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18 Abstract 

19 Wastewater-based epidemiology has played a significant role in monitoring the COVID-19 

20 pandemic, yet little is known about degradation of SARS-CoV-2 in sewer networks. Here, we 

21 used advanced sewershed modeling software to simulate SARS-CoV-2 RNA degradation in 

22 sewersheds across Houston, TX under various temperatures and decay rates. Moreover, a novel 

23 metric, population times travel time (PT), was proposed to identify localities with a greater 

24 likelihood of undetected COVID-19 outbreaks and to aid in the placement of upstream samplers. 

25 Findings suggest that travel time has a greater influence on RNA degradation across the 

26 sewershed as compared to temperature. SARS-CoV-2 RNA degradation at median travel times 
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27 was approximately two times greater in 20°C wastewater between the small sewershed, 

28 Chocolate Bayou, and the larger sewershed, 69th Street. Lastly, placement of upstream samplers 

29 according to the PT metric can provide a more representative snapshot of disease incidence in 

30 large sewersheds. This study helps to elucidate discrepancies between SARS-CoV-2 viral load in 

31 wastewater and clinical incidence of COVID-19. Incorporating travel time and SARS-CoV-2 

32 RNA decay can improve wastewater surveillance efforts.   

33

34 Keywords: COVID-19, Wastewater-based epidemiology, Coronaviruses, Decay, Travel time

35

36 1. Introduction

37

38 Municipal wastewater treatment plants collect untreated wastewater from communities ranging 

39 from hundreds to millions of inhabitants per day within a given sewershed. This wastewater can 

40 be scrutinized to obtain critical insights into biological and chemical markers that are reflective 

41 of community health within the serviced population, an approach known as wastewater-based 

42 epidemiology (WBE).  

43

44 In WBE, untreated wastewater is considered analogous to a population-wide urine and stool 

45 sample. This representative sample can be used to evaluate community health and the prevalence 

46 of certain diseases by directly measuring markers of concern. Viral monitoring in wastewater has 

47 gained much attention considering that viruses do not replicate independent of a host cell and are 

48 persistent in the environment. Several viral pathogens including hepatitis A virus, hepatitis E 
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49 virus, norovirus, sapovirus, astrovirus, and poliovirus have been monitored in wastewater for 

50 community health tracking (1–5).

51

52 Recently, WBE has been recognized as a promising tool for tracking SARS-CoV-2, the causative 

53 agent of Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 is an enveloped positive-sense 

54 RNA virus belonging to the Coronaviridae family. Although the primary transmission route of 

55 SARS-CoV-2 is via respiratory droplets, evidence of fecal shedding of SARS-CoV-2 in infected 

56 individuals has led to the global attention of WBE in the ongoing fight against COVID-19 (6). 

57 Several studies have highlighted the potential for viral signals to precede clinical cases and 

58 capture the extent of asymptomatic individuals that are not reported in health care facilities (7–

59 10). 

60 Generally, evidence supports the utility of WBE as a public health and environmental tracking 

61 tool for viral disease outbreaks. Still, in some cases discrepancies exist between viral signal in 

62 wastewater and disease prevalence, specifically with SARS-CoV-2 (11).

63

64 Viral measurements from wastewater alone may not be sufficient for disease tracking. 

65 Considerations such as the environmental matrix, sampling regimen, sewer collection system, 

66 viral stability, and disease characteristics are critical aspects to establishing correlations between 

67 viral signal and disease incidence in the community (12). Among these critical considerations is 

68 the stability of the virus and its genetic material in the sewershed. Microbial degradation plays a 

69 significant role in determining what proportion of RNA shed in feces gets captured at the outfall 

70 of a wastewater treatment plant (WWTP). To date, few studies have investigated RNA 

71 degradation of SARS-CoV-2 in wastewater (13–16). 
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72

73 In two of the studies, temperature had a significant influence on variations between first-order 

74 decay rates (11,13). Temperature was also found to have a greater impact on RNA degradation 

75 than the sample matrix (15). Despite the agreement on the importance of temperature between 

76 the two studies, Weidhaas et al., 2021 obtained a significantly higher decay constant (4.32 day-1) 

77 at 35C than Ahmed et al., 2020 (0.24 day-1) at 37C for similar gene targets. This indicates that 

78 there are other factors that have a notable influence on RNA degradation such as sample 

79 preparation or wastewater composition. A recent study demonstrated that the abundance of the 

80 SARS-CoV-2 N1 marker is associated with total organic carbon and pH (17). Furthermore, 

81 Bivins et al. 2020 evaluated changes in decay constants when the starting viral titer was low as 

82 compared to high titers. Low titers (103 TCID50 mL−1) obtained a decay constant of 0.09 day-1 at 

83 20°C which was significantly lower than that of the high titer (105 TCID50 mL−1) at the same 

84 temperature, 0.67 day-1.   

85

86 From these studies it is evident that further work is needed to understand degradation of SARS-

87 CoV-2 under various conditions. Moreover, only one study to date has explored degradation of 

88 SARS-CoV-2 in sewer systems using a first-order decay rate derived from a study on the 

89 infectivity of various coronaviruses in wastewater after 21 days (16,18). The authors found that 

90 larger sewersheds further confound the effects of temperature on degradation. Indeed, it is 

91 expected that longer travel times will create notable discrepancies between viral concentration 

92 and COVID cases in communities. Furthermore, since upstream sampling provides high spatial 

93 resolution and is more representative of the sampled population (16,19), the placement of 

94 wastewater samplers in sewersheds remains an ongoing area of interest (20,21). Yet, to our 
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95 knowledge, no quantitative approaches for selecting upstream sampling locations to capture 

96 outbreaks and minimize degradation of SARS-CoV-2 RNA have been proposed. 

97

98 Upstream sampling refers to sampling within the sewer system from locations such as manholes, 

99 as compared to sampling at the influent of a WWTP (downstream sampling).  Several studies 

100 have implemented upstream sampling for monitoring COVID-19 outbreaks in hospitals (22), 

101 universities (23), and metropolitan neighborhoods (24). There are practical constraints that 

102 dictate the selection of upstream sites, namely available resources, accessibility, and safety. 

103 Moreover, sampling site selection based on travel time should be considered to further increase 

104 the impact of upstream sampling on WBE outcomes. 

105

106 Interestingly, Haak et al. 2022 found population density to be highly significant when comparing 

107 SARS-CoV-2 RNA concentrations in wastewater between different neighborhoods within the 

108 same sewershed. Though the effects of population density on SARS-CoV-2 stability in 

109 wastewater are not fully understood, population density remains a significant factor in epidemics 

110 and can facilitate the rate at which a disease disseminates within a community. A recent study 

111 found population density to have a positive effect on the basic reproductive number (Ro) of 

112 COVID-19 with Ro increasing by an average of .11 when population density doubled (25). 

113 Likewise, a study assessing the effect of several environmental and geographical factors on 

114 COVID-19 cases found population density to be the best predictor of cases when looking at 81 

115 provinces in Turkey (26). Consequently, the higher the population density, the more potential 

116 there is for a disease outbreak. Considering its significance, population density can be a critical 
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117 component for identifying sampling locations based on potential hotspots for rapid disease 

118 spread. 

119

120 Here, we model SARS-CoV-2 RNA degradation in sewersheds across Houston that vary in 

121 service population and geographic area based on published and experimentally derived first-

122 order decay rates, wastewater temperature, and sewershed travel times. Finally, we propose a 

123 novel metric for determining critical locations for placing upstream samplers to improve SARS-

124 CoV-2 monitoring in wastewater. 

125

126 2. Materials and Methods 

127

128 2.1.  Study Area and Overview

129

130 Houston has 39 sewersheds with a total service area covering approximately 1,451 km2 (358,580 

131 acres). Of those, ten sewersheds were selected for this study based on the availability of 

132 sewershed hydraulic models provided by Houston Public Works. The location and characteristics 

133 of the selected sewersheds are detailed in Figure 1 and Table S1, respectively. Hydraulic 

134 modeling was conducted to simulate performance metrics which were then used to compute 

135 travel times for each sewershed. Multiple SARS-CoV-2 decay rates based on published and 

136 experimental studies were then used with the computed travel times to estimate viral RNA 

137 degradation in the sewersheds. 

138
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139

140

141 Figure 1. Ten selected wastewater treatment plant service areas (sewersheds) are shown in blue. 

142 Sims Bayou has overlapping service areas recognized as Sims Bayou North and South 

143 sewersheds. The remainder of Houston’s sewersheds are shown in green.               

144

145 2.2.  Sewershed Modeling

146

147 Hydraulic modeling of sewersheds in this study was accomplished using the Infoworks ICM 

148 software (ICM stands for Integrated Catchment Modeling). Developed by Innovyze®, 

149 Infoworks ICM is a hydrodynamic model capable of simulating the hydrology and hydraulics 
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150 of aboveground surfaces as well as underground drainage networks based on the conservation 

151 of mass and momentum. Due to its robustness and versatility, Infoworks ICM has been used by 

152 numerous municipalities, like the City of Houston, for stormwater, flood control infrastructure, 

153 and sewer management.  

154

155 In this study, Infoworks ICM models for ten sewersheds were obtained from the City of 

156 Houston Public Works department. Each model represents the wastewater network and service 

157 areas for a sewershed. The models were calibrated by Houston Public Works under dry and 

158 wet weather conditions. At a minimum, two rainfall events are used for model calibration and 

159 one event for verification. A previous study applied a similar approach using an Infoworks 

160 ICM model and obtained strong correlations between observed and simulated water levels in a 

161 pumping station during a rainfall event (27).  Infoworks ICM provides separate solution 

162 models for permeable planes, force mains, pressurized pipes or normal gravity flow. An ICM 

163 model consists of a network of links and nodes, in which the links represent pipes or conduits, 

164 and the nodes represent manholes or other control structures (e.g., outfall or WWTP). 

165 Additionally, the model allows for either one or multiple outfall locations. Based on the 

166 connectivity of the nodes and links, service areas that drain to any particular node could be 

167 further separated into individual subcatchments. The gradient or slope of the link is calculated 

168 using the provided starting and ending invert elevations. 

169

170 ICM divides each conduit into a number of discrete computational points and regularly-spaced 

171 segments with intervals that are 20 times the pipe diameter. Flow, velocity, and other 

172 performance metrics are computed in each segment. Inflow can be added to certain nodes as 
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173 point sources, but in this study, diurnal curves in the form of wastewater profiles with hourly 

174 time steps were applied at corresponding subcatchments to represent wet and dry conditions. 

175 With specified information of population and per capita flow, the wastewater profile can be 

176 developed from a calibrated model and is designed to mimic dry weather flow as typically seen 

177 during flow monitoring. 

178

179 2.3.  Computing Travel Time

180

181 While various performance metrics such as head, flow, velocity, volume, and water depth are 

182 computed by ICM, individual travel times for subcatchments are not. In a typical wastewater 

183 system, the conduits are connected to a common outfall, which usually represents the local 

184 WWTP. All model networks must have at least one common outfall, but networks are allowed to 

185 have multiple outfalls which could represent wet-weather overflows, emergency bypasses, or 

186 pump stations to a different wastewater system. Because there is not always a single common 

187 outfall, a structured query language (SQL) script was developed to allow users to specify a 

188 terminal point. Having terminal points enables travel time to be computed from any 

189 subcatchment to the specified points. The user determines the number of iterations for the query, 

190 the minimum assumed velocity, and the specific simulation time that the query would run. The 

191 query then uses the trace tool, which selects all upstream conduits, nodes, and subcatchments to a 

192 specified point and iterates the simulated results to determine a corresponding travel time based 

193 on the cumulative conduit length travelled and velocity at the given point. In the case where 

194 multiple flow paths exist, the query assumes that wastewater would always travel on the shortest 

195 path, therefore computing the shortest travel time from the point of entry to the terminal point. 
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196 Lastly, the computed travel times for the entire model network were then exported into GIS for 

197 further analysis. 

198

199 2.4.  Identifying Decay Rate Studies

200

201 A literature search was conducted in October 2020 and again in February 2021 using Web of 

202 Science and Google Scholar databases to identify studies with first-order degradation rates for 

203 SARS-CoV-2 RNA. SARS-CoV-2 was used as a keyword paired with one or more of the 

204 following: wastewater, degradation, decay, sewershed, persistence, fate, and survivability. The 

205 criteria for inclusion were (1) peer-viewed journal articles (excluded reviews, metadata, pre-

206 prints, editorial material), (2) a focus on SARS-CoV-2 in untreated wastewater samples or 

207 simulated untreated wastewater, (3) includes at least one original, experimentally determined 

208 decay rate for SARS-CoV-2 RNA.

209

210 2.5.  Decay of SARS-CoV-2 RNA in Sewage

211

212 Along with experimentally determined decay rates of SARS-CoV-2 from published literature, 

213 decay rates were also generated. To determine decay rates for SARS-CoV-2 RNA, roughly 1 

214 gallon of wastewater influent was collected from a 24-hour composite sampler and transported 

215 on ice to Houston Public Works central processing laboratory. Approximately 500 mL of 

216 wastewater was collected in triplicate, stored in Nalgene bottles, and transported on ice to Rice 

217 University. The 500 mL bottles were weighed to accurately determine the volume of wastewater 

218 in each bottle. Next, each sample was poured into a sterilized 1 L Erlenmeyer flask containing a 
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219 stir bar. Flasks were loosely capped with aluminum foil to prevent evaporation and placed on a 

220 stir plate at the lowest possible setting to maintain a heterogenous mixture. 

221

222 A 50 mL sample was immediately collected from each flask and concentrated via the HA 

223 filtration method with beat beating as previously described here (28). HA filters were stored at -

224 80°C. Wastewater from each flask was collected, concentrated, and stored via this method every 

225 24 hours for the next 6 days. All wastewater samples were incubated at room temperature 

226 (~20ºC) in a Biosafety cabinet. After the 6 days, all stored samples were simultaneously 

227 extracted using the Qiagen Allprep Powerviral DNA/RNA kit (Qiagen) with some modifications 

228 to the manufacturer’s protocol. Briefly, 7 μL of ꞵ-Mercaptoethanol and 693 μL of PM1 solution 

229 were added to each bead tube containing the sample filters. Samples were then bead beaten at 

230 3,500 rpm in a Mini-Beadbeater 24 (BioSpec) for 1 min, cooled on ice for 2 min, and bead 

231 beaten once more for 1 min. Following bead beating, samples were centrifuged at 17,000 g for 2 

232 min. Roughly 450 μL of sample lysate was extracted from each bead tube and transferred to a 

233 QIAcube Connect (Qiagen) for automated extraction. Samples were eluted in 50 μL of nuclease-

234 free water, stored at -20ºC, and processed within 24 hours.  

235

236 SARS-CoV-2 N1 and N2 gene targets were quantified in wastewater extracts using a previously 

237 described method (28). In short, a duplex reverse transcriptase digital droplet PCR (RT-ddPCR) 

238 was carried out using the One-Step RT-ddPCR Advanced kit for probes (Bio-Rad) on a QX200 

239 AutoDG Droplet Digital PCR System (Bio-Rad) according the manufacturer’s recommendations. 

240 Ten microliters of RNA extract, no template control, or positive control was transferred to a 12 𝜇

241 L reaction mix containing final concentrations of 900 nmol of each primer and 250 nmol for each 
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242 probe. All reactions were performed in triplicate with thermocycling conditions detailed here 

243 (28). Samples were then read on a QX200 Droplet Reader (Bio-Rad) and analyzed using the 

244 QuantaSoft v1.7.4 software. The limit of quantification (LOQ) was previously determined as 

245 0.767 gene copies/ L of RNA according to a threshold of 3 positive droplets per 10,000 total 𝜇

246 droplets as recommended by the manufacturer. A linear regression analysis was performed in R 

247 (29) to determine the decay rates for each target. Concentrations of SARS-CoV-2 were log-

248 transformed to satisfy the assumptions of normality according to a visual inspection of the 

249 quantile-quantile (Q-Q) plots.

250

251 2.6.  Estimation of SARS-CoV-2 RNA Degradation in Sewersheds Based on First-

252 order Decay

253

254 To the best of our knowledge, all experimentally-derived published decay rates for SARS-CoV-2 

255 were included in this study. A temperature of 20°C was used to compare the influence of each 

256 decay rate on the proportion of virus loss in select sewersheds across studies. The following 

257 formula is an approximation of the Arrhenius equation used to determine the dependence of first-

258 order rates on temperature (16,30,31):

259

260 (1)
𝑘2

𝑘1
= 𝑄10

(𝑇2 ― 𝑇1)/10

261

262 where  is the temperature coefficient, and  are the lower and upper decay rate constants, 𝑄10  𝑘1 𝑘2

263 respectively, and  and  are the temperatures in Celsius for the upper and lower rate 𝑇1 𝑇2

264 constants, respectively. The temperature coefficient  is the factor by which a rate changes 𝑄10
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265 given a ten degree increase in temperature and is usually between 2 and 3 for biological systems 

266 (31,32).

267  

268 Eq (1) was used to estimate the decay rate at 20°C for the Weidhaas et al., 2021 study, using the 

269 decay rates measured at 10 and 35°C. The temperature-dependent linear regression equation 

270 reported by the authors was used to determine the decay rate of SARS-CoV-2 RNA at 20°C for  

271 Ahmed et al., 2020. 

272

273 The degradation of SARS-CoV-2 in the sewershed over time is expected to follow exponential 

274 decay as expressed in eq (2) where C(t) is the concentration of SARS-CoV-2 after time ,  is 𝑡 𝐶0

275 the initial concentration of SARS-CoV-2 released in the wastewater, and  is the first order 𝑘

276 decay rate. 

277

278  (2)
𝐶(𝑡)
𝐶0

= 𝑒 ―𝑘𝑡

279

280 Assuming an initial viral RNA proportion of 1 or 100%, eq (2) was substituted into eq (3) to 

281 estimate the proportion of SARS-CoV-2 RNA loss (L) eq (4) or remaining (R) eq (5) at a given 

282 time within the sewershed. 

283

284  (3)𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 = 1 ― 
𝐶(𝑡)
𝐶0

285

286  (4)𝐿 = 1 ― 𝑒 ―𝑘𝑡

287
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288  (5)𝑅 = 1 ― 𝐿

289

290 The half-life  and  (the time for viral load to decrease by one log unit) for each decay rate  𝑡1
2

𝑡90 𝑘

291 were obtained from the published work or derived from the following formulas, respectively:

292

293   (6)𝑡1
2

=
𝑙𝑛 (2) 

𝑘

294  (7)𝑡90 =
― ln  (0.1) 

𝑘

295

296 2.7.  PT Metric for Identifying Hotspots

297

298 Aside from using travel time isochrones to determine the spatial distribution of viral RNA signal, 

299 they could also be used in conjunction with population density information to help identify 

300 potential viral hotspot areas. In this study, a normalized population times travel time (PT) metric 

301 is introduced to identify critical locations for placing upstream samplers. Normalized PT maps 

302 for the 69th Street sewershed were generated by multiplying population density information (P) 

303 in each sub-sewershed area by their corresponding travel times (T), and then normalized by the 

304 maximum PT value computed for the 69th Street and Chocolate Bayou sewersheds. The 

305 resulting normalized PT maps have values that range from 0 (0%) to 1 (100%). Areas with low 

306 PT values indicate a low likelihood of an undetected outbreak, due to low population density, 

307 short travel times, or both. Conversely, areas with high PT values imply a higher likelihood of 

308 undetected outbreaks. This is especially true for areas with the highest PT values (i.e., at or close 

309 to 100%), signifying that those areas have both high population density and long travel times. 

310
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311 3. Results and Discussion

312

313 3.1.  Impact of Weather Conditions on Wastewater Travel Time in Sewersheds   

314

315 To assess the impact of wet weather on travel times, the ICM model was used to compute travel 

316 times under wet and dry conditions for each sewershed (Figure 2). Travel times under dry 

317 weather conditions were generally higher than wet conditions. The 69th Street and Chocolate 

318 Bayou sewersheds were used for further analysis due to the differences in characteristics, and 

319 because they represented the sewersheds with the largest and smallest service areas studied, 

320 respectively. 

321 Median dry weather travel times for 69th Street and Chocolate Bayou were 523 min (s.d. = 

322 217.58 min) and 220 min (s.d.= 152.12 min) with a comparable maximum dry weather travel 

323 time of 1207 mins and 1123 mins, respectively (Figure 3). 
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325 Figure 2. Boxplot of travel times for select sewersheds under dry and wet weather conditions. 

326 Horizontal lines represent the median travel time. Lower and upper whiskers represent the 25th 

327 and 75th percentiles, respectively. 

328

329
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330 Figure 3.  Heat map displaying travel time for 69th Street (a) and Chocolate Bayou (b). 

331 Numbers indicate travel time isochrones in minutes from the WWTP outfall (indicated with a 

332 red star).

333

334 3.2.  Impact of Decay Rate and Temperature on SARS-CoV-2 RNA in Transit to 

335 Wastewater Treatment Plant  

336

337 We determined the decay rates of SARS-CoV-2 N1 and N2 at 20C using wastewater collected 

338 from a sewershed in Houston to compare values using a Houston-specific wastewater to 

339 previously published decay rates. After the fourth day of incubation, unclear concentration 

340 dynamics occurred wherein the concentration of all targets slightly increased.  Due to uncertainty 

341 in the cause of this behavior, only the first few days were considered in the regression analysis. 

342 Degradation of N1 and N2 showed similar behavior with decay rates of 0.84 day-1 and 0.82 day-

343 1, respectively. Table S3 displays the linear regression parameters for each gene. A summary of 

344 the ddPCR droplet statistics is detailed in Table S2. Our experimentally-determined decay rates 

345 were within the range of published rates (Table 1). Decay rates listed in Table 1 were used to 

346 evaluate the impact of decay rate and temperature on viral RNA degradation in Houston 

347 sewersheds. 

348

349 Table 1. Summary of reported decay rates, half-lives, and t90s (the time for viral concentration to 

350 decrease by one log unit) for SARS-CoV-2 RNA targets in various studies at 20ºC.
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Duration of 
Experiment 

(day)

Duration of 
Experiment 

(hr)
Target

Decay 
Rate, k 
(day-1)

Half 
Life, 
t1/2 

(day)

t90 
(day) Comments Reference

33 792 N1 0.15 4.78 15.88 Ahmed et 
al. 2020

1 24 N1, N2 1.75 0.40 1.31 Weidhaas et 
al. 2021

6 144 N1 0.84 0.83 2.74 In lab 

7 168 E 0.67 0.99 3.30 High titer Bivins et al. 
2020

351

352 There were significant differences in how the decay rates in Table 1 were determined, which 

353 may explain the wide range of reported rates. Weidhaas et al. 2021 obtained the fastest decay 

354 rates compared to studies considered with a rate of (1.75 day-1) at 20°C. The authors measured 

355 SARS-CoV-2 RNA in wastewater samples obtained from two different treatment plants 

356 immediately after collection. These initial concentrations were then compared to concentrations 

357 measured in replicate samples incubated at 4, 10, and 35C for 1 to 22 hours. Ahmed et al., 2020 

358 spiked SARS-CoV-2-negative wastewater samples with RNA extracted from gamma-irradiated 

359 SARS-CoV-2 hCoV-19/Australia/VIC01/2020 isolate and incubated them at 4, 15, 25, and 37°C 

360 over the course of 33 days in which RNA concentrations from those samples were measures 

361 every few days. 

362

363 Decay rates from Bivins et al., 2020 were the most congruent with results from our lab except 

364 under low titer conditions (starting concentration of 103 TCID50 mL−1) (data not shown). The 

365 decay rate under low titer conditions was significantly slower than all other reported decay rates 

366 listed here (14). Here, the authors inoculated non-sterile wastewater with a SARS-CoV-2 isolate 

367 from a clinical patient diagnosed with COVID-19 at low titer (103 TCID50 mL−1) and high titer 

368 (105 TCID50 mL−1) concentrations. SARS-CoV-2 RNA was extracted and quantified in 20C 
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369 inactivated wastewater samples over the course of 7 days. The decay rate associated with the 

370 high titer SARS-CoV-2 concentration was selected from the Bivins et al., 2020 study because it 

371 was more representative of concentrations previously measured in Houston sewersheds. Notably, 

372 the fastest reported decay rates from Weidhaas et al., 2021 and our own experiments were 

373 determined in samples that were not spiked with virus. This may have been due to the form of 

374 the virus in wastewater samples, which is likely a mixture of intact, protected (enveloped and/or 

375 intact capsid) virus, and degraded unprotected viral RNA. Degraded, unprotected viral RNA will 

376 degrade much faster than intact, protected virus (33). A limited number of studies have 

377 discriminated between the forms of SARS-CoV-2 in wastewater and have indicated the presence 

378 of both intact virus and free RNA (33,34). As more knowledge on factors that impact the 

379 different forms of virus becomes available, consideration should be taken when estimating or 

380 selecting SARS-CoV-2 decay rates for sewershed modeling.   

381

382 Given the ability to estimate decay rates at various temperatures for values obtained from Ahmed 

383 et al., 2020 and Weidhaas et al., 2021, and because they represented the lowest and highest decay 

384 rates reported to date, respectively, these studies were used to evaluate the effect of wastewater 

385 temperature (20-30°C) on RNA degradation over time. As expected, viral RNA degradation 

386 increases with increasing travel time. Moreover, travel time has a greater influence on 

387 degradation as compared to temperature within the range of travel times estimated for the ten 

388 sewersheds considered in this study (Figure 4). However, it is important to note that the impact 

389 of temperature on RNA degradation increases with increasing travel times as displayed in Figure 

390 4. For example, the difference in the percent of RNA degradation between 20 and 30°C is 0.6% 
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391 and 9.8% for Ahmed et al., 2020 and Weidhaas et al., 2021, respectively after a travel of 120 min 

392 compared to 5.2% and 16% at 1200 min. 

393

394 Figure 4. Effects of temperature, decay rate, and travel time on SARS-CoV-2 RNA degradation. 

395

396 Similar findings were reported in a recent study that assessed SARS-CoV-2 RNA in sewersheds 

397 in Tempe, Arizona under varying wastewater temperatures (16). The authors concluded that 

398 under high temperature conditions in large sewersheds, viral concentration at outfalls may be less 

399 representative of disease incidence as compared to colder temperatures. Wastewater 

400 temperatures can fluctuate by as much as 27C depending on geographical region and seasonal 

401 changes (35). Therefore, careful consideration of wastewater temperatures can be used to 
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402 improve disease prevalence estimations and explain discrepancies in correlations between the 

403 number of disease cases and virus concentrations.

404

405 The percent of SARS-CoV-2 RNA degradation in wastewater traveling from a given 

406 geographical location within the 69th Street and Chocolate Bayou sewersheds to their 

407 corresponding outfalls at the WWTPs was determined using travel time and decay rates from 

408 Table 1. As expected, 69th Street showed greater variability in RNA degradation across the 

409 sewershed as compared to Chocolate Bayou. Viral RNA degradation at a median travel time of 

410 523 min for 69th Street were 5.13, 21.60, 26.29, and 47.08% for the 0.145, 0.670, 0.840, and 

411 1.752 day-1 decay rates, respectively. Chocolate Bayou obtained median percent degradations of 

412 2.19, 9.73, 12.04, and 23.48% at a median travel time of 220 min (Figure 5). Taking into 

413 consideration the decay rate obtained from our study, approximately a 25% reduction in viral 

414 signal is estimated in the 69th Street sewershed compared to a 12% reduction for Chocolate 

415 Bayou. 

416

417 Decay rates of 0.840, and 1.752 day-1 resulted in SARS-CoV-2 RNA degradation of 

418 approximately   50% when considering travel times between 1190 and 570 min, respectively. 

419 Travel time range between 0-1123 min for the Chocolate Bayou sewershed, thus all regions 

420 maintained less than a 50% reduction in viral signal for a decay rate of 0.840 day-1. Despite a 

421 greater reduction of viral signal in both sewersheds when considering a virus degradation rate of 

422 1.752 day-1, the fraction of the 69th Street sewershed with  50% viral RNA degradation is 

423 49.84% as compared to 2.98% for Chocolate Bayou. Consequently, virus decay is more critical 

424 in the 69th Street sewershed due to the number of remote regions.  
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426

427
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428 Figure 5: Geographical heat maps of SARS-CoV-2 RNA degradation for 69th Street (a, c, e, g) 

429 and Chocolate Bayou (b, d, f, h) under dry weather conditions and decay rates obtained or 

430 estimated from studies listed in Table 1. 

431

432 3.3.  Population vs. Travel Time Metric

433

434 To account for virus decay across large sewersheds we propose PT, a novel metric used to 

435 facilitate the placement of upstream samplers and minimize travel times throughout sewersheds. 

436 The PT metric identifies areas that are at high risk of a wide-spread COVID-19 outbreaks due to 

437 population density and the outbreak is less likely to be fully captured in WBE due to prolonged 

438 travel times. To evaluate the efficacy of this metric, we estimated PT values for all regions 

439 within the 69th Street sewershed. Figure 6a illustrates a PT heatmap in the case of downstream 

440 sampling only. Hotspots were identified in the northwest-central region of the sewershed.

441

442 A second simulation was carried out with three upstream samplers hypothetically placed in 

443 hotspots (higher PT values), located in the northwest-central region, that were expected to reduce 

444 travel times in the sub-sewershed areas and minimize PT throughout the sewershed (Figure 6b). 

445 Placement of samplers decreased the median travel time in zones A, B, and C as indicated in 

446 Figure 6b from 865, 840, and 869 min to 154, 129, and 313 min, respectively. Results here 

447 indicate that implementation of upstream samplers according to the PT metric can significantly 

448 reduce the number of hotspots in large sewersheds. 

449

Page 24 of 29Environmental Science: Water Research & Technology



450

451

452 Figure 6. (a) Display of hotspots in dark red according to normalized PT values and (b) 

453 placement of samplers and adjusted travel times in sub-catchment zones A, B, and C in the 69th 

454 Street sewershed. 

455

456 4. Limitations and Implications

457

458 The scope of this study does not directly take into account other factors that could influence virus 

459 degradation such as wastewater composition and microbial predation, which could all further 

460 explain or impact conclusions presented here. Since average travel times are approximated from 

461 the ICM models, they may not strictly reflect transit of wastewater in the sewersheds, 

462 particularly in remote locations and during varying diurnal cycles. Still, findings here indicate 

463 that in-sewer decay may be an important factor to consider in WBE and when designing 

464 sampling campaigns. 

465

466 5. Conclusion

467
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468 A hydraulic modeling approach was applied to 10 Houston sewersheds to estimate travel times 

469 and decay of SARS-CoV-2 from source to the WWTP outfall under various temperatures. Travel 

470 time generally had a greater impact on viral RNA degradation than wastewater temperature. The 

471 largest sewershed showed greater variability in viral RNA degradation due to longer travel times 

472 with nearly half of the sewershed losing 50% or more of the viral signal when considering the 

473 fastest decay rate. By incorporating a novel PT metric for placement of upstream samplers within 

474 the largest sewershed, travel times reduced by more than 60%. This reduction is expected to 

475 alleviate virus signal loss due to decay and discrepancies between wastewater and clinical cases 

476 in wastewater surveillance efforts. This approach can be adopted in various localities to improve 

477 sampling infrastructures and public health responses to local and global viral disease outbreaks.

478
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