
ORGANIC CHEMISTRY
FRONTIERS

RESEARCH ARTICLE

Cite this: Org. Chem. Front., 2021, 8,
908

Received 18th November 2020,
Accepted 22nd December 2020

DOI: 10.1039/d0qo01437k

rsc.li/frontiers-organic

Copper-catalyzed three-component oxycyanation
of alkenes†
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A copper-catalyzed, three-component reaction for the direct oxycyanation of various alkenes with aryl

diacyl peroxides and trimethylsilyl cyanide has been developed. Both unactivated alkenes and styrenes are

reliable substrates and produce β-cyanohydrin derivatives. An asymmetric version of this reaction has

been conducted and proceeds well.

Nitriles are important molecules that are structural motifs in
natural products and pharmaceuticals.1 They are also one of
the most versatile types of compounds in organic synthesis
because the cyano group can be easily transformed into other
different functional groups to afford valuable organic com-
pounds.2 In view of the abundant supply of alkenes, direct
vicinal cyanofunctionalization of CvC double bonds is a
straightforward strategy for the construction of nitriles. The
cyanofunctionalization of the CvC double bond has drawn
much attention and significant advances have been achieved
in the hydrocyanation3 and carbocyanation4 of alkenes
through either an intramolecular or an intermolecular
process.5

The direct vicinal oxycyanation of alkenes is a remarkable
strategy which simultaneously incorporates a cyano group and
an oxygen-containing group into the CvC double bond,
forming versatile β-cyanohydrins or their derivatives. A
common and versatile approach to β-cyanohydrins is the
nucleophilic ring-opening of strained triangular epoxides with
a cyanide anion source (Scheme 1a).6 The cyanide anion
prefers to regioselectively attack the less substituted carbon
center in the epoxide. In recent years, successful oxycyanation
of alkenes has also been developed. Nakao et al.7 and Shi’s
group8 independently disclosed a palladium-catalyzed intra-
molecular oxycyanation of CvC double bonds (Scheme 1b).
Both the methods are proposed to involve the cleavage of the
O-CN bond by an electron-rich Pd(0) catalyst, as depicted in

their mechanisms. On the other hand, two-component oxycya-
nation of alkenes with a linked oxygen source has been
reported by Alexanian,9 Han,5g and Zhu10 (Scheme 1b).
However, these oxycyanation reactions are limited by their ten-
dency to generate β-cyanohydrin derivatives with the cyano
group attached to the less substituted carbon center.

An attraction of three-component oxycyanation of alkenes is
that it uses a one-step process to assemble multifunctional
structures from various compounds, and this can greatly
broaden the utility of the method. Recently, Liu et al.
described an electron donor–acceptor (EDA) complex enabled
three-component oxycyanation of CvC double bonds.11

Electron-rich vinyl ethers are the key substrates in this reac-
tion, but the direct oxycyanation of alkenes in a three-com-
ponent model with generic unactivated alkenes is a valuable
process. Herein, we report the three-component, copper-cata-
lyzed oxycyanation of unactivated alkenes and styrenes with

Scheme 1 Oxycyanation of alkenes.
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aryl diacyl peroxides as the oxygen source and trimethylsilyl
cyanide (TMSCN) as the cyano source (Scheme 1c).
Mechanistic studies suggest that the O-radical attacks the
double bond first and the reaction produces the β-cyanohydrin
derivatives with the cyano group at the more substituted
carbon center.

We began by examining the scope of copper catalysts,
ligands, solvents and temperature, using the model reaction of
styrene with benzoyl peroxide12 (BPO, 2a) and TMSCN (3). The
details of the optimization of the conditions are provided in
Table 1. Copper catalysts were screened with 1,10-phenanthro-
line (L1) as the ligand and CH3CN as the solvent at 50 °C. Cu
(CH3CN)4PF6 was the most effective catalyst tested with which
the reaction provided the desired oxycyanation product (4a) in
47% yield (entries 1–3). Solvents such as HFIP (hexafluoroiso-
propanol) and 1,4-dioxane were less efficient than CH3CN, but
TFEA (2,2,2-trifluoroethanol) provided the highest yield
(entries 4–6). The yield of 4a was increased to 77% by using
higher concentrations of the substrates (entries 7–9). Other
ligands were evaluated, and it was found that 1,10-phenanthro-
line is the most effective ligand (entries 10–14 vs. entry 9).
The yield of the desired product (4a) was further improved to
83% by using two equivalents of TMSCN (entry 15). In
the absence of any ligand, the catalytic efficiency drops
dramatically (entry 16).

With the optimized reaction conditions in hand, the sub-
strate scope of the reaction with respect to vinylarenes was
investigated (Table 2). The reactions of o-, m- or p-alkyl-substi-
tuted vinylarenes with BPO afforded the corresponding oxycya-
nation products (4b–4e) in moderate yields. Vinylarenes
bearing an ester substituent also underwent this reaction,
affording the product (4f ) in 66% yield. When a halogen, such
as fluorine, chlorine, or bromine, was attached to the phenyl
ring, the reaction afforded the desired products (4g–4k) in
moderate yields. A 1,1-disubstituted vinylarene was also exam-
ined and it was found to be a suitable substrate in the reac-
tion, producing the product (4l) in 53% yield. Acyclic or cyclic
1,2-disubstituted vinylarenes were also compatible under the
reaction conditions, giving the corresponding oxycyanation
products (4m–4p) in moderate yields. This reaction can
proceed with more complex substrates. For example, the oxy-
cyanation product (4q) can be produced in 46% yield with the
substrate that is a derivative from the natural product
estrone.13

We next examined unactivated alkenes, a class of challen-
ging but useful substrates (Table 3). In general, the reactions
of a variety of unactivated alkenes afford the corresponding
products with less efficiency than the reactions of styrenes.
Unactivated alkenes with an alkyl chain could afford the
desired oxycyanation in moderate yield (6a–6c). 1,1-
Disubstituted unactivated alkenes were suitable substrates for
this reaction, producing the oxycyanation products (6f–6j) in
yields of 39–61%. Notably, this reaction can use not only term-
inal alkenes as the substrates, but also internal alkenes. For
example, cyclohexene is a good substrate for the reaction,
affording the desired product (6h) in 61% yield. Substrates

Table 1 Optimization of the reaction conditionsa

Entry Cat. Ligand Solvent (mL) Yieldb (%)

1 Cu(CH3CN)4PF6 L1 CH3CN (2) 47
2 CuTc L1 CH3CN (2) 17
3 CuOAc L1 CH3CN (2) 2
4 Cu(CH3CN)4PF6 L1 HFIP (2) 33
5 Cu(CH3CN)4PF6 L1 Dioxane (2) 23
6 Cu(CH3CN)4PF6 L1 TFEA (2) 54
7 Cu(CH3CN)4PF6 L1 TFEA (1.5) 60
8 Cu(CH3CN)4PF6 L1 TFEA (1) 67
9 Cu(CH3CN)4PF6 L1 TFEA (0.5) 77
10 Cu(CH3CN)4PF6 L2 TFEA (0.5) 38
11 Cu(CH3CN)4PF6 L3 TFEA (0.5) 35
12 Cu(CH3CN)4PF6 L4 TFEA (0.5) 66
13 Cu(CH3CN)4PF6 L5 TFEA (0.5) 69
14 Cu(CH3CN)4PF6 L6 TFEA (0.5) 71
15c Cu(CH3CN)4PF6 L1 TFEA (0.5) 83(81)
16 Cu(CH3CN)4PF6 — TFEA (0.5) 13

a Reaction conditions: 1a (0.50 mmol, 1 equiv.), 2a (1.5 equiv.),
3 (1.5 equiv.), cat., ligand, and solvent, at 50 °C for 24 h. b Yield was
determined by 1H NMR analysis. c 2 equiv. of 3 were used; an isolated
yield in parentheses.

Table 2 Scope for oxycyanation of styrenesa

a Reaction conditions: 1 (0.50 mmol, 1 equiv.), 2a (1.5 equiv.), and
3 (2 equiv.) in TFEA (0.5 mL) at 50 °C for 24 h. b Addition of 5 mol% of
Hantzsch ester.
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with a phenyl group (6d), a trimethylsilyl group (6e) or a free
hydroxyl group (6l) are compatible with the reaction, making it
a powerful method for the difunctionalization of alkenes.

The scope of diacyl peroxides in this oxycyanation reaction
was also examined (Table 4). A variety of diacyl peroxides can
afford the corresponding oxycyanation products (7a–7f ) in
moderate yields.12a

The copper-catalyzed asymmetric oxycyanation of alkenes
was also evaluated.12c,14 After considerable evaluation (for
details, see the ESI†), a combination of a Cu(II) species and a
bisoxazoline ligand (*L13) was found to be the most efficient
catalyst system, and the results are summarized in Table 5.
The copper-catalyzed asymmetric oxycyanation of alkenes
could afford the desired products with an er value of 91 : 9.
However, under the asymmetric conditions, almost no enan-
tiomeric excess was obtained with an aliphatic alkene (5d).

The absolute configuration of the products (R-form of 4e,
CCDC 2040065†) was confirmed by X-ray single crystal
diffraction.

In order to demonstrate the potential synthetic value of the
oxycyanation reactions, we investigated the subsequent trans-
formations of compound 4a. As shown in Scheme 2, the oxy-
cyanation product (4a) efficiently engaged in selective olefina-
tion, deprotection or cyano functionalization to afford an
α,β-unsaturated primary amide (8), a β-cyanohydrin (9), or a
tetrazole (10).15 These results demonstrate the potential of this
method to provide valuable synthetic compounds.

Preliminary experiments were performed to probe the
mechanism of the oxycyanation reaction (Scheme 3). First,

Table 3 Scope of the oxycyanation reaction with unactivated alkenesa

a Reaction conditions: 5 (0.50 mmol, 1 equiv.), 2a (1.5 equiv.), and
3 (2 equiv.) in TFEA (0.5 mL) at 50 °C for 24 h.

Table 4 Scope of the oxycyanation reaction with diacyl peroxidesa

a Reaction conditions: 1a (0.5 mmol), 2 (0.75 mmol), and 3 (1.0 mmol)
in TFEA (0.5 mL) at 50 °C for 24 h.

Table 5 Asymmetric oxycyanation of alkenesa

a 1 (0.5 mmol), 2 (0.75 mmol), and 3 (1.0 mmol) in TFEA (0.5 mL) at rt
for 24 h.

Scheme 2 Synthetic applications of the oxycyanation products.

Scheme 3 Preliminary mechanistic studies.
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radical trapping experiments were conducted and found that
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) and BHT (2,6-di-
tert-butyl-4-methylphenol) inhibit the formation of the oxycya-
nation product16 (Scheme 3a). The results are consistent with
the involvement of radical species. To further support this
hypothesis, compound 11 bearing a cyclopropylmethyl moiety
was tested as a radical clock (Scheme 3b).17 The reaction of
compound 11 with BPO and TMSCN afforded the ring-opening
product (12) in 33% yield, further supporting the involvement
of radical species in the reaction.

Based on these mechanistic studies, a catalytic mecha-
nism† for the oxycyanation reaction is proposed (Scheme 4).
Initially, a copper(I) species (A) undergoes single-electron
transfer with BPO to afford the copper(II) species (B) and a
benzoyl radical,12a,18 which can be trapped by an alkene to
produce a more stable carbon-centered radical (C). Upon
ligand exchange with TMSCN, the copper(II) species (B) is con-
verted into a copper(II) species (D),12c,19 which then undergoes
cyano group transfer with the stabilized carbon-centered
radical (C) through an intermediate (E) to afford the oxycyana-
tion product, and regenerate the copper catalyst. The oxycyana-
tion product can also be formed through the reductive elimin-
ation of the copper(III) species (F).20

Conclusions

In conclusion, we have developed a copper-catalyzed three-
component reaction which leads to direct oxycyanation of
various alkenes with aryl diacyl peroxides and TMSCN. Both
unactivated alkenes and styrenes are reliable substrates
under the mild reaction conditions, affording β-cyanohydrin
derivatives in moderate to good yields. The utility of these
direct oxycyanation products has been demonstrated with
further synthetic applications. The copper-catalyzed asym-
metric oxycyanation of alkenes has been conducted and pro-
ceeds well.
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