for each model as the percentage of
times that each variable was selected across 500 bootstrap
samples.49 To estimate the stability threshold, the outcome
was permuted 20 times to generate 20 new datasets in which
the relationship between the outcome and observations were
severed. The threshold was determined by the highest stability
score achieved in the permutated datasets over 50 bootstrap
samples across each of the 20 permuted datasets.50 A boot-
strap p-value was defined as the proportion of coefficient esti-
mates on the minority side of zero. For example, if a variable
was selected on 100 occasions and the coefficients on 95
occasions were greater than 0, then the bootstrap p-value
would be (100 − 95)/100 = 0.05.

Metabolite identification

The ion masses of important variables were searched against
the Bovine Metabolome Database51 with 5 ppm mass tolerance
and Lipid Maps52 with ±0.001 m/z tolerance using [M + H]+,
[M + Na]+, [M + K]+, and [M + H − H2O]

+ as adducts for positive
mode, also [M – H]− and [M − H − H2O]

− for negative mode.
For lipid search, multiply charged adducts were also included.
For structure-based identification, MS/MS spectra were
matched with the experimental reference spectra from the
same normalised collision energy using mzCloud by compar-
ing the fragmentation patterns and the accurate mass of the
fragments. For compounds that were not recorded in mzCloud
database, accurately predict ESI-MS/MS spectra generated by
CFM-ID program were used for improving confidence for
identification.53

Results and discussion
Rapid metabolic profiling workflow for the investigation of
dairy cow lameness

Commercially available Whatman FTA® DMPK cards were
used to collect milk drops directly from dairy cows (Fig. 2A
and B). To evaluate analytes stability during prolonged storage
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periods, the dried milk spot (DMS) cards were stored in plastic
seal bags at room temperature for 8 and 16 days, respectively,
until metabolite extraction (Fig. 2C). The extracted samples
were directly infused into a high-resolution mass spectrometer
for rapid metabolomic analyses (2 min per sample) using a
robotic sampling system (Fig. 2D). The idea behind this work-
flow was to explore the use of DMS sample matrix for easy
sample collection and low-cost postal delivery from farms to
analytical laboratories for rapid lameness diagnosis. This
could potentially be an attractive option as it omits the needs
for temperature regulations during storage and transportation
for conventional liquid samples. It also eliminates the inter-
and intra-person variability in comparison to the current diag-
nostic approach. For laboratories, the simple sample prepa-
ration procedure and rapid analysis with direct infusion
system could allow high throughput for large-scale veterinary
clinical research. For data analysis, we added machine learn-
ing and stability test to the conventional workflow of OPLS-DA
and t- test to mitigate the issue of results being method-depen-
dent and identify the most stable predictors (Fig. 2E)

Metabolic profiles of DMS differentiate lame and control cows

The milk metabolic profiles acquired by direct infusion MS
were used to discriminate the four sample groups (day 8
extracts – control/lame, day 16 extracts – control/lame).
Features in positive and negative ion modes were combined
and used to construct a PCA model (number of components A
= 6, number of observations N = 48) (Fig. 3A),54 in which all
DMS extracted on day 8 and day 16 since sample collection are
clearly distinguished in the first principal component (PC 1)

(x-axis). In the PCA plot, the pooled QC samples located in the
middle of all analysed samples from the same extraction day,
which indicated good reproducibility during the analytical
run. The PC 1 loadings plot revealed an overall reduction in
signals from day 16 samples compared to day 8 (Fig. 3B).

An OPLS-DA model was built (A = 1 predictive component
+1 orthogonal component, N = 21) to compare the healthy
group and lame group from day 8 extracted metabolites
(Fig. 3C). The model was validated using LOOCV method.
Clear grouping of the two classes was observed (Q2: 0.601). In
general, Q2 (goodness-of-prediction) > 0.5 is considered as
good predictability,55 and 0.4 may also be considered accepta-
ble for biological models.11,23 To mitigate the issues with
potential overfitting and over estimation of Q2, we further con-
ducted a permutation test which confirmed the validity of the
constructed model (Fig. S1†). The associated S-plot enabled
the determination of the most important ions for distinguish-
ing the control and lame cows (Fig. 3D).56 The discriminative
ions (highlighted in orange colour) were determined by a VIP
score > 1 in OPLS-DA and a p value < 0.05 in multiple t-test
(FDR corrected, q < 0.05). Ten out of 12 discriminative ions
were assigned putative molecular formulae (Table 1). To
further confirm the identities of these discriminative ions,
both experimental and computed MS/MS spectra were used for
structure-based identification (Fig. S3–S8†).

Triangulation of machine learning models for results
validation

Four machine learning models: RF, elastic net, PLS, and SVM
were tested by recursive feature elimination and LOOCV

Fig. 2 Rapid analysis of dried milk spot cards with direct infusion mass spectrometry. (A) Milk drops were collected directly from cows onto com-
mercially available Whatman FTA® DMPK Cards. (B) Milk spots were air-dried, then stored in plastic seal bags at room temperature for 8 and 16 days.
(C) Spot cards were punched for metabolite extraction. (D) The extraction solvent containing milk metabolites was transferred into a 96-well plate,
then delivered to mass spectrometer using the automated sampling system, TriVersa NanoMate LESA®. (E) Multivariate and univariate analysis were
first carried out for class predication and identification of lameness-related metabolites. The results were further validated using machine learning
and stability approach.
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(Fig. 4). In RF, a maximum predictive accuracy of 100% was
achieved with 15 selected variables. Elastic net, PLS and SVM
reached the highest accuracies of 95.2% with 10 selected vari-
ables (Table S1†). Comparing the top 10 most important vari-
ables (Table S2†) selected by each ML model with the discrimi-
native ions from the conventional workflow based on OPLS
and t-test (Table 1), we observed high similarities between vari-
able selections. Interestingly, results from PLS and OPLS
methods were in full agreement, which is probably because
the models are constructed based on similar concepts.55 From
the 12 discriminative metabolites discovered in the conven-
tional workflow, m/z 202.0685 (glucosamine) and m/z 343.1228
(alpha-lactose) were selected only when (O)PLS was applied

(i.e., model-dependent). Therefore, it is likely that they may
not truly associate with the disease state. The remaining
10 metabolites were selected as predictor variables in multiple
distinct models (Fig. 5).

Lipids are important metabolic fuel, and they have various
functions in cell activation, immune response and inflam-
mation.14 In this study, a few fatty acids in milk were discov-
ered to play an important role in discriminating the lame and
healthy cows. From lame cows, a relative decrease was
observed in a saturated long-chain fatty acid (hexadecanedioic
acid) and an unsaturated fatty acid (trans-11-methyl-2-dodece-
noic acid) compared with healthy cows. In contrast, the lame
cows had a relatively elevated abundance in an omega-hydroxy

Fig. 3 Multivariate analysis results. (A) PCA of dried milk spots extracted on day 8 and day 16 after sample collection. Pooled QC samples showed
stable analytical performance. (B) Loadings of PCA principal component 1 and 2. (C) OPLS-DA scores plot reveals clustering of cows based on health
conditions (control vs. lame) (R2X 0.321 R2Y 0.899 Q2 0.601) from milk metabolites extracted on day 8. (D) S plot shows ions that have strong corre-
lation with the cow health conditions (orange).

Table 1 Annotation for discriminative ions (VIP > 1, p-value < 0.05, FDR corrected) of healthy and lame cow groups (day 8). VIP: variable importance
in the projection. FDR: false discovery rate

m/z Adduct Assignment Mass error/ppm Monoisotopic mass (Da) Identification method

343.995 Unknown Unknown Unknown Unknown Unknown
315.0416 Unknown Unknown Unknown Unknown Unknown
267.1968 [M − H2O − H]− Hexadecanedioic acid 3.0 286.2144 m/z
401.2358 [M + 2Na]2+ PG 35:4 1.2 400.2283 m/z, computed MS/MS
317.1149 [M + K]+ Alpha-carboxyethyl hydrochroman 0.3 278.1518 m/z
115.0757 [M + H − H2O]

+ 6-Hydroxyhexanoic acid −1.7 132.0786 m/z, MS/MS
251.1408 [M + K]+ Trans-11-methyl-2-dodecenoic acid 0.0 212.1776 m/z, MS/MS
166.0258 [M + K]+ 1-Piperideine-2-carboxylic acid −4.2 127.0633 m/z, computed MS/MS
73.0649 [M + H]+ Isobutylaldehyde 1.4 72.0575 m/z, MS/MS
400.2321 [M + H]+ Carnitine 13:3;O3 2.2 399.2257 m/z
202.0685 [M + Na]+ Glucosamine −0.5 179.0793 m/z
343.1228 [M + H]+ Alpha-Lactose −2.0 342.1162 m/z, MS/MS
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fatty acid called 6-hydroxyhexanoic acid. Other significantly
altered lipids were phosphatidylglycerol PG 35:4, and fatty acyl
carnitine CAR 13:3;O3, which both had a decrease in the lame
group compared to the healthy group. In previously reported
studies using plasma and urine samples, distinct metabolite
profiles between lame cows and controls were displayed by a
number of acylcarnitines and glycerophospholipids.15,57 The
alteration in these lipid species were linked to inflammation
and immune response. For acylcarnitines, they also play an
important role in the lipid β-oxidation process.57

Interestingly, while most reported lipid markers in serum
or plasma displayed elevated concentration in lame cows, we
discovered many lipid predictors with decreased abundance in
milk in this study. Further investigation is required to deter-
mine the underlying reasons for these alterations in milk. In
addition, we observed an increase in 1-piperideine-2-carboxylic
acid, which is a metabolite in the pipecolic acid pathway of
lysine degradation.58 In dairy cows, lysine is important for
milk protein synthesis, carnitine synthesis, weight gain in
growing cattle, and incorporation into mammalian tissues for
structural integrity.59 The increased 1-piperideine-2-carboxylic
acid in milk may indicate abnormal lysine metabolism in lame
cows. Another significantly increased small molecule in lame
cows is isobutylaldehyde. Its role in bovine metabolism is not
yet fully elucidated.

Selection of the most stable predictors

High variability of results and low reproducibility is a common
issue with conventional regression methods (i.e., a single,
non-bootstrapped regression model) for covariate selection
from high dimensional data in comparison to stability
selection.27–30 In our study, a majority of discriminative metab-
olites discovered in single machine learning models were not
repeatedly selected during bootstrap resampling followed by
one-off regression analyses indicated by their low stability

scores (Table S3†). Bootstrap resampling is a statistical test
that uses random sampling with replacement to mimic real-
world sampling process. For instance, isobutylaldehyde was
only selected as a “discriminative” metabolite in 9.6% to
36.6% resamples depending on the model types, which means
it is highly likely that this metabolite will not be identified as a
potential marker in another study where a single one-off
regression model is employed. This can make biomarker
screening challenging because the selected predictors may be
incomparable between studies or analyses and fail to represent
the target population. A solution to this issue is stability selec-
tion. The concept is that the variables truly associated with the
outcome of interest are likely to be selected most frequently
during multiple bootstrap resampling.60 Here, three penalised
models elastic net, MCP and Lasso were implemented for
selecting the most stable predictor metabolites.61 Selection
stability was estimated for all models using a bootstrap meth-

Fig. 4 Evaluation of the prediction accuracies of four ML models (A)
random forest (RF), (B) elastic net, (C) support vector machine (SVM), (D)
partial least squares (PLS) using leave-one-out cross validation
procedure.

Fig. 5 Box plots show the relative abundance of discriminative metab-
olites from day 8 between healthy and lame cows determined by
OPLS-DA and Student’s t-test (VIP score > 1, p < 0.05). Validating the
results by triangulation of multiple machine learning models, we ident-
ified two model-dependent predictors, alpha-lactose and glucosamine,
which were chosen as “important” predictor only in PLS-based methods,
therefore, not likely to be “true” predictors.
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odology (500 bootstraps, 20 permutations, 50 permutation
bootstraps).30 In each model, variables with a stability score
above the estimated threshold and a low bootstrap p-value
were selected (Fig. 6). The stability selected variables were m/z
401.2358 (PG 35:4), m/z 315.0416 and m/z 115.0757 (6-hydroxy-
hexanoic acid, C6H12O3) using the default elastic net model,
which have also been selected using the triangulation method
of OPLS-DA and ML as discussed in the previous section. It is
noteworthy that m/z 401.2358 (PG 35:4) not only showed the
highest stability scores in three stability models, but also had
the highest importance rankings (top 2) in all ML models.
Therefore, it appears to be the strongest candidate as an indi-
cator of disease state. A Receiver Operator Characteristic (ROC)
curve analysis was employed to further assess both the sensi-
tivity and specificity performance of the predictor metabolites
(Fig. S9†). Metabolite m/z 401.2358 (PG 35:4) showed a
superior prediction performance with a sensitivity and speci-
ficity of 100%.

Conclusions

A novel analytical workflow for untargeted metabolomics of
dried milk spots (DMS) using direct infusion mass spec-
trometry was developed and it is shown to be a robust and dis-
criminating approach for diagnosing lameness in dairy cows.
Some important predictor metabolites have been discovered
for the first time using the triangulation method of multiple
statistical models including OPLS-DA, ML models and stability
selection. This statistical workflow allowed identification of
the most promising candidates for indicating lameness and
eliminating model-dependent “predictors”, which vastly
increased the reliability of the outcome. Phosphatidylglycerol
and fatty acid species were found to be strong and sensitive
candidates as indicators of lameness. Furthermore, we showed

that Whatman® FTA® DMPK paper cards, a new sample
media for milk collection, can be used for cost-effective and
fast veterinary screening because it omits the need for temp-
erature regulation often required by conventional liquid
samples transportation and storage. DMS samples from
healthy and lame cows can be clearly distinguished by their
metabolite profiles after storing at room temperature for up to
8 days. This opens new opportunities to perform large-scale
routine diagnosis for lameness, using milk as a sample that
farmers can easily collect at low cost.

This experiment is a proof-of-concept study exploring the
use of DMS as sample matrix for studying lameness by using
untargeted metabolomics method. We acknowledge that the
number of lame cows included in this study was low, and all
cows were from the same farm. Future work should include
larger cohorts of animals from multiple farms to further vali-
date the current findings and determine the underlying
reasons for observed metabolic alterations. Furthermore,
future work should include the study of DMS samples from
pre-lame cows, to determine whether this workflow can be
used to predict lameness, and diagnose earlier than the
current method which relies on the physical signs of lameness
being apparent. This could then pave the way for early inter-
ventions in the future.

This developed analytical workflow and statistical strategy
can also be applied to explore a wide range of diseases using
dried liquid samples such as milk, blood and urine as a fast
and robust untargeted method to determine the presence of
potential biomarkers in the sample of choice.
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