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Abstract 
We present a perspective for accelerating biomass manufacturing via digitalization. We summarize 
the challenges for manufacturing and identify areas where digitalization can help. A profound 
potential in using lignocellulosic biomass and renewable feedstocks, in general, is to produce new 
molecules and products with unmatched properties that have no analog in traditional refineries. 
Discovering such performance-advantaged molecules and the paths and processes to make them 
rapidly and systematically can transform manufacturing practices. We discuss retrosynthetic 
approaches, text mining, natural language processing, and modern machine learning methods to 
enable digitalization. Laboratory and multiscale computations automation via active learning are 
crucial to complement existing literature and expedite discovery and valuable data collection 
without a human in the loop. Such data can help process simulation and optimization select the 
most promising processes and molecules according to economic, environmental, and societal 
metrics. We propose the close integration between bench and process scale models and data to 
exploit the low dimensionality of the data and transform the manufacturing for renewable 
feedstocks. 
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I. Introduction  

Due to global warming,1 there is mounting societal, economic, and political pressure for 
sustainable resources and manufacturing.2, 3 Conversion of lignocellulosic biomass, energy crops, 
and waste streams, such as agricultural waste and food waste, to materials and chemicals to replace 
fossil-fuel-based products can address resource sustainability. Specifically, CO2 capture from the 
atmosphere via photosynthesis is relatively slow but is scalable. It can lead to a carbon-neutral 
scenario where CO2 produced, say from burning fuels, is captured photosynthetically in growing 
biomass and is eventually converted back into fuels to repeat the entire cycle. Producing solid 
materials, e.g., renewable terephthalic acid for polyethylene terephthalate (PET) plastic, and 
chemicals from biomass can lead to carbon capture for extended periods and thus to a negative 
carbon balance. Building upon this rationale, based on recent roadmap reports put forth by 
International Renewable Energy Agency (IRENA) in 20184 and 20195,  by 2050, biomass can 
contribute to ~20% of energy requirements for transportation and total industrial sector (cement, 
iron and steel, chemical and petrochemical, paper and pulp, aluminium). With the forthcoming 
electrification of transportation of cars and light trucks, the renewable energy focus should shift to 
producing jet and marine fuels.6 

The global catalysis community has taken charge of the molecule and product discovery and 
catalyst mating with numerous exciting discoveries to platform chemicals and end products (see 
Figure 1).7, 8 Platform molecules are building blocks for making many products. Notable examples 
include biomass-based vinylfuran9 and furan dicarboxylic acid,10 instead of fossil-fuel-derived 
styrene and terephthalic acid11, respectively. Furanics have been the most exploited platform 
molecules due to their reactivity and versatility in producing entire product slates, including jet 
fuels, detergents, lubricants, aromatics, dienes, diols, and diacids, to mention a few.  
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Figure 1. Example routes for lignocellulosic biomass conversion into select platform molecules (green background).7, 8 

Despite profound advances in product discovery and catalyst development, biomass 
manufacturing has received less emphasis, and commercialization, beyond the corn and sugarcane 
ethanol and biodiesel, has been slow. The intense effort in converting a scientist's knowledge and 
intuition to experimental testing to the culmination of profitable and sustainable manufacturing 
from biomass feedstocks motivates this perspective. A key goal of manufacturing is to be 
economically viable and environmentally sustainable. Toward this goal, one needs to bring 
process-scale insights into the bench and use literature data and automation to create data at the 
laboratory scale to guide process development and systems analysis. We propose that these 
concepts can soon be met, aided by high-performance computing and artificial intelligence. 
Indeed, we argue that catalytic reaction engineering, data science, process optimization, and 
multiscale modeling are all harbingers of the digitalized future of biomass manufacturing. We 
discuss approaches and tools for bench- and process-scale digitalization. The learnings can form 
the foundations for a new integrated digitalization framework. We start by summarizing the top 
ten grand challenges in biomass manufacturing (Figure 2) and expand those amenable to 
digitalization. We close with the outstanding research topics. 

 
II. Top Ten Grand Biomass Manufacturing Challenges  

The top ten biomass manufacturing challenges, based on our experience, are depicted in 
Figure 2. We discuss select ones next and expand on the products slate that we should manufacture 
and the reaction paths in the next section as they are crucial but neither well-developed nor 
reviewed topics. 
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Figure 2. Summary of challenges for sustainable manufacturing from renewable feedstocks. Challenges 1-4 address feedstock 
diversity, catalysis, separations, and H2 needs. Challenges 5 and 6 refer to the short transportation distance of wet feedstocks, the 
unproven economics, and the associated risks. Challenge 7 underscores the lack of a supply chain that starts with the feedstock 
logistics (production, harvesting, collection, soil maintenance, etc.) and ends up with markets; it creates barriers for individual 
companies in any part of the chain to enter this space due to lack of upstream and downstream industry. Challenges 8-10 are 
inspired by the very slow and unsupervised discovery and the lack of a design paradigm where product quality and sustainability 
are considered from the start rather than as an afterthought.  

Feedstock diversity, complex transformations, and unknown chemistry paths. The 
transition from the current optimized fossil-fuel refineries to biorefineries is ridden with challenges 
at multiple scales, including the inherent complexity of handling solids and the seasonal and 
compositional diversity of the feedstock, the inherently complex chemistry of biomass, the use of 
(non-aqueous) and potentially non-green solvents to solubilize solids and improve processability, 
the significant developmental time required to identify optimal synthesis paths, solvents, and 
catalysts, the complexity of integrating processes and information at all scales, and the supply-
chain logistics that start with harvesting, collection, and shortage, to pretreatment and multi-step 
processing to final product formulation. Aside from the lignocellulose, recycling and upcycling of 
food waste and other waste streams, including tires, biogas, methane leaks, and plastics, are at 
embryonic stages of development and are expected to face similar challenges.  

Distributed, remote, small-scale, semi-supervised manufacturing. Due to the poor 
economics of transporting wet feedstocks over long (>50 miles) distances, manufacturing will 
happen at least partially close to the production site in the case of lignocellulose, agricultural waste, 
and food-producing farms. The limited self-life time of food waste is another driver for small-scale 
manufacturing. Local manufacturing can benefit rural communities, assisting economic equity. 
Small-scale, distributed manufacturing is against the established economy of scales paradigm. A 
century's chemical manufacturing has established that the cost drops with increasing size with an 
empirical power-law with an exponent of 2/3: the larger the plant, the cheaper the production. The 
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most recent petrochemical plants in Qatar and refineries in the US have been some of the largest 
ever. Yet, the higher cost and longer time-to-build than the established cost-size 2/3 scaling have 
put this empirical law to question.  

By extrapolating the 2/3 scaling to small plants, one expects the product cost per unit mass in 
distributed, small-scale manufacturing to be prohibitively higher. This observation makes 
manufacturing from renewable feedstocks a non-starter. This analysis misses the significantly 
lower cost stemming from mass production, i.e., the learnings from building big do not apply to 
building small massively. Several examples illustrate this point: manufacturing a vast number of 
automobiles, car engines (vs. trucks or planes), smartphones, and other electronics has profoundly 
dropped the per-unit cost. Small scale also de-risks investments by being inherently smaller. While 
massive production has seen tremendous success in consumer goods, it has not been tested yet in 
chemical manufacturing. Plants are much more expensive and complex than an iPhone. 
Furthermore, there is not always a market pool drive for investment. Continuous, well-integrated, 
and optimized processes are essential to cut down on utilities and energy use. 

Over the past years, the continuous production of pharmaceuticals has been a successful 
example of transitioning manufacturing. Improved product quality, reduced cost and tighter 
economic margins, shorter manufacturing times, build where needed, personalized care, flexibility 
in the product, and small product volumes have been clear drivers that transformed batch 
processing to intensified, continuous processing. The large volumes of renewable feedstocks and 
associated products depart though from the pharma industry and the learnings acquired. The larger 
scale and lower product value create an inherent risk in building new manufacturing facilities. 
Remote and distributed (farm by farm) manufacturing require an integrated control and automation 
for remote operation with limited human intervention, reminiscent of semi-supervised machine 
learning. 

Sustainable manufacturing via electrification. Conventional manufacturing using 
renewable feedstocks would help in sustainability but it still uses energy to run chemical reactions 
and separations, producing CO2 and waste streams, making the net carbon balance positive. The 
net amount of the produced CO2 per unit mass of a product is a crucial metric. In other words, 
renewable feedstocks alone can help but may be insufficient to solve the climate problem. A zero-
emissions industry needs a paradigm shift that simultaneously considers sustainable renewable 
resources and sustainable manufacturing using electrification. For example, the production of 
bioethanol from corn requires significant amounts of energy to separate ethanol from the vast 
amounts of water—an energy-intensive separation that reduces the photosynthesis carbon capture 
benefit.12 The nearly complete removal of oxygen (at least in most cases) from biomass requires 
profound amounts of H2 whose current production leads to significant CO2 emissions and is 
unsustainable.  

 
III. Build the Transitioning Chemical Industry Better 

Meeting the global warming challenge requires an intense effort to transition the chemical 
industry to zero-emissions. Sustainable resources and recycling combined with electrification are 
key elements toward this goal. A key question is what to make out of renewable sources. First, the 
volume of energy and fuels is about two orders of magnitude larger than chemicals. For a 
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substantial environmental impact, one needs to produce fuels and go beyond sugarcane- and corn-
based ethanol and biodiesel and produce second-generation biofuels (from lignocellulosic 
biomass or woody crops, agricultural waste, and dedicated energy crops grown on marginal land). 
However, the economics of producing fuels is not as attractive. The failure of commercializing 
large-scale lignocellulosic ethanol underscores precisely the economic challenge. Chemicals 
provide a much more lucrative target. 

Future biofuel production. Given batteries have a (much) lower energy density than fuels, 
battery-based energy storage for long journeys of airplanes and cargo ships is currently not viable. 
The European Union announced on July 14, 2021, the ban of new petrol and diesel cars by 2035.13 
Its new ReFuelEU Aviation Initiative mandates blending 5% by 2030, 32% by 2040, and 63% by 
2050 sustainable aviation fuel (SAF) with fossil fuels. Renewable and low carbon fuels should be 
6-9% of the international maritime transport fuel mix in 2030 and 86-88% by 2050.6 Whether this 
will happen using green ammonia, pressurized green hydrogen, or biofuels is still to be determined. 
We expect SAFS and maritime fuels to be the focus of future biorefineries. 

Pyrolysis has been to most mature technology for the production of fuels. It uses thermal 
energy at high temperatures to unselectively break down bonds leading to a product stream, called 
bio-oil, containing hundreds of compounds with multiple functionalities. While agnostic to the 
feedstock and thus versatile (pros), the separation of the product stream into individual compounds 
is energy-intensive and challenging (cons). Aside from lignocellulose, pyrolysis has been applied 
to lignin, a major low-value byproduct in the paper industry. However, the economic viability is 
an issue. Technologies, such as aldol condensation, starting from the building blocks of (hemi-) 
cellulose, have also been exploited. The furan platform to biofuels of specific molecular weight 
and structure is compelling.14 The optimal path to make biofuels will be dictated by several factors 
including economics, the policy mandates, the  scale of biofuels, the chemicals co-produced, etc. 

Technoeconomic analysis (TEA) of biomass processes over the past 15 years has underscored 
that the lower value/higher cost of fuels makes the co-production of chemicals necessary. Biomass 
consists of biopolymers with building blocks of five- or six-carbon sugars (cellulose and 
hemicellulose) and aromatic rings connected via small linkers (lignin) that could be ideal platforms 
to certain chemicals. We discuss these next. 
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Figure 3. Schematic of feedstocks and select product classes produced via catalytic transformations in the Catalysis Center for 
Energy Innovation. 

Direct replacement chemicals. The vision in the 2000s was to replace refinery chemicals 
with identical molecules. Given the biomass makeup, the production of chemicals of five to about 
ten carbons is a clear target. It entails three overall steps: (1) The deconstruction of the biopolymers 
via C-O and C-C bond scission to produce the monomers and linkers (in the case of lignin); (2) 
their defunctionalization to remove (some of) the oxygen; and (3) the ring-opening and 
deoxygenation to make target chemicals or the C-C coupling chemistry to make larger molecules.  

Figure 3 shows potential routes to select replacement targets: dienes, aromatics, diols, diacids 
(e.g., pentanediol, hexanediol, adipic acid, succinic acid, butadiene, pentadienes).  

Figure 4a details paths for producing renewable aromatics from furanics of (hemi-)cellulosic 
biomass. Specifically, renewable terephthalic acid (TPA) is a bench-scale success for replacing 
crude-oil-based PET (polyethylene terephthalate polymer) for plastic bottles and other 
applications. An initial discovery in the Catalysis Center for Energy Innovation (CCEI), using 
Bronsted acid catalysts led to a modest yield.15, 16 Advancing fundamental knowledge and catalysts 
led to a nearly quantitative (97%) yield over a new class of P-containing zeolites,17 tremendously 
improving the economic viability. A collateral benefit was the discovery of P-containing and other 
weak Bronsted acid zeosil catalysts with remarkable selectivity in dehydration chemistry beyond 
p-xylene production for making dienes18, 19 and base oil lubricant precursors.20  

This remarkable optimization took over five years of intensive research from a talented group 
of investigators with complementary skills in materials synthesis, catalysis, reactors, kinetics, 
mechanisms, multiscale modeling, and systems analysis. This period is shorter than the usual 
academic time due to teamwork but still long due to training the future workforce and trial-and-
error. Yet, bench-scale concepts need advancement to higher technology readiness levels (TRL) 
for commercialization more rapidly.  
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While the platform molecules and replacement chemicals are known, the optimal pathways 
are not. For example, Figure 4b depicts two paths from HMF to TPA. Path B involves fewer 
reaction steps and reactors and avoids oxidation and reduction (and importantly, the use of H2) 
invoked in Path A; it makes sense from processing and sustainability viewpoints. However, the 
electron-withdrawing properties of -COOH make the Diels-Alder chemistry in Path B very hard 
to achieve. Path A leverages the slightly donating -CH3 groups to achieve high rates and 
quantitative product (para-xylene) yield. This pathfinding was not evident before conducting 
extensive research. The Diels-Alder reactor employs heptane as a solvent to reduce water (a 
byproduct of the reaction) around the Bronsted acid sites that hydrolyze the dimethyl furan to (a 
byproduct) diketone. The choice of heptane, though, was intuitive. Despite Diels-Alder being 
organic textbook chemistry, significant effort was invested in optimizing the catalyst, solvent, and 
processing conditions. Production of other replacement chemicals has faced similar development 
challenges. Digitalization can revolutionalize such optimization. 

             
             

          

(a) 
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Figure 4. (a)  Potential roadmap to replace aromatics from furanic platform molecules in the Catalysis Center for Energy 
Innovation. (b) Two possible paths to renewable TPA: Path (A) entails the hydrodeoxygenation of HMF to dimethyl furan, followed 
by the Diels-Alder addition of C2H4 to para-xylene and the mid-century oxidation process to TPA. Path (B) entails the direct 
oxidation to FDCA followed by the Diels-Alder addition of C2H4 to TPA. 

Performance-advantaged chemicals and products. The transition of the chemical industry 
into zero emissions requires a holistic view of the resources, manufacturing practices, 
electrification, automation, and the targeted products. Notably, the functional groups in platform 
chemicals can give products with unmatched properties, potential biodegradability, and high value. 
Here we discuss such examples.  

Furan rings have aromatic properties but contain oxygen, and are thus more hydrophilic, and 
possess higher solubility in polar solvents. As a result, alkyl furan detergents often have better 
properties than commercial alkylbenzene sulfonates.21 Similarly, FDCA (2,5-furandicarboxylic 
acid), the diacid of HMF, can be produced by selective oxidation of HMF to replace TPA and 
produce renewable PEF (poly(ethylene 2,5-furandicarboxylate) with ethylene glycol, a renewable 
analog of PET.22 PEF possesses high performance (diffusion barrier, thermal, and mechanical 
properties). Recognizing the potential, Avantium started manufacturing PEF for films, fibers, and 
packaging of soft drinks, water, and alcoholic beverages in 2010. 

Turning next to lignin, the monomers 4-propylsyringol and 4-propylguaiacol, obtained from 
poplar wood lignin, can be functionalized with acrylate or methacrylate groups and then use 
reversible addition−fragmentation chain-transfer (RAFT) to yield polymers with high glass 
transition temperatures and good thermal stability. These molecules can serve as low-dispersity 
triblock polymers for high-performance pressure-sensitive adhesives that outperform commercial 
products.23  

(b) 
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Lubricants are ubiquitous in modern life applications. They hold an over $126 billion market 
Lubricants are ubiquitous in modern life applications. They hold an over $126 billion market 
globally24 with a projection to $183 billion by 2025.25 Base oils make most of the lubricant (75-99 
wt%), with the rest being additives to impart suitable properties in a product. They contain C20-50 
hydrocarbons. Synthetic base oils of lower viscosity, such as poly-α-olefins (PAOs), are typically 
used in automobiles; those of high viscosity, like alkylbenzenes, in cooling and refrigeration.26, 27 
Selectively tuning synthetic base oils' molecular size and architecture is challenging. The cationic 
oligomerization of linear C8-12 α-olefins uses homogeneous corrosive acid catalysts (BF3, HF, or 
AlCl3) and forms multiple products, leading to expensive separations and a significant 
environmental footprint. The oxygen of platform molecules enables selective C-C coupling, e.g., 
via hydroxyalkylation/alkylation (HAA), producing molecules of a precise number of carbons and 
molecular structure. Their properties can outperform commercial products.20, 28-30 Figure 5a shows 
a pathway to renewable base oils using alkylfurans and fatty acids. Figure 5b shows the molecular 
structures of ~C30 from three paths. Remarkably, C30-BPAOL1 and C31-BPAOL1 differ in one 
methyl only. Yet, their pour points differ dramatically (~-20 vs. -50 oC). This example illustrates 
the sensitivity of properties on the structure and the importance of having structure-property 
relations. It also underscores the exquisite selectivity of the underlying chemistry. Importantly, 
this lubricant technology employs solid catalysts and produces minimal byproducts, reducing 
separations and energy use. Overall, in addition to using renewable resources, manufacturing is 
more sustainable. As another example, lignin monomers can be converted to alkylbenzene-based 
lubricants for refrigerants. A pathway from our recent work is depicted in Figure 6.31 It illustrates 
how one can convert lignin (a waste stream from the paper industry) into high-value products. 

 

(a) 
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Figure 5. (a) Production of three classes of lubricants from alkyl furans and long-chain aldehydes. (b) Examples of base oil 
lubricant structures from different chemistry paths and starting chemicals.20, 28-30 

 
Figure 6. Strategy to produce branched benzene lubricant (BBL) base oils and branched cyclic lubricant (BCL) base oils via 
Brønsted acid-catalyzed hydroxyalkylation/alkylation (HAA) of lignin-derived monomers (hydroxyphenyls, guaiacols, and 
syringols) with an aldehyde and the and hydrodeoxygenation (HDO) of the BBL product, respectively.31 

Food waste is a poorly managed feedstock. Yet, its environmental, societal, and economic 
impact is enormous. About one-third of the food produced is wasted, resulting in ~34% of the 
anthropogenically-induced methane emission, loss of 26 EJ energy (equivalent to ¼ of the US 
energy consumption), and 3.3 billion CO2 equivalents comparable only to big countries (China and 
the US). Yet, food waste can be a renewable resource to manufacture bioproducts circularly. Figure 
7 shows a roadmap of potential products, applications, and value. Many products are 
unconventional with unestablished markets. The quantities of extractables are often low and ideal 
for small volume consumer products. Among them, antioxidants32 provide tremendous 
commercialization opportunities unmatched by lignocellulose. A key challenge and opportunity 
here are to develop economically viable and sustainable extraction processes to recover these high-

(b) 
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value molecules before (more aggressive) chemical manufacturing. Following extraction, 
additional separations to get the main constituents may be necessary. For fruits and vegetables, 
which constitute a large fraction of food waste and contain a significant portion of the starch, 
typical deconstruction methods employed in lignocellulosic biomass can be used. These can entail 
acidified molten salt hydrolysis of starch to produce sugars, acid-catalyzed dehydration of the 
sugars to furans and their upgrade to value-added products, and pyrolysis of the leftover fraction 
to produce carbon-based materials as adsorbents, electrodes, etc. Such an integrated, multiple 
process approach was recently demonstrated for potato peels.32 

 
Figure 7. Schematic roadmap of potential products from food waste.33 The figure is reproduced from Ref. 34 with permission 
from the Royal Society of Chemistry 

Barriers and opportunities for manufacturing renewable products. The established 
petrochemical products and their properties are mainly known, and the R&D focuses on catalyst 
and process optimization and product formulation. Biomass manufacturing creates a new set of 
challenges and opportunities stemming from the diversity of feedstocks and platform molecules 
and the multiple paths to convert platform molecules (Figure 8) to performance-advantage 
products, such as the adhesives, detergents, and lubricants mentioned above. Creating new 
molecules is tedious, human-intensive, and risky.  

The economics and sustainability metrics of performance-advantaged products studied so far 
look excellent, creating a substantial market pool and economic driver for manufacturing. Yet, two 
overarching challenges must be overcome, namely the lack of (1) a framework to decide the best 
products, paths and processes for manufacturing, and (2) structure-property relations of new 
molecules. Defining a superstructure of all viable paths and processes is a necessity. Finally, 
laboratory demonstration and validation of the best solutions will be critical. All in all, a systems 
perspective, which integrates molecule, product, and process design, would be essential. A strong 
partnership between academia, industry, and markets can be impactful. 
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Figure 8. Digitalization enablers for accelerated manufacturing of new molecules and products. 

IV. Bench-Scale Digitalization 
The idea behind bench-scale digitalization is to extensively utilize the information available 

in the literature and perform critical experiments in a high-throughput fashion. This enables the 
generation of high-quality data, leading to optimal processes for scale-up. Figure 9 depicts the 
workflow for bench-scale digitalization that we touch upon next. Details of retrosynthesis and 
automated laboratory are given in recent reviews.34, 35  

 

Figure 9. A pathway towards bench-scale digitalization. 

A challenge in undertaking a new biomass catalysis project at the lab scale is the massiveness 
of the scientific literature. This problem is evidenced in a cursory literature search with "biomass" 
and "catalysis" keywords, which reveals >1,000 relevant papers per year published in the last five 
years. Under such burgeoning information, it is increasingly difficult to sieve the available 
knowledge and extract essential information manually.  
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Retrieval of information and its curation into knowledge databases is emerging in many 
scientific areas. Cheminformatics, i.e., the extraction of knowledge from molecular structures of 
reactants, intermediates, and products, has been used since 1975,36 and is summarized in 
informative reviews.37-39 Most pertinent is the curation and description of reaction networks where 
text mining screened >1.8 million reactions from drug discovery patents.40 Since then, a multitude 
of techniques ranging from hard-coded ranking,41, 42 deep neural networks (NN)43, 44 using the 
string format SMILES (the simplified molecular-input line-entry system),45 TensorFlow,46 and a 
graph-convolution NN—harnessing databases, such as Reaxys47 and SciFinder,48 or patents49 have 
been used.  

Yet, these methods typically apply to homogeneous catalysis. Heterogeneous catalysis entails 
solid materials whose active sites and correlations of active sites with catalyst performance are 
often unknown. The revolution in data science, the accumulated information in the literature, and 
the automated workflows on the computer and the laboratory create a tremendous opportunity for 
discovery. We introduce methods for parsing the literature to a database of biomass conversion. 

Literature collection, information extraction, and classification. The first step in the 
envisioned workflow is literature collection. Domain-specific knowledge bases (PubChem, 
Chemistry Webbook, etc.) describe molecules with known name variations. Automated data 
retrieval through querying SciFinder, CrossRef, or Google scholar can enable the collection of 
relevant literature. The downloaded literature must be uniquely tagged to ensure database 
consistency, a task made easy with document object identifiers (DOIs).  

Upon relevant literature selection, text mining and natural language processing tools can 
automatically extract and classify information about: (1) reactants, (2) platform molecules, (3) 
catalysts, (4) operating conditions, (5) solvents, and (6) performance, e.g., yield to products and 
selectivity and rates. For instance, when operated on a passage50 like "5-(Hydroxymethyl) furfural 
(HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid 
(CrCl3) catalyst together with a Bronsted acid (HCl) catalyst in aqueous media is investigated", 
an automated classifier should distinguish product platform chemicals (HMF and levulinic acid) 
from reactant (glucose), tag the catalysts (CrCl3, HCl), and recognize water as the solvent (aqueous 
media). Continuing the passage "Yields of 46% levulinic acid in a single-phase and 59% HMF in 
a biphasic system have been achieved at moderate temperatures by combining CrCl3 and HCl", 
the classifier should ideally identify the performance information (yields) and parse the available 
qualitative operation conditions (moderate temperatures). The obtained data would most likely be 
disjoint and relational databases of semi-structured51 and relational mappings52, such as NoSQL 
databases53 (e.g., MongoDB54) would be required for storage.  

Such classification is best understood through examples from the mature field of organic 
synthesis. Cronin and co-workers55 relied on expert human knowledge heuristics to extract 
chemical information. In contrast, Laino and co-workers56 used deep-learning to convert 
experimental procedures to action sequences without human involvement. Operating between 
these two extremes, Barzilay and co-workers57 recently used human intervention to validate the 
automated classifier of reactants, products, and operating conditions. Considering the nascency of 
and the complexity inherent to biomass catalysis, such a supervised learning approach could be 
the first step forward. In such an approach, automated classifier features, including domain-
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specific word embeddings (e.g., "in the presence of" indicating subsequent catalyst information)58, 
and specific patterns for each category (e.g., "heated to" indicating operating conditions) could be 
utilized. Other specific features would consist of measurement units (e.g., °F or °C for 
temperature)59, regular expression matching (e.g., subscripts in chemical formulae),60 and expert 
knowledge (e.g., glucose is a typical reactant). These would need, at least initially, human 
validators to accept or reject the outputs via reinforcement learning. The human-in-the-loop 
approach also indicates a clear need for an organized and collaborative community effort to create 
open-source training datasets to avoid duplication.  

We have identified several gaps for moving the field forward. First, the content format needs 
to be easily readable by subsequent models. For instance, older content is primarily available in 
portable document format (PDF) or images, making extraction challenging. This limits current 
efforts to articles where a markup language-based text is available. Second, patents tend to be 
country-specific; having access to databases across countries could be challenging. These aspects 
curtail the information available for a digitalized framework. Third, the current extraction 
methodology is restricted to text data. However, images and graphs are vital sources of 
information. It is typical to report molecular structures as images. Extracting molecular 
information requires specialized models beyond those described here. Within graphs, there is 
heterogeneity in visualization (e.g., bar graphs, line graphs, pie charts, etc.), each requiring 
specialized computer vision models for data extraction. Therefore, tools and frameworks beyond 
those discussed here are needed to broadly digitalize these important knowledge streams. Beyond 
new tools, inclusion of underlying graphical data as tables in supplementary information or sharing 
structured/unstructured databases with the manuscript submission are important moving forward. 
Digitalization of the data, graphs, and images provided in future publications can alleviate the 
problem in part; yet, we expect that searching, organizing, and harnessing massive inhomogeneous 
data-streams would remain a major endeavor, and sustained community cooperation will remain 
at the heart of enabling a digital future for manufacturing. 

 
Retrosynthetic construction of reaction paths using reaction rules. A database can train 

models to predict feasible catalytic paths to desired products from biomass platform chemicals, a 
process known as retrosynthesis in synthetic organic chemistry. Retrosynthesis is an inverse 
problem: it starts with desired products and works backward to identify suitable reactants. 
Identifying pathways between known reactants and products is a long-standing problem in organic 
chemistry, often referred to as scoring or ranking. The visionary work of Corey and Wipke in 
196961 demonstrated that a computer could do synthesis and retrosynthesis using intuitive reaction 
rules, also known as reaction templates, and eventually led to the 1990 Nobel Prize. The approach, 
while pioneering, has seen limited success despite the advances in computer power due to the need 
for expert organic chemists to define these rules. In the past decade, the automatic generation of 
reaction rules from a vast database consisting of millions of reactions, e.g., the Route Designer 
tool, has been demonstrated.62 The automated extraction of reaction rules entails the following 
steps: 1) The reaction database is formatted to map atoms in reactants and products; 2) the reaction 
core, i.e., the set of atoms participating in the reaction, is identified from the atomic map; 3) the 
reaction cores are extended to include first and second neighboring atoms or functional groups that 
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are vital in the reaction; 4) the extended reaction cores are classified into groups using similarity, 
including the nature of the bond breaking or forming, charges, coordination environment, 
hybridization, aromaticity, etc.; and 5) the reaction template representing all reactions in a group 
constitutes the reaction rule.  

The automated rule extraction was applied to an electronic lab notebook containing about 
400,000 reactions.63 The reactions are given string representations known as SMIRKS and those 
with similar SMIRKS are grouped. The reactions in a group are sorted based on yield, and the 
reaction with a higher yield is chosen as representative. These groupings are thus converted to a 
retrosynthesis tool. Apart from the concepts of reaction cores and SMIRKS to represent reactive 
transformations, the concept of reaction vectors has also been used.62 Reaction vectors involve the 
encoding of changes in a reaction (changes in hybridization, bonds, atoms, etc.).64  An alternative 
approach to automated rule extraction uses graph theory. The reactants and reactions are 
represented as nodes, and the edges connecting these nodes represent reactants, reagents, catalysts, 
solvents, or products. The graph theory suppresses combinatorial explosion and is superior to the 
rule-based approach in discovering new reactions and capturing the roles of reagents and 
catalysts.44 Other alternatives to predict reactions include hard-coded ranking41, 42  and a deep 
neural network;43 the latest advancements borrow concepts from computational linguistics and cast 
an overall reaction as a translation problem, mapping reactants to products as a neural machine 
text sequence-to-sequence (seq2seq), using SMILES (the simplified molecular-input line-entry 
system)45  and TensorFlow.46  

The advantages of these data-centric approaches are the (a) use of experimentally based 
(instead of intuitive) reaction rules, (b) estimation of confidence intervals for the feasibility of a 
reaction family and individual reactions, based on the frequency of observations, (c) ability to add 
new experimental data and first-principles calculations to improve prediction, and (d) 
identification of missing pathways. Despite its application to synthetic organic and medicinal 
chemistries, retrosynthesis has not been employed for biomass research. This is partly due to the 
lack of quantitative process models and data built from such retrosynthetic models. 

Quantitative knowledge beyond retrosynthetic reaction rules. Extracting reaction rules 
from literature about the potential transformations is a significant step toward discovery but not 
sufficient. Unlike pharmaceuticals, whose volume is small and their price is high, the amounts and 
value of fuels and chemicals are massive and low, respectively. It is thus critical to perform early 
on material and energy balances along with TEA and LCA (Life Cycle Assessment) to decide the 
viable paths. Such an analysis requires quantitative reaction data and models. Kinetics information 
entails reaction rates, apparent activation energies, reaction orders, and rate expressions for all 
reactants and products. Unfortunately, only product yields are typically reported. Early literature 
data did not even close carbon balance. Vital information needed includes 1) chemical process 
information; 2) operating conditions; 3) reaction rates, kinetic data, and reaction network data for 
the observed compounds; 4) catalyst and solvent information; 5) information on unobserved or 
unreported species; and 6) molecular-level understanding, especially of elementary reactions 
crucial for catalyst and solvent selection. Due to significant differences in experimental conditions 
(operating conditions, solvents, and catalysts) among studies, it is often impossible to compare and 
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rank-order catalytic paths from literature data alone. New tools are desperately needed to close this 
gap. The automated laboratory discussed next is one means toward this task. 

The automated laboratory. The proposed paths should be tested and optimized in the 
laboratory by conducting experiments at varying continuous variables, such as temperature, 
pressure, catalyst loading, feed concentration, residence time, and discrete variables, such as the 
catalyst, solvent, and reactor type. This is essential information for process synthesis and 
optimization. 

At the lab scale, converting an intuition into a viable reaction path to make a product is non-
trivial and is a hit-and-miss approach. The solvents, catalysts, starting reactants and synthesis 
routes, and reaction conditions of many reactions remain unoptimized. One at a time parameter 
optimization to determine the optimum reaction conditions is a common practice despite the 
multidimensional optimization nature of these problems. The traditional design of experiments is 
rarely used and is still time-consuming and costly for high-dimensional problems. Optimizing 
reaction conditions, as often done, applies to a specific catalyst, solvent, and starting materials. If 
any of them were to be modified, the entire optimization must be repeated. This emphasizes labor-
intensive research and does not prepare the future workforce for creative thinking. With the ever-
changing vast literature, early-on determination of leading catalysts, solvents, and starting 
materials is crucial to saving time and resources. However, literature data has not been leveraged 
efficiently and effectively toward this goal. 

HTE (high throughput experiments) enable rapid screening in miniature well plate batch or 
continuous flow reactors, leading to diverse data for process model building and optimization. 
HTE has revolutionized the pharmaceutical industry by accelerating the screening libraries of 
compounds for therapeutic targets.65-67 The well plate reactors facilitate the simultaneous screening 
of several hundreds of solvents and reagents for a specific reaction. The flow reactors enable 
continuous production of chemicals over many conditions, safe handling of hazardous substances, 
and uniform mixing and heating; they also can prevent solvent evaporation.68 HTE has advanced 
its dispensing capability, e.g., the Acoustic Droplet Injection (ADE), to deliver accuracy and 
precision in adding reactants at various frequencies while being contactless to avoid impurities.34, 

68, 69 Programmed robots for preparing the reactant mixtures/feed streams and performing reactions 
at many conditions and in-line analysis via mass and vibrational spectroscopy, chromatography, 
NMR, etc., and finally extracting and curating the corresponding real-time data.35, 70-72 Software 
interfaces can codify the instruction to easily performable actions. For instance, ChemOS73 
interfaces humans and automation for supervised experimentation while incorporating expert 
knowledge. Alternatively, one can integrate hardware and software modules for automated 
synthesis.70 An end-to-end automated HTE framework also requires software to determine the 
sequence of experiments and carry out the codified experiments, i.e., data-driven active learning 
algorithms, which provide optimal performance with reduced time and materials. For instance, the 
open-source software NEXTorch74 and Gryffin75, among others76-79, bring Bayesian optimization 
to chemical sciences and enable categorical variables while being more effective than the 
traditional design of experiments.  

While optimization of continuous variables is relatively straightforward, that of discrete 
variables is not. One can use literature and/or HTE data from an automated laboratory to correlate 
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performance with descriptors, such as solvent polarity and H-bonding, acidity for Lewis and 
Bronsted acid catalysts, electronegativity, d-band center and width for metal catalysis, etc. These 
descriptors are computable using multiscale simulations. Optimization using the correlations can 
point to solvents and catalysts to improve performance. While conceptually simple, such a 
framework is currently lacking. 

 
V. Process Systems Engineering (PSE) for Product and Pathway Discovery 

and Optimization 
A wide gap between the laboratory and process levels exists; closing this gap is essential for 

commercializing new technologies and products. This section reviews key steps and outstanding 
challenges toward commercialization.80 A modeling hierarchy relies on the design maturity 
presented by the Association for the Advancement of Cost Engineering81 according to the 
confidence intervals (indicated by the numbers in parentheses) of the estimated budget: 
conceptualization (100%), identification of units modeled with parametric models (50%), design 
of processes with semi-detailed unit costs (30%), detailed unit design (20%), and detailed unit cost 
and take-off (15%). In most cases, TEA with semi-detailed cost estimations82, 83 coupled with an 
LCA for sustainability, including GHG emissions, water, land, and energy consumption, are 
performed.84 Early-on TEA and LCA use semi-detailed models82, 83, 85 and can eliminate processes 
of low profitability or unfavorable environmental indicators. This approach can be accelerated via 
bench-scale digitalization discussed above and a computational framework for the design and 
optimization of processes and products, a method widely established by the Process Systems 
Engineering (PSE) community.86 The tools and frameworks depend highly on process maturity 
and extent of analysis. Below we present the state-of-the-art tools for various stages of 
process/product development. Process synthesis entails the conceptualization and identification of 
unit operations and is followed by semi-detailed process design and optimization and detailed 
design.  

Process synthesis. We start with building and comparing different process alternatives using 
simple models (i.e., linear or parametric models) from literature and experimental measurements. 
Two overarching approaches can determine the best alternative: hierarchical decomposition and 
superstructure optimization.87 The former88 makes decisions based on experience and rules of 
thumb; the latter explores alternatives as a mathematical programming problem and is preferred 
due to covering more alternatives systematically. The scales considered depend on the scope and 
process maturity. Some process synthesis studies have only considered alternative units.89-92 
Detailed synthesis, on the other hand, includes operating conditions and catalysts but not 
kinetics.93, 94   Regardless of the detail, the initial superstructure should be dynamically adapted as 
new technologies and information emerge.95 For example, early works focused only on producing 
biofuels89, 96, 97 and recent ones value-added products95, 98 and new catalytic paths.94 The synthesis 
involves the following steps: 
• Literature data and expert knowledge to create possible alternatives. For a new process, 

experimental data is necessary.  
• Parametric models for process design using available simulators, like Aspen ®.82, 83 The overall 

fluxes of raw materials, utilities, emissions, operating (OPEX) and capital (CAPEX) costs are 
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determined. The OPEX is estimated from the fluxes of raw materials and their prices, and the 
CAPEX using literature99-101 and digital tools, e.g., the Aspen Economic Analyser® 102. The 
environmental footprint includes direct and indirect impacts. The former is obtained from the 
mass and energy balances and only requires simple estimates, e.g., the Global Warming 
Potential of different gas emissions.103 The latter is associated with the supply chain and waste 
management, and requires additional literature data103, 104 or extensive databases like 
Ecoinvent.105 Although indicators are not unique because of the different weights to each 
impact,106, 107 standardized indicators, such as ReCiPe108, 109 or Traci,110, 111 are used in the LCA 
of biomass processes. An extension entails social impacts using the Social-Life Cycle 
Assessment (S-LCA), 112-114 but these indicators are subjective. They include the Human 
Development Index of the United Nations115, 116 or custom indicators depending on the region. 
Developed countries have included impacts, such as job generation or health117, 118; developing 
countries include the percent of working children.119  

• Once the fluxes and costs have been determined, one generates a superstructure82, 83 (Figure 
10). Each alternative is a block with connections to upstream and downstream technologies. 
The most promising solution is found via optimization. The design is still initial, and the 
models are linear. Nonlinear models are linearized,120 leading to a Mixed Integer Linear 
Programming (MILP) model. Its solution determines the most profitable,89, 93, 121 
environmentally90, 122 and socially conscious path.118, 123  Multiple objectives90, 91, 122, 124 lead 
to multi-objective optimization and a Pareto trade-off between objectives.  
The optimization can also include uncertainties arising from the heterogeneity in biomass 

composition125, demand variability,126 and market prices,127 as commonly done in superstructure 
optimization.128, 129  The uncertainty space is sampled using Latin Hypercube sampling (LHS) via 
probability distributions.127, 130 Given the large uncertainty space, the deterministic MILP problem 
needs to be reformulated.131 In the synthesis, uncertainty is handled using robust optimization and 
two-stage stochastic programming. The former includes an additional term in the objective 
function.92 The latter fixes the synthesis decisions and adjusts operating variables to account for 
uncertainties.127, 132, 133 Fuzzy logic programing has also been used for market uncertainties.126, 134 
The combination of statistical sampling and deterministic optimization has been demonstrated but 
is computationally demanding.130, 135 

In summary, process synthesis has become much more widespread in biomass conversion. 
Despite exciting developments, there are still many challenges for biomass-based process 
synthesis. Literature information described above can be used to generate a superstructure, 
including intensified processes, and rank products and processes. However, the qualitative nature 
of the data leads to numerous alternatives, making identification of the most promising one hard. 
Clustering and other reduction and aggregation approaches can potentially identify the most 
promising directions while considering uncertainty and variability systematically. Integrating 
uncertainty in the resulting optimization problem is non-trivial,136 as it requires high computational 
power and efficient algorithms. Furthermore, formulating the multi-objective optimization with 
economic, environmental, and social targets under uncertainty demands new strategies. In this 
analysis, the time horizon is an important consideration as it affects the short vs. long term 
solutions.  
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Figure 10. Process synthesis and design steps. 
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Process and product design. Once the process synthesis has determined the most promising 
alternative, process design is done (blue arrows in Figure 10). It typically needs more detailed 
information, such as detailed thermodynamic data, kinetic data, and more elaborated process 
models.137-139 The data can be extensive and the phenomena complex, making mechanistic models 
unsuitable for process simulators. One could employ statistical models with multivariate analysis 
to determine the most critical variables that are employed in a surrogate model. Multivariable 
techniques include principal component analysis,140, 141 partial least squares,142 Bayesian 
minimization,143, 144 and the Akaike’s information criteria.145, 146 Surrogate models include 
Principal Component Regression, polynomial correlations, Radial Basis Functions, or 
kriging/gaussian process models.147, 148 One can size a reactor or a distillation column and reduce 
uncertainties using detailed mechanistic or surrogate models. This step entails a highly nonlinear 
programming optimization model to determine the optimal operating conditions, raw materials, 
and products.149, 150 Uncertainties due to the heterogeneity of the biomass and markets can also be 
incorporated,151 and heat integration can also be carried out. Process integration has been studied 
extensively in general for specific classes of problems (i.e., Pinch analysis152-154 and optimal 
network of heat exchangers and water treatment under economic153, 155-158 and environmental 
concerns159) but little of this has been applied to biomass conversion. The selection and 
optimization of catalysts and solvents remain a high toll due to the lack of descriptor-based models 
or big reactivity and thermodynamic data. 

Determining a product with target properties can be achieved using Computer-Aided 
Molecular Design (CAMD) based on the functional groups or molecular structure.160-162 CAMD 
combined with optimization can provide the optimum blend of biofuel. The problem, defined as a 
Mixed-Integer-Non-Linear (MINLP), is often simplified to a MILP.163 CAMD has been 
formulated for various components (i.e., solvents164, refrigerants165). However, product design has 
not been applied to biorefineries due to the lack of structure-property relations and knowledge 
about paths identified as gaps (Figure 2). 

Rigorous process design. Computational fluid dynamics can optimize unit geometry and 
process conditions to more accurately estimate CAPEX. This step is common in process 
intensification. Intensification technologies can be profitable and implementable at an industrial 
scale.166 In general, detailed process design has not been conducted due to the lack of detailed 
process models and commercialization efforts. 

Integrated frameworks. Integrating product development with process synthesis and design 
should be the ultimate goal but this task is at embryonic stages. We provide some examples below. 
• Multiple stages of process design. An early effort entailed the Integrated-Computer Aided 

System tool167 that combines CAMD168 and process design. The user specifies the material and 
reactions to rank the most promising processes and simulate them.169  

• Product and process design.170-174 These problems are numerically difficult due to including 
many nonlinear and integer variables, many components, and complex property estimation. 
Approaches to overcome the complexity include (1) surrogates172 and clustering and averaging 
techniques;175 (2) a hierarchical approach175-177 to screen, using the most relevant material 
properties and processes, and determine the optimal molecule using more rigorous models; and 
(3) an iterative scheme by formulating a single optimization170 or two optimizations171 where 
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the “master problem” selects the optimal path and a detailed nonlinear optimizer determines 
the optimal process conditions.  

• Supply chain. Even though the supply chain is beyond the scope of this perspective, it affects 
profitability and is an important barrier (Figure 2). A relevant study is the pooling problem,178, 

179 where the production sites and blending facilities are in different regions, and the optimal 
locations are determined. Extensions can include graph theory180 or iterative optimization.181 
We advocate that this is an important frontier for the PSE community. 
Barriers and opportunities. We envision that future biomass manufacturing should be 

supported by a seamless integration framework, as shown in Figure 11. One identifies the target 
products and properties using market analysis and uses text mining to transform these properties 
into possible products and technologies. Some ideas in this direction with limited applicability 
have been illustrated as part of the CAMD strategy. An automated laboratory can translate the 
available information into potential products and processes. Simulation software has been used 
extensively for process design at various levels of product maturity outlined above; yet, it is still 
an R&D exercise, hampering its extensive product and process optimization utilization. Data 
integration is usually done with specialized software, making integration with process simulators 
non-trivial. Numerical stability and convergence are still an art in graduate-level education, 
hindering the adaptation of the technology. Given uncertainty and assumptions, refinements that 
balance accuracy and time to generate data and integrate with process simulators and optimization 
software are necessary. One needs to go beyond new algorithms and build a computational 
environment that integrates existing capabilities easily and refines models and data adaptively. 
Flexible user interfaces integrating methodologies and software are lacking, leading to 
underutilized academic developments. Finally, databases and models of consistent and verified 
thermodynamic and kinetic data are crucial. Digitalization is a key enabler to accelerate this 
transition.   
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Figure 11. A framework integrating bench-scale digitalization, automatic laboratory experiments and multiscale simulations, and 
process design for TEA and LCA. 

VI. Outlook 
While tremendous advances in molecule discovery and catalyst development have been made, 

progress toward commercialization has been slow, despite the appealing TEA and LCA results. 
Part of the reason is the lack of an established supply chain, the significant investment risk, the 
high crude oil price variability, and the lack of supporting energy and climate policies. Data from 
the laboratory and multiscale simulations are produced slowly and result in publications and 
patents. Still, little of this information is harnessed to build quantitative models and predict. 
Digitalization can enable this transformation. 

This perspective highlighted digitalization for biomass manufacturing and the challenges in 
integrating process optimization with economic, environmental, and social objectives for product 
selection and path, solvent, and catalyst discovery. The integration will require automatic literature 
search via natural language processing, machine learning tools to organize knowledge, CAMD 
concepts, process modeling, and optimization. Developing new artificial intelligence tools to 
extract information from text, images, and graphs using computer vision models will accelerate 
the identification of alternatives for superstructure optimization. The main challenges in the 
superstructure formulation will be the smart selection of products and the implementation of 
physical insights to reduce uncertainties in estimating costs and environmental impacts. An 
automated laboratory and simulation data via active learning methods can provide key 
thermochemistry and kinetics data for detailed, validated process models, product structure-
property relations, and catalyst and solvent descriptor-performance correlations. The massiveness 
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of unknown molecule space, reaction paths, operating conditions, catalysts, and solvents, along 
with the uncertainty arising from incomplete and noisy data, feedstock variability, and market 
fluctuations, make this a hard problem. Yet, most complex problems are inherently low 
dimensional. A hierarchical approach built on screening, data and model generation, refinement, 
and coupling across scales could lead to profitable products, processes, and catalytic routes. Such 
an approach can significantly reduce time to commercialization, minimize uncertainty and risk, 
and accelerate the path to sustainable manufacturing. 
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