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We present the first reported quantification of trace elements in plutonium via a portable laser-
induced breakdown spectroscopy (LIBS) device and demonstrate the use of chemometric analysis to
enhance the handheld device’s sensitivity and precision. Quantification of trace elements such as iron
and nickel in plutonium metal via LIBS is a challenging problem due to the complex nature of the
plutonium optical emission spectra. While rapid analysis of plutonium alloys has been demonstrated
using portable LIBS devices, such as the SciAps Z300, their detection limits for trace elements are
severely constrained by their achievable pulse power and length, light collection optics, and detectors.
In this paper, analytical methods are evaluated as a means to circumvent the detection constraints.
Three chemometric methods often used in analytical spectroscopy are evaluated; principal component
regression, partial least-squares regression, and artificial neural networks. These models are evaluated
based on goodness-of-fit metrics, root mean-squared error, and their achievable limits of detection
(LoDs). Partial least squares proved superior for determining content of iron and nickel in plutonium
metal, yielding LoDs of 15 and 20 ppm, respectively. These results of identifying the undesirable
trace elements in plutonium components are critical for applications such as fabricating radioisotope
thermoelectric generators or nuclear fuel.

1 Introduction
Multivariate and machine learning methods are commonplace
in modern spectroscopic analysis; these tools provide signifi-
cant advantages in analyzing complex spectra and producing
accurate classification or regression models from spectroscopic
data1,2. The application of these methods for the purposes of
chemical analysis is known as chemometrics. The most widely-
used chemometric techniques for improved elemental analysis
and sample discrimination are principal components analysis
(PCA)3–6, partial-least squares (PLS)7–10 and artificial neural net-
works (ANNs)11–14. These techniques can yield marked improve-
ments in LoDs for determining elemental concentrations in a bulk
substrate when compared to traditional univariate analysis15–17.
PCA and PLS are dimensionality reduction techniques which can
be used to deconstruct a data set into a representative model with
less variables than present in the original18. ANNs are often used
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to ascertain complex relationships among different variables in
large data sets. These techniques have demonstrated significant
use in the creation of chemical analysis models from spectra of ge-
ological19, ore20, pharmaceutical21 and Martian rock samples22.
Additionally, these methods have also successfully been applied to
increase precision and sensitivity of regression models predicting
Si content in plutonium surrogate material23.

This paper focuses on taking advantage of such analytical meth-
ods for trace element quantification in plutonium (Pu) alloys.
The processing of Pu metal for nuclear component production
is an amalgamation of several complex chemical and metallurgi-
cal techniques24–26. These processes introduce many avenues for
trace metal impurities, such as iron and nickel, to leach into the
plutonium metal27. These elements are known to lower the melt-
ing point of plutonium and form a low-melting eutectic, affecting
the stability of the Pu phase structure and could lead to compo-
nent failure in higher temperature applications26,28–30, also trace
element build up could dramatically change the reaction cross
section. Monitoring of trace element concentrations in plutonium
is typically conducted via inductively coupled plasma-mass spec-
troscopy (ICP-MS) and inductively coupled plasma-optical emis-
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sion spectroscopy (ICP-OES)31. Both techniques yield accurate
determinations of elemental impurities with low limits of detec-
tion (LoDs) in fractions of parts-per-million (ppm)32,33. Although
ICP methods are reliable and well-established, there are serious
limitations in large-scale implementations; e.g., 1) these tech-
niques require an extensive sample preparation process, often
involving acid digestion of the plutonium metal over periods of
several hours; 2) the size of the equipment prevents this analy-
sis from being conducted in-situ, and Pu samples must be moved
between labs for impurity analysis34,35. To circumvent these lim-
itations, we propose to develop new analytical methods imple-
mented in tandem with a portable device to conduct instanta-
neous, in-situ trace element measurements of Pu metal at various
stages in the production process.

One technique that shows promise for meeting the afore-
mentioned criteria is laser-induced breakdown spectroscopy
(LIBS)36,37. LIBS is a versatile technique and has been demon-
strated for analytical use in a wide range of fields such as soil38,39

and geological22,40 analysis, food science41, industrial hygiene42

and combustion diagnostics43,44. Portable, handheld LIBS de-
vices are sold commercially and marketed for industrial and scrap
metal analysis45. Although these devices are not advertised for
nuclear material analysis, recent studies have proven them effec-
tive for quantification of uranyl flouride contamination46, rare
earth metals in uranium matrices47, and trace elements in plu-
tonium surrogates48. Two metrics which can determine effi-
cacy of the handheld LIBS device for trace metal analysis are
root mean-squared error (RMSE) and LoD. RMSE pertains to the
precision and accuracy of predictive models created using data
taken by the handheld device. This statistical measure quanti-
fies the average of the square of errors generated by a prediction
model. LoD is a measure of the sensitivity of a generated model
to changes in the recorded spectra – expressed in units of con-
centration (or amount), that describes the lowest concentration
level (or amount) of the element that an analyst can determine
to be statistically different from an analytical blank49. SciAps
reports nominal LoD values for common metal impurities such
as iron and nickel at 500 ppm using their Z series LIBS analyz-
ers, whereas others such as copper, aluminium, sodium and sil-
icon range between 100-200 ppm. Previous work by Shattan et
al. demonstrated an LoD of 250 ppm for uranium on stainless
steel46. For effective trace metal content determination in Pu,
these LoDs must be improved beyond the factory value to the low
100s or even 10s of ppm, highlighting the need to implement
chemometrics to improve model sensitivity.

This work represents the first investigation of its kind on plu-
tonium combining advanced analytical methods and a portable
analytical device. Spectra taken of Pu samples from a SciAps
Z300 portable LIBS device are used to train and test different
regression techniques. PCA, PLS, and ANN methods are used to
generate regression models from the spectral data; the regression
fits, RMSEs, and LoDs of each model are evaluated to determine
analytical performance and predictive capability of each chosen
method. It is demonstrated that by employing the chemometric
or machine-learning based analytical methods, the LoD of trace
metals in Pu sample could reach sub-hundred ppm levels using

the handheld LIBS device, comparable to the sensitivity achieved
in full laboratory-scale setups.

In this paper, the handheld LIBS based experiment is described
in Section 2; the analytical methods used for comparisons are pre-
sented in Sec 3. In section 4, the results and detailed discussions
on analysis of the LIBS data is presented for trace element quan-
tification in Pu alloy and LoD is determined. The summary and
conclusions are presented in Section 5.

2 Experimental
2.1 Samples

Fig. 1 Notional image of size of Pu coupon samples used in this study.

The Pu samples used in this study were metal coupons approx-
imately 30 mm in diameter; a notional depiction is presented in
Fig. 1. These samples had varying concentrations of the two
trace elements analyzed in this study. The sample compositions
are listed in Table 1. Due to radioactivity and pyrophoricity of
plutonium metal, our work had limited access to only a few dif-
ferent Pu samples for spectroscopic introspection. However, a
large amount of spectra were recorded from each sample to en-
sure sufficient data for constructing chemometric models. The
first sample, labeled S0, was a plutonium Certified Reference Ma-
terial (CRM) at 99.96% purity. The other samples were fabricated
alloys with different levels of various trace elements present. The
concentrations of several trace elements in these samples were
verified by ICP methods at LANL, and we were provided the con-
centrations of Fe and Ni for this study. Additionally, samples 3 and
4 have the same reported concentrations for both metals as these
two sample pieces originated from the same larger component.
They were removed to initially analyze alloy homogeneity.

Table 1 Trace element concentrations of each type of sample used in Pu
spectral data acquisition.

Trace element content (ppm)
Sample type Fe Ni

S0 0 0
S1 634 1305
S2 743 561
S3 246 105
S4 246 105

2.2 Portable LIBS instrument
A SciAps Z300 handheld LIBS analyzer (Fig. 2) was used for spec-
tral acquisition, and was placed in the Ar controlled glovebox
with the Pu samples. A 5 mJ per pulse at 1064 nm Nd:YAG laser

2 | 1–11Journal Name, [year], [vol.],

Page 2 of 11Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



with a repetition rate of 50 Hz and 1.5 cm focal length is used
in the Z300 to produce the microplasma. Optical emissions are
collected by three onboard spectrometers and recorded on a CCD
detector, rendering a spectrum from 180-960 nm. An example
Pu spectra recorded by the device is illustrated in Fig. 3, with the
major Pu and Ar emission peaks labeled. Spectral acquisition

Fig. 2 SciAps Z300 LIBS analyzer.
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Fig. 3 Pu CRM sample spectra recorded by Z300.

was conducted through the SciAps Profile Builder software, en-
abling laser triggering and data acquisition settings changes from
the computer, while the device remained in glovebox. The device
was used in gated collection mode, with a gate delay of 250 ns
and an integration period of 1 ms. An 8x8 raster pattern was im-
plemented, recording 8 spectra at 8 locations on the sample each
time the laser was triggered and averaging every 8 spectra, yield-
ing a final total of 8 spectra per individual recording. Between
2-6 locations on each sample were tested, generating a total of
145 spectra collected across the whole sample set after a few in-
dividual spectra were thrown out due to recording errors by the
computer software. It should be noted that while the device is
triggered from an external laptop, it is held to the sample by a
glovebox operator. Small hand movements during the laser fir-
ing and signal recording process can yield jitter and shot-to-shot
deviations in the spectra that are greater than a typical labora-

tory LIBS experiment. This was partially mitigated by operator
training, and our work yielded shot-to-shot intensity fluctuations
of 30% which is within the typical range for LIBS experiments;
this was adjusted for during pre-processing using the standard
normal variate (SNV) method for spectral normalization. SNV is
commonly implemented in pre-processing of LIBS, Raman, and
near-infrared (NIR) spectra to reduce signal fluctuation and yield
enhanced analytical performance8,50,51. The SNV method is de-
picted in Eq. 1. Each spectrum (Ik) is centered on its mean value
(µI) and then divided by the original spectrum standard deviation
to yield the SNV normalized spectrum (Isnv

k ).

Isnv
k =

Ik−µI

σI
, ∀k (1)

Chemometric routines were developed to utilize the entire UV-
VIS spectra to identify changes in analyte concentration and com-
pared to a univariate technique based on a singular peak height.
The overarching goal of implementing chemometrics in this work
was to generate a robust prediction model that can relate holis-
tic changes across the breadth of the UV-VIS spectra that are re-
lated to changes in analyte concentration. Chemometric methods
are imperative when analyzing a complex metal like plutonium
due to the large amount of spectral intereferences that can oc-
cur with other trace analytes in the sample. This is illustrated
in Figs. 4 and 5, which demonstrate the close proximity or di-
rect interference of common Fe and Ni emissions with nearby Pu
emission lines. These large interferences between emissions of
the bulk and trace analyte material throughout the spectra make
traditional univariate calibration methods difficult to implement
for development of accurate regression models. The complexity
of the spectra of actinide metals therefore highlights the need for
more advanced techniques which can adequately detect peaks of
trace metals like Ni and Fe and discern the relationship between
small changes in spectral intensity and the trace analyte concen-
tration.
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Fig. 4 Fe lines around 373-374 nm and surrounding Pu I emissions.

3 Description of analytical methods
3.1 Univariate analysis
Univariate analysis generates a simple regression model relating
changes in intensity of an emission line, or intensity ratios of
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Fig. 5 Ni I 361.9 nm line and nearby Pu II interferences.

emission lines, to changes in analyte concentration across a sam-
ple set. A simple linear regression fit to these data points gener-
ates a calibration curve describing the sensitivity of the spectral
response to the concentration. The univariate calibration method
works best when the emission line of interest can be extracted
from a simple, well-resolved spectrum without interferences from
other nearby emissions. LoDs based on univariate calibrations are
directly dependent on the sensitivity (slope) of the calibration;
this often results in univariate calibrations plagued by impreci-
sion and lower accuracy when applied to complex spectra.

3.2 Principal component analysis (PCA)
PCA is an unsupervised dimensionality reduction technique, used
to transform an original data set into a smaller group of variables
called components, without relating them to any output variables.
Each component explains some percentage of the variance of the
original input data. The principal components are comprised of
two types of transformed variables; scores and loadings. Loadings
describe correlations between input variables and their contribu-
tions to the data set. Scores quantify patterns and correlations
between the samples in the data set itself. PCA is particularly
useful in analytical spectroscopy to reduce the complexity of the
data set into something more easily interpretable. Loadings of
the different spectral wavelengths can pinpoint which emissions
are responsible for variance in the data set, whereas scores can be
used to cluster samples based on bulk similarities. For example,
in a previous study using a SciAps Z500 for analysis of cerium
alloys PC scores were used to cluster the samples based on their
gallium content52.

3.3 Partial least-squares (PLS)
PLS is a supervised dimensionality reduction technique, often
used to simplify analysis of large data sets2. The method trans-
forms raw input data into a smaller set of data called latent vari-
ables (LVs), which describe most of the variance of the original
data. The LVs can then be utilized for visual clustering analysis,
or to create mathematical regression models. This process is de-
picted in Fig. 6. PLS differs from PCA by generating data account-
ing for the covariance between input and output variables. This

Fig. 6 Flowchart of PLS decomposition. Latent variables and weight
loadings (t,p) are calculated from input data. These are then used to
calculate latent variables and loadings (u,q) relating the decomposed
input (X) to the output (Y).

often yields higher accuracy regression models from large data
sets18; the PLS algorithm can thus provide significant advantages
over PCA when trying to relate small changes in a complex spec-
tral response to changes in trace element content among samples.

3.4 Artificial Neural Networks (ANNs)

Fig. 7 ANN architecture diagram; every circular node represents a single
neuron, and each arrow represents an input-output connection. Input
data is passed between nodes after multiplication by the weights (w)
and summed in each hidden layer node. The hidden layer data is then
weighted and summed again before being passed to the output node,
which uses an activation function to generate a numerical output.

ANNs are a machine learning paradigm based on the structure
of biological nervous systems18,53. Data enters an ANN through
an input layer, and is fed-forward to subsequent hidden layers.
Each hidden layer contains neurons (nodes) wherein each neuron
sums weighted inputs from preceding layers and passes the sum
through an activation function to generate an output. The output
layer sums weighted inputs from the last hidden layer, again using
an activation function to generate a numerical output. This pro-
cess is depicted in Fig. 7. ANNs are often used in LIBS analysis as
they traditionally have the capability to capture complex data re-
lationships to yield classification or regression models from large
input data sets11–14.

4 Results and Discussion
4.1 Univariate calibration curve
The Fe I 358 nm and Ni I 310 nm lines were selected as the ba-
sis of univariate calibrations as shown in Fig. 8 because they
were the strongest lines available that were also interference free.
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Fig. 8 Peak intensity of (a) Fe I 358 nm and (b) Ni I 310 nm emission
lines at varying analyte concentrations.

Nonetheless they are still minor peaks as all major peaks for iron
and nickel suffered from interferences with Pu emissions. The se-
lected emission line peak intensities for the four different concen-
trations of each element were extracted from the data, along with
uncertainties propagated from standard deviation of the peak in-
tensities between each shot. The custom MATLAB function lin-
fitxy() was implemented to produce a linear regression which fac-
tored in the uncertainty of each data point, determined from the
standard deviation of peak intensity between shots and statistical
error propagation rules. The resulting linear regressions for Fe
and Ni, along with R2 values for each fit, are displayed in Fig. 9.
The linear regressions to peak intensity were used to calculate a
univariate LoD for each regression model. For the univariate case,
the LoD is a simple relation described by Eq. 2, dependent on the
standard deviation of the blank sample (σ) and the slope (a) of
the regression fit.

LoD =
3σ

a
(2)

Additionally, the RMSE of each calibration was calculated accord-
ing to Eq. 3, where N, yi and ŷi represent the number of samples,
predicted value, and actual value, respectively. While LoD pro-
vides a measure of model sensitivity, RMSE provides the root of
the sum of the squares of the model residuals, pointing to the pre-
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Fig. 9 Calibration curve fits of (a) Fe I 358 nm and (b) Ni I 310 nm line
peaks. The linear regression (solid red) is fit to the data points (black
X) and the error bounds of the fit are marked by the dashed red lines.
Uncertainty of each data point is noted with the vertical black lines; this
was calculated by propagating the shot-to-shot deviation of the selected
peak at each concentration.

dictive accuracy of the calibration. Calibrations with lower RMSE
values have less differences between predicted and actual data
values, and are therefore more accurate.

RMSE =

√
1
N

n

∑
i=1

(yi− ŷi)2 (3)

The fitting parameters for each calibration model and calculated
are listed in Table 2, while the model LoD and RMSE values are
given in Table 3. The fit to the Ni peak yielded a better R2 value
than the Fe regression, but was marked by a poorer LoD. This is
directly attributable to the lower slope of the Ni regression. The
univariate LoD is directly dependent on the sensitivity of the mea-
surements, quantified by the slope of the regression. A lower re-
gression fit slope then correlates to a higher LoD and overall less
sensitive model. It should also be noted that the univariate cali-
bration LoDs are in the high hundreds of ppms; these quantities
are unacceptable for accurately conducting a trace metal analysis
in Pu. One potential underlying cause of the lows sensitivities of
these models that must be mentioned is a phenomenon known as
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self-absorption, in which the plasma becomes optically opaque to
analyte emission wavelengths at high concentrations, causing a
lower than expected intensity to be recorded54. This drives down
the data points at higher concentrations and lowers the slope.
When self absorption is corrected, or the data at higher concen-
trations is neglected, the regression slope to the lower concentra-
tion data points is often higher than initially calculated, lowering
the LoD for trace analytes at lower concentration ranges. A pre-
vious study by Zhang et al. notes the fragility of implementing
univariate methods for creating calibration curves due to suscep-
tibility to fluctuations in laser energy and matrix effects in the
sample55. Sometimes these effects can be mitigated by normal-
izing the spectral internally to a particular strong emission line,
however internal standard normalization often becomes less ef-
fective when analyzing a complex metal like plutonium with hun-
dreds of convolved major emissions. This sheds some light as to
the reasons for the high LoDs from these calibrations. Both re-
gressions had RMSE values of the same order, with Ni markedly
lower around 38. Ideally for a more accurate model, these RMSE
values should be orders of magnitude lower than the range of
target values for the regression. The clear underperformance of
these simple univariate models stresses the need to implement
chemometrics to generate more robust models which yield lower
LoDs and prediction error values for better trace element quan-
tification.

Table 2 Regression fitting parameters from the Fe and Ni univariate
calibration models for the line y = ax + b.

Element a δa b δb R2

Fe 0.658 0.324 184.9 123.6 0.816
Ni 0.245 0.091 47.47 45.32 0.927

Table 3 LoD and RMSE values from the Fe and Ni univariate calibration
models.

Element LoD(ppm) RMSE
Fe 640 95.2
Ni 700 38.1

Principal component regression (PCR)

The PCA algorithm was used to decompose the entire 145x23141
spectral emission data set into loadings and scores; the vari-
ance explained by the first 10 principal components is depicted
in Fig. 10. The first three PCs explain over 95 percent of the
variance of the data, a more than sufficient quantity needed to
generate a regression. The first three PCs were kept and used to
create a regression relating the transformed PC scores of compo-
nents 1 through 3 to the mean centered concentrations of Fe and
Ni in all the samples. Figs. 11a and 11b depict the generated pre-
dictive regression for each trace element, with the accompanying
R2 value for each fit.

The PCR method provided a poor fit to the Fe target data, and
performed slightly better for the fit to the Ni target data. Ana-
lyzing the predictive accuracy of each model can be conducted
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Fig. 11 PCR fits of a) Fe and b) Ni data. The fit (blue) to the data
(black points) denotes how well the model output prediction of elemental
concentration compared to the known target concentration.

by calculating the LoD of each regression. The methodology de-
veloped by Sun et al. for calculation of a multivariate regression
model LoD was implemented in this work56. Eqs. 4 and 5 de-
scribe the regression fit and LoD formula implemented. In Eq. 4,
a and b respectively represent the intercept and slope of the re-
gression fit line of the target concentration T̂ to the model output
concentration Ô. The standard deviation of a due to the disper-
sion of Ô and the regression slope b were then extracted and used
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to calculate LoD via Eq. 5. Thus, the LoD is a function of the sen-
sitivity of the technique (b) and the accuracy of the regression
model (σa). It should be explicity noted that the calculated LoD
does not yield a precise quantification of the amount of the trace
element in the bulk sample. Rather, it represents the concentra-
tion of the element which must be present in the bulk for the
chemometric model to determine presence of the trace element
with 99% certainty.

Ô = a+b× T̂ (4)

LoD(ppm) =
3σa

b
(5)

Table 4 lists the regression fit parameters, R2, and calculated LoDs
and RMSEs for each element. Although the LoD for Ni was com-
parable to the lower bound of the range of this trace metals in the
samples, the result for Fe is markedly poorer at 340 ppm. This is
directly caused by the poor PCR fit to the Fe target data, indicat-
ing that PCR may not be able to perform well enough to reliably
analyze trace iron content in plutonium metal. One explanation
for this disparity in achieved LoD could be that emissions from
Fe interfere more with the Pu emissions in the spectra than Ni
emissions do. Higher elemental and spectral interference may
inhibit the PCA algorithm’s ability to distinguish between the ele-
ments and provide a robust regression model. Overall, both PCR
models displayed poor predictive accuracy as noted by their high
RMSE values. These values are an order of magnitude higher than
the corresponding univariate RMSEs. This trend is directly at-
tributable to the unsupervised nature of the PCA technique; with-
out target data to fit to the trends in spectral intensity variations,
the predictive capability of the model is significantly diminished.
These results conclude that PCA is not the ideal solution for anal-
ysis of complex spectral data, and a supervised chemometric tech-
nique is necessary.

Table 4 Regression fit parameters, R2, LoD and RMSE for PCR models.

Element a b R2 LoD(ppm) RMSE(ppm)

Fe 230 0.51 0.513 340 176
Ni 60 0.88 0.883 125 160

Partial-least squares regression (PLSR)

A PLS decomposition was performed on the complete spectral
data set; a regression was constructed using the first 3 latent vari-
ables, which account for more than 95% of the original variance,
to keep consistency with the PCR model. The regression fits and
accompanying R2 values are illustrated in Figs. 12 and 13. LoD
and RMSE values were calculated for each fit according to the
previously discussed methodology; these metrics along with the
regression fit parameters are listed in Table 5.

Table 5 Regression fit parameters, R2, LoD and RMSE for PLSR models.

Element a b R2 LoD(ppm) RMSE(ppm)

Fe 1.3 0.99 0.997 15 13.2
Ni 1.2 0.99 0.998 20 22.8
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Fig. 12 PLSR fits of a) Fe and b) Ni data. The fit (blue) to the data
(black points) denotes how well the model output prediction of elemental
concentration compared to the known target concentration.
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Fig. 13 Percent variance in total input (X) and target (Y) data explained
by cumulative LVs of PLS model. Constructing a regression with more
LVs yields a model explaining a higher portion of the total data variance.

The R2 values indicate a nearly perfect correlation between the
target and predicted analyte concentrations. Each model was able
to achieve an LoD an order of magnitude lower than that of their
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corresponding PCR fits, reaching the low 10s of ppm levels for
both elements. This significant improvement in sensitivity is di-
rectly attributable to the high slopes of the regression fits to the
PLS prediction data. Additionally, significant improvements in
RMSE were made with this model when compared to the uni-
variate and PCR methods, with the Fe regression reaching the
low 10s of ppm levels for error. These values show promise that
the PLS algorithm can accurately track small changes in spectral
intensity caused by variations in trace metal content, and accu-
rately represent these trends in a quantitative model. Overall, the
PLSR models performed substantially better than the PCR models
evaluated earlier, showing vastly increased sensitivity and higher
predictive accuracy. To determine exactly why PLSR outperforms
PCR to this degree, we examined the variance explained by each
latent variable for each part of the data. Unlike PCA, PLS also
generates variables explaining the covariances between the input
(spectral data) and output (metal content); this is illustrated in
Fig. 13. The first 3 LVs explain over 95 percent of the variance
in X, but also account for about 85 percent of the variance in Y.
The PLSR model uses the transformed data relating the input and
output variables in the regression and is able to better quantify
the relationships between spectral response and trace metal con-
tent. As a result, it generates better regression fits to the target
data and yields lower LoDs for each element than the correspond-
ing PCR models. These results indicate that a supervised learning
technique is necessary to properly capture and quantify the re-
lationship between spectral emission variations and trace metal
content in the plutonium metal.

ANNs

A shallow feedforward neural network (FFNN) with 100 neurons
in the hidden layer and a scaled conjugate gradient optimization
function was built to perform regression fits of the data for both
trace elements. This specific structure was chosen since it was
applied in a previous study on Pu surrogate material spectra for
detection of Si23. A 60/20/20 % training/validation/testing split
was applied to the full set of 145 spectra. Figs. 14 and 15 dis-
play the training (blue), validation (green), testing (red) and to-
tal (grey) regressions for Fe and Ni content determination. R2

values for each elemental model and partition are listed in Table
6. The training and validation fits for Fe showed high R2 values,
but the test regression significantly underperformed with a poor
R2 of 0.492. This result provides a primary indication that the
FFNN failed to generalize an accurate predictive model for new
spectral data, despite achieving good fit metrics for the data dur-
ing training and validation. Additionally, the FFNN test regression
data for Fe yielded an LoD of 290 ppm, four times higher than the
LoD of the PLSR for Fe, indicating significant underperformance
for iron content prediction.

Table 6 R2 values for ANN training, validation, test and total regression
fits for each elemental model.

Element Train Validate Test Total
Fe 0.977 0.960 0.492 0.834
Ni 0.940 0.975 0.813 0.921
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Fig. 14 FFNN a) training (blue), b) validation (green), c) testing (red)
and d) total (grey) regression fits for Fe content prediction.

The FFNN regressions for Ni content prediction displayed the
same issues as the model for Fe. Although the test data regres-
sion for Ni had an R2 significantly higher than that of the Fe fit
(0.813), it still yielded a poorer fit than the training and vali-
dation regressions. The test regression data and fit parameters
yielded an LoD of 150 ppm for Ni, an improvement over the LoD
for Fe but still higher than the 110 ppm LoD for Ni achieved by
the PLSR model. These initial metrics indicate that the ANN ar-
chitectures employed were not able to successfully generalize the
trained models to test data; this is further investigated by exam-
ining the performance plot of each model.

Figs. 16a and 16b respectively illustrate the performance curves
for the ANN models built for the Fe and Ni regressions over each
training cycle (epoch). The blue, red, and green lines respec-
tively note the mean-squared error (MSE) yielded by the model
at a certain epoch for the training, validation, and test data. In
both models, the test performance curve terminates at an MSE
about an order of magnitude higher than the training and val-
idation MSEs. This indicates the occurrence of overfitting; the
model failed to generalize the results from training and valida-
tion to new data and could not generate accurate predictions for
the test set. Further evidence of this behavior is listed in Table 7,
which displays RMSE of the training set, root mean-squared er-
ror of cross validation (RMSECV) for the validation set, and root
mean-squared error of prediction (RMSEP) of the test set. The
model generates order of magnitude higher errors with the test
data than with the training or validation set, indicating a failure
to generalize the trends from the spectral information. Overfit-
ting often plagues ANN based regression models when large and
complex data sets are being passed for training and prediction.
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Fig. 15 FFNN a) training (blue), b) validation (green), c) testing (red)
and d) total (grey) regression fits for Ni content prediction.

Table 7 Root mean-square errors for training, validation and testing ANN
regression models for Fe and Ni. All error values are in ppm.

Element RMSE RMSECV RMSEP
Fe 28.9 50.6 211
Ni 62.6 73.2 184

The behavior seen in the performance curve indicates that the
ANN models are operating with low bias and high variance. This
result indicates the need to implement methods such as hyper-
parameter tuning and regularization to increase bias and lower
variance to overcome overfitting. The performance curve results
also reflect the disparity between the R2 values of the training
and test regressions in Figs. 14 and 15. Combining the evidence
of the poorer test regression fit and higher test MSE rendered by
the Fe and Ni prediction models, it is clear that the chosen ANN
architecture cannot produce an entirely reliable or robust model
for concentration determination of these two trace metals. The
test data regression fitting parameters and evaluation metrics for
all ANN models are listed in Table 8.

Table 8 Regression fit parameters, R2, and LoD for ANN models.

Element a b R2 LoD(ppm)

Fe 53 0.79 0.492 290
Ni 66 0.98 0.813 150

5 Conclusions
This study presents trace element quantification and LoD determi-
nation via portable LIBS for Pu alloys for the first time, using uni-
variate analysis and three chemometric methods. Furthermore,
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Fig. 16 Performance curves for a) Fe and b) Ni regressions denoting
change in MSE for each ANN model during training (blue), validation
(green) and testing (red) over each training cycle (epoch). The order
of magnitude disparity between the end result of the test curve to the
training curve indicates overfitting.

the results of this work yielded marked improvements to previ-
ous LoD determinations using handheld LIBS systems for analysis
of uranium46 and cerium-gallium alloys48, proving the efficacy
of chemometric methods for this problem. PLSR is determined
to be the superior chemometric method for creating predictive
regressions to determine trace metal concentrations, when com-
pared to univariate, PCR and ANN methods. The PLSR method
yielded LoDs of 15 and 20 ppm for Fe and Ni, respectively, along
with RMSEs of 13.2 and 22.8 ppm, indicating a promising method
for rapid chemical analysis of plutonium alloys. Univariate cali-
brations in complex matrices are subject to fluctuations in laser
signal and sample matrix effects which can detrimentally affect
the sensitivity and accuracy of the regression model. The unsu-
pervised nature of PCR makes it less than ideal for this complex
analytical spectroscopy problem, as it produces less accurate pre-
dictive models with poorer regression fits. The ANN architecture
implemented in this work suffered from overfitting when creating
regression models for Fe and Ni content, as determined by the
order-of-magnitude difference in MSE between the training and
test model performance. The overall results indicate that ANN
methods struggle to produce entirely reliable and robust models
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to quantitatively analyze the complex plutonium spectra.
It should be noted that PLSR still fails to reach the sub 10s of

ppm threshold which has been achieved previously with full scale
LIBS systems operating on less complex chemical matrices57–59.
Future endeavors for quantifying trace metals in Pu alloys could
look to improve LoDs further by either attempting other novel
machine learning paradigms as have been proposed for Pu surro-
gates23, or by enhancing the spectral resolvability by improving
the experimental setup to better replicate laboratory conditions.
Additionally, future work with these machine learning models will
examine the optimization of various hyperparameters, such as the
number of neurons, optimization function, and learning speed
coefficient used in the ANN, to maximize the performance of the
prediction models implemented for this problem. Lastly, this work
can be expanded to analyze a larger range of trace elements rel-
evant to Pu production, such as gallium, silicon, neptunium, and
americium. Analyzing a larger amount of trace impurities and de-
cay product elements will yield better insight into how different
models perform and behave for analysis of different elements.
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