Cite this: Chem. Sci., 2018, 9, 2991

Received 15th January 2018
Accepted 18th February 2018
DOI: 10.1039/c8sc00232k
rsc.li/chemical-science

Gold-catalyzed [4+3]- and [4+2]-annulations of 3 -en-1-ynamides with isoxazoles via novel 6π electrocyclizations of 3-azahepta trienyl cations \dagger

Sovan Sundar Giri and Rai-Shung Liu (D) *

Abstract

New gold-catalyzed [4+3]-annulations of 3-en-1-ynamides with isoxazoles afford 4 H -azepines efficiently; this process involves 6π electrocyclizations of gold-stabilized 3-azaheptatrienyl cations. In the presence of $\mathrm{Zn}(\mathrm{OTf})_{2}$, the resulting 4 H -azepines undergo skeletal rearrangement to furnish substituted pyridine derivatives. We subsequently develop new catalytic [4+2]-annulations between the same 3-en-1ynamides and isoxazoles to deliver substituted pyridine products using Au(I)/Zn(॥) catalysts. This work reports the first success of the 6π electrocyclizations of heptatrienyl cations that are unprecedented in literature reports.

Introduction

Electrocyclizations of acyclic conjugated π-motifs are powerful tools to access five-, six- and seven-membered carbocycles; ${ }^{1}$ prominent examples include Nazarov cyclizations of pentadienyl cations ${ }^{2}$ and 6π electrocyclizations of trienes, ${ }^{3}$ which have found widespread applications in organic synthesis.

Scheme 1 Electrocyclizations of conjugated π-motifs.

[^0]In the context of seven-carbon π-motifs, heptatrienyl anions I undergo facile 8π electrocyclizations via rapid interconversions among various anion configurations (Scheme 1). ${ }^{4}$ In contrast, heptatrienyl cations III 5 exclusively undergo Nazarov reactions because of the difficulties of forming all σ-cis configured cations \mathbf{V} that have a high energy state. ${ }^{5 b}$ 1-Aza- and 1oxaheptatrienyl cations ${ }^{6}$ were also reported to follow Nazarov cyclizations. The realization of a 6π electrocyclization of conjugated seven-membered cations is formidable but challenging. This work reveals the first success of such sevenmembered cyclizations of gold-stabilized 3-azaheptatrienyl cations \mathbf{V}^{\prime} to form azacyclic products 3-4 via a new C-C bond formation.

The advent of gold catalysis has inspired new annulations between alkynes and poor nucleophiles. ${ }^{7} \mathrm{~N}-\mathrm{O}$ containing nucleophiles serve as useful building blocks to construct valuable azacyclic frameworks. ${ }^{7}$ Ye and Hashmi reported interesting [3+2]-annulations of isoxazoles or benzisoxazoles with electron-
rich ynamides, yielding substituted pyrrole derivatives through aza-Nazarov cyclizations of the key intermediate [eqn (1)]..7,8 These [3+2]-annulations were extensively expanded to other $\mathrm{N}-\mathrm{O}$ heterocycles including benzisoxazoles, 1,2,4-oxadiazoles, 1,4,2-dioxazoles and 4,5-dihydro-1,2,4-oxadiazoles, yielding additional five-membered azacycles as depicted in [eqn (1)]. ${ }^{9}$ Here, we report two distinct [4+3]- and [4+2]-annulations between 3-en-1-ynamides and isoxazoles using varied catalysts. An $\mathrm{Au}(\mathrm{I})$ catalyst alone delivers 4 H -azepines 3-4 through 6π electrocyclizations of intermediates \mathbf{V}^{\prime} [eqn (2)] whereas a combined action of $\mathrm{Au}(\mathrm{I}) / \mathrm{Zn}(\mathrm{II})$ on the same reactants furnishes highly functionalized pyridines 5 [eqn (3)]. With our convenient synthesis, the synthetic utility of new 4 H -azepines 3 4 is also reported. ${ }^{10}$

Results and discussion

We examined the reactions of 3-methyl-3-en-1-ynamide 1a with 3,5-dimethylisoxazole 2a using various gold catalysts. Heating this mixture ($\mathbf{1 a} / \mathbf{2 a}=1: 2$ ratio) in hot DCE with $5 \mathrm{~mol} \% \mathrm{LAuCl} /$ $\mathrm{AgNTf}_{2}\left[\mathrm{~L}=p(t-\mathrm{Bu})_{2}(o\right.$-biphenyl) and IPr] afforded a [4+3]annulation product, 4 H -azepine 3 a , in 64% and 75% yields respectively (Table 1, entries 1-2). Under these conditions, a low loading (1.2 equiv.) of 3,5-dimethylisoxazole 2a gave 3a in a decreased yield, ca. 62% (entry 3). With a $10 \mathrm{~mol} \%$ catalyst, IPrAuCl/ AgNTf_{2} gave a clean reaction, yielding desired 3 a up to 91% (entry 4). We tested other phosphine ligands such as PPh_{3} and $\mathrm{P}(\mathrm{OPh})_{3}$, yielding desired 3a in satisfactory yields ($78-81 \%$, entries 5-6). Other counter anions such as OTf ${ }^{-}$and $\mathrm{SbF}_{6}{ }^{-}$were also effective in producing 3a in $85-88 \%$ yields (entries $7-8$). AgNTf_{2} alone was not active at all (entry 9).

Table 1 [4+3]-Annulations over various gold catalysts

Entry	Catalyst [mol\%]	x	Time [h]	$\underline{\text { Yield }}{ }^{\text {b }}$ [\%]		
				1a	3 a	$\mathbf{1 a - H} / \mathbf{1 a - H}$
$1{ }^{\text {c }}$	LAuCl/AgNTf ${ }_{2}$ [5]	2	3	20	64	-
2^{d}	$\mathrm{IPrAuCl} / \mathrm{AgNTf}_{2}$ [5]	2	7	12	75	$7[2.5: 1]$
3	$\mathrm{IPrAuCl} / \mathrm{AgNTf}_{2}$ [5]	1.2	7	23	62	$5[1: 1]$
4	IPrAuCl/AgNTf ${ }_{2}$ [10]	2	3	-	91	Trace
5	$\mathrm{PPh}_{3} \mathrm{AuCl} / \mathrm{AgNTf}_{2}$ [10]	2	3.5	-	81	$5[1.25: 1]$
6	[PhO$]_{3} \mathrm{PAuCl} / \mathrm{AgNTf}_{2}$ [10]	2	3.5	-	78	$13[1.1: 1]$
7	IPrAuCl/ AgSbF_{6} [10]	2	2.5	-	85	$6[1.4: 1]$
8	IPrAuCl/AgOTf [10]	2	2	-	88	Trace
9	AgNTf_{2} [10]	2	15	33	-	11

${ }^{a}[\mathbf{1 a}]=0.15 \mathrm{M} .{ }^{b}$ Product yields are reported after separation from a silica column. ${ }^{c} \mathrm{~L}=p(t-\mathrm{Bu})_{2}\left(o\right.$-biphenyl). ${ }^{d} \mathrm{IPr}=1,3-$ bis(diisopropylphenyl)-imidazol-2-ylidene. Ms $=$ methanesulfonyl, $\mathrm{DCE}=1,2$-dichloroethane, and $\mathrm{Tf}=$ trifluoromethanesulfonyl.

Table 2 [4+3]-Annulations with various 3-en-1-ynamides

(3) R^{4} EWG $=\mathrm{Bn}$, Ts (3d $45 \mathrm{~h}, 87 \%$)
(4) R^{4}, EWG $=n$-Bu, $n-\mathrm{BuSO}_{2}(3 \mathrm{e}, 6 \mathrm{~h}, 90 \%)$

(6) $\mathrm{R}^{1}=i-\operatorname{Pr}(3 \mathrm{~g}, 4 \mathrm{~h}, 74 \%)$
(7) $R^{1}=c-\operatorname{Pr}(3 h, 2 h, 79 \%)$ (8) $R^{1}=\operatorname{Ph}(3 i, 2.5 h, 58 \%)$

(11) (3I, $2.5 \mathrm{~h}, 48 \%$, x-ray) $(6 \mathrm{I}, 43 \%, E / Z=3.3: 1)$

(9) R^{4}, EWG $=n-\mathrm{Bu}, \mathrm{Ms}(3 \mathrm{j}, 5 \mathrm{~h}, 55 \%, 3 \mathrm{j} / 3 \mathrm{j} \mathbf{}=5: 1$) (10) R^{4}, EWG $=\mathrm{CH}_{3}$, Ts $\left(\mathbf{3 k}, 4 \mathrm{~h}, 68 \%, 3 \mathbf{k} / 3 \mathbf{k}^{\prime}=11.1: 1\right)$

(12) ($3 \mathrm{~m}, 14 \mathrm{~h}, 16 \%$) ($6 \mathrm{~m}, 73 \%$, x-ray)
${ }^{a}[1]=0.15 \mathrm{M} .{ }^{b}$ Product yields are reported after separation from a silica column. $\mathrm{EWG}=$ electron withdrawing group.

Table 3 [4+3]-Annulations with various isoxazoles

Entry	$\left(\mathrm{R}^{1}, \mathrm{R}^{2}\right)$	$\mathbf{2}$	Time $[\mathrm{h}]$

[^1]Suitable substituents of 3-en-1-ynamides $\mathbf{1}$ are crucial to achieve 6π cyclizations of 3-azaheptatrienyl cations \mathbf{V}^{\prime} [eqn (2)]. We tested the reactions on 3 -en-1-ynes 1b-1m bearing a C(3)substituent to circumvent aza-Nazarov cyclizations as reported in Ye's work. ${ }^{7}$ Herein, only entries 9 and 10 showed the presence of 3 -azanorcaradienes 3^{\prime}. We examined these [4+3]-annulations on 3-methyl-3-en-1-ynamides $\mathbf{1 b} \mathbf{- 1 \mathbf { e }}$ bearing various sulfonamides $\mathrm{NTsR}^{4}\left(\mathrm{R}^{4}=\mathrm{Me}\right.$, cyclopropyl, benzyl and $\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ $\left(-\mathrm{SO}_{2} \mathrm{Bu}\right)$), affording the desired $4 H$-azepines $3 \mathbf{b}-3 \mathbf{e}$ in high yields (84-90\%, Table 2, entries 1-4). Nevertheless, this new annulation becomes less efficient for 3-en-1-ynamide $\mathbf{1 f}$ bearing an oxazolidin-2-one to yield product $3 f$ in 64% yield (entry 5).

We altered the C(3)-substituents as in substrates $\mathbf{1 g - 1 i}$; their resulting products $\mathbf{3 g}-\mathbf{3 h}\left(\mathrm{R}^{1}=\right.$ isopropyl and cyclopropyl) were obtained in $74-79 \%$, and $3 \mathbf{i}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ with only 58% yield (entries 6-8). Notably, when a long n-butyl group was present as in species $\mathbf{1 j}$ and $\mathbf{1 k}$, their corresponding reactions afforded compounds $3 \mathbf{j} / 3 \mathbf{j}^{\prime}=5 / 1$ and $3 \mathbf{k} / 3 \mathbf{k}^{\prime}=11.1: 1$, respectively, in 55% and 68% yields (entries $9-10$). For E-configured trisubstituted 3-en-1-yne $\mathbf{1 1}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}\right.$ and $\left.\mathrm{R}^{3}=\mathrm{H}\right), 4 H$-azepine 31

Scheme 2 New functionalization of 4 H -azepines.
and pyrrole 61 were obtained in equal proportions (entry 11). When a cyclohexenyl group was present for alkene as in species $\mathbf{1 m}$, pyrrole product $\mathbf{6 m}$ was dominant over azepine $\mathbf{3 m}$ (entry 12). Accordingly, preferable 3-en-1-ynes comprise a small R^{2} or R^{3} substituent whereas R^{1} must be substituted. Herein, the structures of $4 H$-azepines $\mathbf{3 b}$ and $\mathbf{3 1}$, and pyrrole species $\mathbf{6 m}$ were confirmed with X-ray diffraction. ${ }^{11}$

Isoxazoles of a wide scope are compatible with these [4+3]annulations, as depicted in Table 3. The reaction of unsubstituted isoxazole $\mathbf{2 b}$ with model 3-en-1-ynamide $\mathbf{1 b}$ afforded the desired $4 H$-azepine $\mathbf{4 a}$ in 84% yield, together with pyrrole $7 \mathbf{a}^{\prime}$ in only 8% yield (entry 1). Mono-substituted 3-methyl or 5-methyl isoxazoles $2 \mathbf{c}$ and $2 \mathbf{d}$ are also suitable for these annulations to afford compounds $\mathbf{4 b}$ and $\mathbf{4 c}$ in 75% and 87% yields, respectively (entries $2-3$). We prepared additional 3,5 -disubstituted isoxazoles $2 \mathbf{e}-2 \mathbf{i}$ with $\mathrm{R}^{1}=$ alkyl and phenyl, and $\mathrm{R}^{2}=$ alkyl; their annulations proceed smoothly to produce desired $4 d-4 h$ in 69$85 \%$ yields (entries 4-8). For di-substituted isoxazoles $2 \mathbf{j}$ and $\mathbf{2 k}$ bearing $\mathrm{R}^{2}=\mathrm{Ph}, 4 H$-azepines $\mathbf{4 i}$ and $\mathbf{4 j}$ were obtained in 61% and 71% yields respectively, together with their rearrangement products $5 \mathbf{i}$ and $5 \mathbf{j}$ in 15-30\% yields (entries 9-10). Compounds 4 a and $5 \mathbf{i}$ were characterized by X-ray diffraction. ${ }^{11}$

Our convenient synthesis of $4 H$-azepines provides new synthetic utilities; several new functionalizations are depicted in Scheme 2. NaBH_{4}-reduction of species 3b delivered an alcohol derivative 7 a in 84% yield. Selective hydrogenation of the same species afforded 2-aza-1,3-dien-5-one $\mathbf{7 b}$ in 71% yield. A final treatment of 4 H -azepine $\mathbf{3 b}$ with NBS in acetone afforded compound $7 \mathbf{c}$, of which the molecular structure was determined by ${ }^{1} \mathrm{H}$ NOE spectra.

The Lewis-catalyzed rearrangement of $4 H$-azepines 3-4 to substituted pyridines 5 [eqn (3)] is unprecedented in $4 H$-azepine chemistry. ${ }^{10}$ We undertook such novel [4+2]-annulations

Table 4 [4+2]-Annulations between 3-en-1-ynamides and isoxazoles

Entry	$\left(\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{EWG}\right)$	1	$\left(\mathrm{R}^{3}, \mathrm{R}^{4}\right)$	2	Time [h]	Yield [\%]	5
(1)	Me, Me, Ts	1b	Me, Me	2a	19	73 (35) ${ }^{\text {c }}$	5 a (X-ray)
(2)	$n-\mathrm{Bu}, \mathrm{Me}$, Ts	1k	Me, Me	2a	33	64	5b
(3)	c-Pr, Me, Ts	1h	Me, Me	2a	20	56	5c
(4)	$i-\mathrm{Pr}, \mathrm{Me}$, Ts	1 g	Me, Me	2a	15	51	5d
(5)	$\mathrm{Me}, n-\mathrm{Bu}, \mathrm{Ms}$	1a	Me, Me	2a	28	63	5e
(6)	Me, Me, Ts	1b	$n-\mathrm{Bu}, n-\mathrm{Bu}$	$2 f$	19	78	5f
(7)	Me, Me, Ts	1b	Et, Et	2e	16	69	5 g
(8)	Me, Me, Ts	1b	$n \mathrm{Bu}, \mathrm{c}-\mathrm{Pr}$	2h	20	75	5h
(9)	Me, Me, Ts	1b	Ph, Ph	2 j	24	80	5 i (X-ray)
(10)	Me, Me, Ts	1b	Me, Ph	2k	30	75	5j

${ }^{a}[\mathbf{1}]=0.15 \mathrm{M} .{ }^{b}$ Product yields are reported after separation from a silica column. ${ }^{c}$ The value in parentheses is reported using a mixture of IPrAuCl/ $\operatorname{AgNTf}_{2}(10 \mathrm{~mol} \%)$ and $\mathrm{Zn}(\mathrm{OTf})_{2}(20 \mathrm{~mol} \%)$ in hot $\mathrm{DCE}\left(70^{\circ} \mathrm{C}, 48 \mathrm{~h}\right) ; 3 \mathrm{~b}$ was also isolated in 28% yield.

Scheme 3 A plausible reaction mechanism
between 3-en-1-ynamides 1 and isoxazoles 2 using $\mathrm{Au}(\mathrm{I}) / \mathrm{Zn}(\mathrm{II})$ in a relay series, as depicted in Table 4. In the reactions of various 3 -substituted 3 -en-1-ynamides $\mathbf{1}\left(\mathrm{R}^{1}=\right.$ methyl, n-butyl, cyclopropyl and isopropyl) with 3,5-dimethylisoxazole 2a, substituted pyridines $5 \mathbf{5}-5 \mathrm{~d}$ were obtained in satisfactory yields (51-73\%, entries $1-4$). In entry 1 , if the reaction was performed with combined $\mathrm{Au}(\mathrm{I}) / \mathrm{Zn}(\mathrm{II})$ catalysts in a non-relay operation, compounds $5 \mathbf{a}$ and $\mathbf{3 b}$ were isolated in 35% and 28% yields respectively. For 3-en-1-ynamide 1a bearing a $\mathrm{NMs}(n$-butyl), the corresponding product 5 e was obtained in 63% yield (entry 5). We tested the reactions on 3,5-disubstituted isoxazoles $2 \mathbf{e}-2 \mathbf{f} \&$ 2h bearing all alkyl substituents, producing desired $\mathbf{5 f}-\mathbf{5 h}$ in good yields (69-78\%, entries 6-8). For such disubstituted isoxazoles bearing $\mathrm{R}^{4}=\mathrm{Ph}$, the reactions afforded the desired pyridine derivatives $5 \mathbf{i}$ and $\mathbf{5 j}$ in $75-80 \%$ yields (entries $9-10$). The molecular structures of compounds $\mathbf{5 a}$ and $5 \mathbf{i}$ were characterized by X-ray diffraction. ${ }^{11}$

Scheme 3 rationalizes the crucial roles of substituents of 3-en-1-ynamides in the chemoselectivity that relies on two conformational structures \mathbf{D} versus \mathbf{D}^{\prime}. The N -attack of isoxazole at gold- π-ynamide \mathbf{A} is expected to form a gold-carbene \mathbf{D}^{\prime}, which can be visualized as a gold-stabilized cycloheptatrienyl cation. Conformation D is favorable with $R=H$, which prefers aza-Nazarov reactions. ${ }^{12}$ When a C(3)-substituent is present ($\mathrm{R}=$ alkyl and aryl), all σ-cis configured species \mathbf{D}^{\prime} are the preferable geometry to induce novel 6π electrocyclizations. This ring closure is expected to proceed through an attack of enamide at the alkenylgold moiety that is also visualized as a goldstabilized cation. Additional $\mathrm{C}(4)$-substituents render the formation of cations \mathbf{D}^{\prime} difficult, thus yielding pyrrole 6 as byproducts. A loss of an acidic proton from seven-membered cations \mathbf{E} is expected to yield azepines 3-4. 4H-Azepines 3-4 bear an enone conjugated with a triene; this extensive conjugation is very stable to impede a 6π electrocyclization of their triene moieties unless a Lewis acid is present. $\mathrm{Zn}(\mathrm{OTf})_{2}$ likely coordinates with the carbonyl of 4 H -azepine 3 to generate a 2 azapentadienyl cation \mathbf{F} bearing a zinc enolate, further enabling an intramolecular cyclization to generate species G. A 1,2-acyl shift ${ }^{14}$ of species \mathbf{G} delivers the observed product $5 .{ }^{13}$

Conclusions

In summary, this work describes new gold-catalyzed [4+3] annulations ${ }^{15}$ of 3 -substituted 3-en-1-ynamides with isoxazoles to form $4 H$-azepines. A relay catalysis is also developed with $\mathrm{Au}(\mathrm{I}) / \mathrm{Zn}(\mathrm{II})$ catalysts to achieve [4+2] annulations from the same reactants. The mechanisms of gold-catalyzed [4+3] annulations involve unprecedented 6π electrocyclizations of 3 -azacycloheptatrienyl cations to form 4 H -azepines 3-4 efficiently. Control experiments confirm that 4 H -azepines $\mathbf{3 - 4}$ are catalyzed by $\mathrm{Zn}(\mathrm{OTf})_{2}$ to undergo new rearrangement reactions to form substituted pyridine derivatives.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors thank the Ministry of Science and Technology and the Ministry of Education, Taiwan, for supporting this work.

Notes and references

1 (a) S. Sankararaman, in Pericyclic Reactions-A Textbook. Reactions, Applications and Theory, Wiley-VCH, New York, 2005, ch. 6, pp. 393-398; (b) C. M. Beaudry, J. P. Malerich and D. Trauner, Chem. Rev., 2005, 105, 4757; (c) P. V. R. Schleyer, J. I. Wu, F. P. Cossio and I. Fernandez, Chem. Soc. Rev., 2014, 43, 4909; (d) M. Bian, L. Li and H. Ding, Synthesis, 2017, 49, 4383; (e) E. C. Taylor and I. J. Turchi, Chem. Rev., 1979, 79, 181; (f) F. D. Proft, P. K. Chattaraj, P. W. Ayers, M. T. Sucarrat, M. Elango, V. Subramanian, S. Giri and P. Geerlings, J. Chem. Theory Comput., 2008, 4, 595; (g) N. Jana and G. Driver, Org. Biomol. Chem., 2015, 13, 9720.
2 (a) W. T. Spencer III, T. Vaidya and A. J. Frontier, Eur. J. Org. Chem., 2013, 3621; (b) R. L. Davis and D. L. Tantillo, Curr. Org. Chem., 2010, 14, 1561; (c) T. N. Grant, C. J. Rieder and
F. G. West, Chem. Commun., 2009, 5676; (d) M. J. Riveira, L. A. Marsili and M. P. Mischne, Org. Biomol. Chem., 2017, 15, 9255; (e) N. Shimada, C. Stewart and M. A. Tius, Tetrahedron, 2011, 67, 5851.
3 (a) V. A. Guner, K. N. Houk and I. W. Davis, J. Org. Chem., 2004, 69, 8024; (b) R. V. Essen, D. Frank, H. W. Sunnemann, D. Vidovic, J. Magull and A. D. Meijere, Chem.-Eur. J., 2005, 11, 6583; (c) N. A. Magomedov, P. L. Ruggiero and Y. Tang, J. Am. Chem. Soc., 2004, 126, 1624; (d) E. N. Marvell, G. Caple, B. Schatz and W. Pippin, Tetrahedron, 1973, 29, 3781; (e) J. R. Otero, J. Org. Chem., 1999, 64, 6842; (f) P. E. Tessier, N. Nguyen, M. D. Clay and A. G. Fallis, Org. Lett., 2005, 7, 767; (g) C. L. Benson and F. G. West, Org. Lett., 2007, 9, 2545; (h) G. A. Barcan, A. Patel, K. N. Houk and O. Kwon, Org. Lett., 2012, 14, 5388.

4 (a) R. B. Bates, W. H. Delnes, D. A. McCombs and D. E. Potter, J. Am. Chem. Soc., 1969, 91, 4608; (b) K. Marx and W. Eberbach, Chem.-Eur. J., 2000, 6, 2063; (c) M. Reisser and G. Mass, J. Org. Chem., 2004, 69, 4913; (d) T. Hübner, Dissertation, University of Freiberg, 1987; (e) A. Arany, D. Bendell, P. W. Groudwater, I. Garnett and M. Nyerges, J. Chem. Soc., Perkin Trans. 1, 1999, 2605.

5 (a) N. C. Deno, C. U. Pittman and J. O. Turner, J. Am. Chem. Soc., 1965, 87, 2153; (b) O. N. Faza, C. S. López, R. Alvarez and A. R. de Lera, Chem.-Eur. J., 2009, 15, 1944.

6 D. Alickmann, R. Fröhlich, A. H. Maulitz and E. U. Wurthwein, Eur. J. Org. Chem., 2002, 1523.

7 (a) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L. W. Ye, Chem. Sci., 2015, 6, 1265; (b) X. Y. Xiao, A. H. Zhou, C. Shu, F. Pan, T. Li and L. W. Ye, Chem.-Asian J., 2015, 10, 1854; (c) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu and L. W. Ye, Angew. Chem., Int. Ed., 2017, 56, 605; (d) L. Li, T. D. Tan, Y. Q. Zhang, X. Liu and L. W. Ye, Org. Biomol. Chem., 2017, 15, 8483.
8 (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 794; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem., Int. Ed., 2016, 55, 12688.
9 (a) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Org. Lett., 2017, 19, 1020; (b) M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Commun., 2016, 52, 6324; (c) W. Xu, G. Wang, N. Sun and Y. Liu, Org. Lett., 2017, 19, 3307.
10 For synthesis of $n H$-azepines ($n=2$ or 4), see selected examples: (a) U. Gockel, U. Hartmannsgruber, A. Steigel and J. Sauer, Tetrahedron Lett., 1980, 21, 599; (b)
I. R. Dunkin, A. E. Ayeb and M. A. Lynch, J. Chem. Soc., Chem. Commun., 1994, 1695; (c) K. Satake, R. Okuda, M. Hashimoto, Y. Fujiwara, H. Okamoto, M. Kimura and S. Morosawa, J. Chem. Soc. Perkin Trans 1, 1994, 1753; (d) Y. Luo and J. Wu, Chem. Commun., 2011, 47, 11137.

11 Crystallographic data of compounds $\mathbf{3 b}, \mathbf{3 1}, \mathbf{4 a}, 5 \mathbf{a}, 5 \mathbf{i}$, and 6m were deposited in Cambridge Crystallographic Data Center: 3b: CCDC 1589549, 31: CCDC 1589562, 4a: CCDC 1589561, 5a: CCDC 1589558, 5i: CCDC 1589559 and $6 \mathbf{m}$ CCDC $1589560 . \dagger$
12 For the aza-Nazarov cyclizations, see: (a) D. A. Klumpp, Y. Zhang, M. J. O'Connor, P. M. Esteves and L. S. de Almeida, Org. Lett., 2007, 9, 3085; (b) Z. X. Ma, S. He, W. Song and R. P. Hsung, Org. Lett., 2012, 14, 5736; (c) R. L. Sahani and R. S. Liu, Angew. Chem., Int. Ed., 2017, 56, 12736; (d) S. K. Pawar, R. L. Sahani and R. S. Liu, Chem.Eur. J., 2015, 21, 10843; (e) C. Shu, Y. H. Wang, C. H. Shen, P. P. Ruan, X. Lu and L. W. Ye, Org. Lett., 2016, 18, 3254.

13 As suggested by one reviewer, an alternative mechanism is also possible for the $\mathrm{Zn}(\mathrm{II})$-catalyzed rearrangement; this process involves an isomerization of initial species 3 to an unconjugated iminoyl ketone \mathbf{H}, followed by a 6π cyclization to generate species \mathbf{I}. A subsequent $\mathrm{Zn}(\mathrm{II})$ catalyzed aromatization of species I is expected to yield the final product 5. In this process, species \mathbf{H} is relatively higher than 3 in energy, but its feasibility is not excluded.

14 (a) S. M. Wang and L. Zhang, Org. Lett., 2006, 8, 4585; (b) G. Li, G. Zhang and L. Zhang, J. Am. Chem. Soc., 2008, 130, 3704; (c) S. B. Wagh and R. S. Liu, Chem. Commun., 2015, 51, 15462; (d) R. Chaudhuri, A. Das, H. Y. Liao and R. S. Liu, Chem. Commun., 2010, 46, 4601.

15 For reviews of gold-catalyzed cycloaddition or annulation reactions of alkynes, see (a) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008, 108, 3351; (b) A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; (c) F. López and J. L. Mascareñas, Beilstein J. Org. Chem., 2011, 7, 1075; (d) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria and A. Simonneau, Chem. Rev., 2011, 111, 1954; (e) D. Garayalde and C. Nevado, ACS Catal., 2012, 2, 1462; (f) M. E. Muratore, A. Homes, C. Obradors and A. M. Echavarren, Chem.-Asian J., 2014, 9, 3066.

[^0]: Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, Republic of China. E-mail: rsliu@mx.nthu.edu.tw
 \dagger Electronic supplementary information (ESI) available. CCDC 1589549, 1589562, 1589561, 1589558, 1589559 and 1589560. For ESI and crystallographic data in CIF or other electronic format see DOI: $10.1039 / \mathrm{c} 8 \mathrm{sc} 00232 \mathrm{k}$

[^1]: ${ }^{a}[\mathbf{1 b}]=0.15 \mathrm{M} .{ }^{b}$ Product yields are reported after separation from a silica column.

