

Photochemical & Photobiological Sciences

Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation

Journal:	Photochemical & Photobiological Sciences
Manuscript ID	PP-ART-11-2019-000434.R1
Article Type:	Paper
Date Submitted by the Author:	30-Jan-2020
Complete List of Authors:	Berlew, Erin; University of Pennsylvania, Bioengineering Kuznetsov, Ivan; University of Pennsylvania, Bioengineering Yamada, Keisuke; University of Pennsylvania, Bioengineering Bugaj, Lukasz; University of Pennsylvania, Bioengineering Chow, Brian; University of Pennsylvania, Bioengineering

SCHOLARONE[™] Manuscripts

1 Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible 2 lamellipodia formation

-3 4

5

8

Erin E. Berlew, Ivan A. Kuznetsov, Keisuke Yamada, Lukasz J. Bugaj, and Brian Y. Chow*

Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia,
PA 19104, United States; (*) Correspondence: bchow@seas.upenn.edu

9 10 **ABSTRACT:**

11 12 We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to 13 control actin polymerization by dynamic membrane recruitment. Opto-Rac1 is a fusion of 14 wildtype human Rac1 small GTPase to the C-terminal region of BcLOV4, a LOV (light-oxygen-15 voltage) photoreceptor that rapidly binds the plasma membrane upon blue-light activation via a 16 direct electrostatic interaction with anionic membrane phospholipids. Translocation of the fused 17 wildtype Rac1 effector permits its activation by GEFs (guanine nucleotide exchange factors) and 18 consequent actin polymerization and lamellipodia formation, unlike in existing single-chain 19 systems that operate by allosteric photo-switching of constitutively active Rac1 or the 20 heterodimerization-based (i.e. two-component) membrane recruitment of a Rac1-activating 21 GEF. Opto-Rac1 induction of lamellipodia formation was spatially restricted to the patterned 22 illumination field and was efficient, requiring sparse stimulation duty ratios of ~1-2% (at the 23 sensitivity threshold for flavin photocycling) to cause significant changes in cell morphology. 24 This work exemplifies how the discovery of LOV proteins of distinct signal transmission modes 25 can beget new classes of optogenetic tools for controlling cellular function.

26 27

29

28 INTRODUCTION:

Light-oxygen-voltage (LOV) flavoproteins ¹⁻³ comprise the most ubiquitous class of 30 31 photosensory proteins described to date ^{4, 5}. Their modularity in sensor-effector topology has given rise to great diversity in their photosensory signal transmission modes ⁵⁻¹², and in turn, the 32 33 discovery of LOV proteins with distinct signal transmission modes can beget new optogenetic 34 modules for light-activated control over cell physiology ^{13, 14}. Recently, we reported one such 35 novel class, the fungal (Regulator of G-protein Signaling) RGS-associated LOV proteins (RGS-36 LOV) ⁵, whose members possess a directly blue light-regulated and high-affinity interaction with 37 anionic phospholipids and are reversibly recruited to the plasma membrane upon illumination in 38 transducing cells as a result of this long-range electrostatic interaction ¹⁵.

39 Inducible translocation of a cytosol-sequestered protein to the plasma membrane is 40 commonplace in optogenetics ¹⁶⁻²⁰ to initiate signaling at the membrane by a fused effector (and likewise is commonplace with chemically induced dimerization (CID) ^{21, 22}. To the best of our 41 42 knowledge, reported systems lack a direct interaction with the plasma membrane itself like 43 RGS-LOV proteins, and instead rely on heterodimerization pairs that typically require multiple fluorescent protein tags and plasmids to titrate expression level for robust function ²³⁻²⁶. 44 45 Conversely, single-component membrane recruitment-based tools can be engineered with 46 RGS-LOV, for example, as we recently demonstrated with opto-DHPH ²⁷, which is a fusion of 47 BcLOV4 from *Botrytis cinerea*¹⁵ and the DHPH (Dbl-homology Pleckstrin-homology) domain of the Cdc-42 selective Intersectin GEF (quanine nucleotide exchange factor) to stimulate actin-48 mediated filopodial protrusions ²⁸⁻³¹. 49

50 Here, we report the creation of opto-Rac1, a single-component tool for optogenetic 51 induction of actin-mediated lamellipodial protrusions by membrane recruitment of human Rac1 52 small GTPase (Figure 1). Unlike existing optogenetic and chemogenetic tools that allosterically modulate constitutively active (CA) GTP-bound Rac1 ^{32, 33} or alter the subcellular localization of 53 CA-Rac1 ^{34, 35} or Rac1-selective GEFs ^{36, 37} by heterodimerization-based membrane recruitment, 54 55 opto-Rac1 modulates wildtype Rac1 by recruiting the inactive GDP-bound form to the membrane, where it is activated by GEFs ³⁸ and initiates downstream actin polymerization 56 through WAVE (WASP-family verprolin-homologous) protein-scaffolded interaction with Arp2/3 57 58 (actin-related proteins) regulatory complex ³⁹⁻⁴¹. The use of this wildtype or non-constitutively 59 active effector minimized basal Rac1 activity in the dark, while still permitting effective 60 photoinduction of lamellipodia formation that was spatially restricted to the illumination field and required relatively sparse epochs of illumination. 61

Figure 1: Optogenetic Rac1 (Opto-Rac1) photoinduction of lamellipodia formation by single-component dynamic membrane recruitment using BcLOV4. In the dark or absence of blue light, wildtype human Rac1 fused to BcLOV4 remains cytosolically sequestered and its GDP-bound inactive form. Upon illumination, BcLOV4 is directly recruited to the membrane through its light-regulated interaction with anionic membrane phospholipids. Rac1 is activated to its GTP-bound form by local GEF proteins, consequently initiating lamellipodia formation through interactions with the WAVE (scaffold) and Arp2/3 regulatory complex for actin polymerization.

62 MATERIALS AND METHODS:

63

64 [Genetic constructs]. Domain arrangement combinations of Rac1, BcLOV4, and mCherry (with a flexible (GGGS)₂ linker between each domain pair) were assembled by Gibson cloning 65 66 using NEB HiFi DNA Assembly Master Mix (E2621) into the pcDNA3.1 mammalian expression 67 vector under the CMV promoter. BcLOV4 and mCherry were amplified from their reported fusion (Addgene plasmid 114595)¹⁵. The DNA sequence of Rac1 (Genbank ID AAH04247.1) 68 69 was human codon-optimized using the Integrated DNA Technologies (IDT) Codon Optimization 70 Tool and ordered as a gBlock[®], with a single C-terminal leucine residue (of the "CAAX"-motif) 71 removed to prevent prenylation and membrane localization in dark-adapted fusions. The full sequence is available in Supplementary Information (**Supplementary Figure 1**). The Rac1 constitutively active mutant was generated by QuikChange site-directed mutagenesis (Q665L, E695H, and N696H) based on previously reported mutations ³³. All genetic constructs were transformed into competent *E. coli* (New England Biolabs, C2984H). The DNA sequence of mKoKappa was human codon-optimized, ordered as a gBlock®, and assembled with BcLOV4 as described above. All sequences were verified by Sanger sequencing.

78

79 [Mammalian culture and transduction]. HEK293T (ATCC, CRL-3216) cells were cultured in 80 D10 media composed of Dulbecco's Modified Eagle Medium with Glutamax (Invitrogen, 10566016), supplemented with 10% heat-inactivated fetal bovine serum (FBS) and Penicillin-81 82 Streptomycin at 100 U/mL. Cells were maintained in a 5% CO₂ water-jacketed incubator 83 (Thermo/Forma 3110) at 37°C. Cells were seeded onto poly-D-lysine-treated glass bottom 84 dishes (MatTek, P35GC-1.5-14-C) or into 24-well glass bottom plates (Cellvis, P24-1.5H-N) at 85 15-20% confluency. Cells were transfected at ~30-40% confluency 24 hours later using the TransIT-293 transfection reagent (Mirus Bio, MIR2700) according to manufacturer instructions. 86 87 Cells were imaged 24-48 h post-transfection.

88

[Trypan blue staining]. 24 hours after transfection, cells were washed with PBS and incubated with 0.2% Trypan Blue solution (diluted 1:1 with PBS from 0.4% stock solution) for one minute. Trypan Blue solution was then aspirated, and cells were fixed with 4% paraformaldehyde for 10 minutes at room temperature. After fixation, plates were rinsed three times with PBS with agitation for five minutes per wash. Cells were then imaged at 20x magnification with brightfield illumination for three FOV per sample x 2 plates to count the number of stained vs. unstained cells for each construct.

96

97 [Optical hardware for cellular assays]. Fluorescence microscopy was performed on an 98 automated Leica DMI6000B fluorescence microscope under Leica MetaMorph control, with a 99 sCMOS camera (pco.edge), an LED illuminator (Lumencor Spectra-X), and a 63X oil immersion 100 objective. Aligned excitation was filtered at the Lumencor for mCherry imaging ($\lambda = 575/25$ nm) and GFP imaging or for wide-field BcLOV4 stimulation ($\lambda = 470/24$ nm). mCherry-fused proteins 101 102 were imaged with Chroma filters (T585lpxr dichroic and ET630/75nm emission filter). Camera 103 exposure times ranged from 0.2-0.5 s. Cells were imaged in CO₂-independent media (phenolfree HBSS supplemented with 1% L-glutamine, 1% Penicillin-Streptomycin, 2% essential amino 104 acids. 1% nonessential amino acids, 2.5% HEPES pH 7.0, and 10% serum). 105

106 The custom spatially patterned illuminator was (DMD) digital micromirror device-based 107 and constructed from a digital light processor (DLP, Digital Light Innovations CEL5500), based on a design by others ⁴² (Supplementary Figure 2). All optics and optomechanics were from 108 109 ThorLabs unless stated otherwise. A liquid light guide-coupled source (Mightex LCS-0455-3-22) 110 was collimated into the DLP. The DLP output was infinity corrected with an additional lens, and 111 the coupled through a side auxiliary port window of the microscope to gain direct access to the 112 back of the objective, by using a custom K Type laser cube (Nuhsbaum, Inc.) with a shortpass 113 dichroic mirror (λ < 900 nm). Digital masks were drawn in the DLP Light Commander software.

114

115 [Fluorescence imaging and optogenetic assays]. For dynamic membrane recruitment 116 assessments, prenylated GFP was co-transfected as a membrane marker with Rac1::BcLOV4 117 fusions as previously described ¹⁵. Following mCherry fluorescence imaging to assess the 118 expression level and localization of the fusion proteins in the dark-adapted state, cells were 119 illuminated with 5 s-long blue-light pulse whole-field to stimulate BcLOV4, and mCherry 120 fluorescence images were captured every 200 ms to monitor membrane association of the 121 protein during this stimulation epoch. GFP fluorescence was imaged immediately afterwards to 122 visualize the marked membrane. mCherry fluorescence (500 ms excitation exposure) images

were then captured every 5 s in the absence of blue light to monitor protein dissociation from
 the membrane under thermal reversion. Membrane localization was measured by line section
 analysis and correlation with prenylated GFP in ImageJ and MATLAB as previously described
 ¹⁵.

127 For assays using spatially patterned illumination (see schematic protocol in 128 Supplementary Figure 3), mCherry fluorescence was imaged every 15 s for up to 10 min. 129 During this time, cells were periodically stimulated with DLP-patterned illumination (typically 25 130 μ m-wide squares, ~25% cell area illuminated) with a 0.8 – 5% duty ratio range (or 0.25-1.5 s-131 long pulses once every 15-30 s). In the cases of mechanistic controls: for actin polymerization 132 inhibition, cytochalasin D (5 mg/mL in DMSO, Millipore Sigma C2618) was added to cell media 133 for a final concentration of 500 nM, 30 minutes prior to imaging; for Rac1-GEF inhibition, 134 NSC23766 (Millipore Sigma SML0952) in phosphate-buffered saline (PBS) was added to cell 135 media for a final concentration of 50 μ M, one hour prior to imaging.

For normal handling, cells were passage, transfected, incubated and transported under standard laboratory lighting conditions, and then microscopy-based assays were conducted with room lights off after an initial 10-minute dark-adaptation period. All data reported were acquired under the normal handling conditions.

Under "stringent" conditions discussed in text, the cells were handled during all steps as
prescribed by others for PA-Rac1 to reduce basal optogenetic activity ³². Cell culture was
performed under red safe-light conditions. Cells were transferred in completely opaque carriers.
Assays were performed in dark rooms with all light-sources tuned off or baffled, including
electronic displays and monitors ³².

145

146 [Data analysis]. Each data point was derived from an independent video, with N = 19-37 147 independent videos per condition. For each video, a cell within the illuminated region was 148 selected and segmented (ImageJ) from the frame imaged at 0 seconds post-illumination and 149 120 seconds post-illumination. The researcher was blinded during segmentation to experimental 150 condition to prevent bias. To compute the distance the cell had moved between the two 151 timepoints, the average distance between segmented cell borders was calculated via a custom 152 analysis Python script (schematized in **Supplementary Figure 3**). Statistical significance was 153 assessed by the non-parametric Mann-Whitney U test, uncorrected for multiple comparisons.

154 155

157

156 **RESULTS AND DISCUSSION:**

158 In heterologous expression systems, BcLOV4 is dynamically recruited to the plasma membrane through a long-range electrostatic interaction between anionic membrane 159 160 phospholipids and a polybasic amphipathic helix located between the LOV J α -helical linker and its C-terminal domain of unidentified function (DUF)¹⁵. To engineer opto-Rac1, we screened 161 162 domain arrangement orderings of mammalian codon-optimized BcLOV4, human Rac1, and a mCherry visualization tag, with a glycine/serine-rich flexible linker, (GGGS)₂, between the 163 164 respective domain pairs (Figure 2, Supplementary Figure 4). To enable cytosolic 165 sequestration of the Rac1 effector and limit membrane localization of BcLOV4-fusion proteins in 166 the dark-adapted state, a single leucine residue was truncated from the Rac1 C-terminal 167 prenylation site ("CLLL" or more generally "CAAX") ⁴³. These domain combinations were then 168 screened in transfected HEK cells for protein expression uniformity, relative expression level, 169 and light-activated translocation efficiency in response to whole-field illumination with blue light 170 (Figure 3). In all experiments herein, cells were blue light-stimulated with a 15 mW/cm² 171 irradiance, which is the half-saturation for flavin photocycling of BcLOV4-mCherry.

Figure 2: Molecular engineering of opto-Rac1. (a) Domain arrangement combinations of BcLOV4, wildtype human Rac1, and mCherry visualization tag that were tested. Domains were separated by flexible $(GGGS)_2$ linkers. Candidates were tested for relative expression level and translocation efficiency vs. BcLOV4-mCherry in transfected HEK cells. BcLOV4-Rac1-mCherry was ultimately selected as opto-Rac1 based on its uniform localization profile in the dark-adapted state and similar translocation efficiency to BcLOV4-mCherry. (b) Fluorescence micrographs showing representative expression patterns of the six arrangements in the dark-adapted state. (c) Dynamic membrane localization of opto-Rac1 is reversible under whole-field illumination. Top = Fluorescence micrograph, Scale = 10 μ m. Bottom = Line section pixel intensity.

172 BcLOV4-Rac1-mCherry was chosen as opto-Rac1. This particular domain arrangement 173 was uniformly distributed throughout the cytosol in the dark-adapted state (Figure 2b, 174 Supplementary Figure 4), retained its ability to be reversibly recruited to the membrane upon 175 illumination (Figure 2c) with similar efficiency to the BcLOV4-mCherry reference protein (Figure **3b**). Other domain arrangements were not considered viable because their inducible membrane 176 177 recruitment capabilities were reduced and they displayed undesirable expression profiles, 178 evidenced by poor cell health (e.g. round morphology in domain arrangement iv), permanent localization to membrane or trans-Golgi network in the dark, or nuclear sequestration, the latter 179 180 potentially from exposure of the Rac1 nuclear shuttling sequence ⁴⁴ that is possible with disrupted prenylation ⁴⁵. The observed nuclear sequestration was unlikely to depend on cell 181 182 cycle phase ⁴⁶, since it is the dominant phenotype observed in an unsynchronized population for 183 domain arrangements ii and iii (Supplementary Figure 4).

Figure 3: Population analysis of domain arrangement combinations. (a) Relative expression level vs. BcLOV4-mCherry control with no effector. (b) Ratio of membrane-localized vs. cytosolic protein for the engineered arrangements (normalized vs. BcLOV4-mCherry control) in the dark-adapted and blue light-illuminated state. N = 25 – 35 each. Mean \pm standard error.

184 The membrane localization in the dark-adapted state observed when BcLOV4 is at the 185 C-terminus of the chimera (domain arrangements v. and vi.) suggests that such configurations are disfavored when engineering fusion proteins. A similar "permanently lit"-like phenotype was 186 187 seen when only a fluorescent protein was placed at the N-terminus as a membrane signaling-188 inert fusion partner (mKok-BcLOV4, Supplementary Figure 5). It is possible that fused Nterminal effectors may disrupt the known dark-state inhibition of lipid-binding by the N-terminal 189 190 region of BcLOV4 ¹⁵. Future work in high-resolution structures of BcLOV4 may reveal how 191 certain configurations differ in their exposure of motifs (nuclear localization, lipid binding, etc.) 192 that impact their respective distribution patterns. It should be noted that opto-Rac1 could not be 193 solubly produced by bacterial overexpression.

194 Next, to test optogenetic function for spatially precise induction of lamellipodia 195 formation, cells expressing opto-Rac1 were stimulated with spatially patterned blue light using a 196 digital micromirror device (Figures 4 and 5) to emulate a sensory activation gradient. Because BcLOV4 undocks from the membrane within approximately one minute in the dark ^{15, 47}, cells 197 198 were provided a brief stimulation pulse every 30-60 seconds. Sprawling sheet-like lamellipodial 199 protrusions were rapidly and selectively initiated in the blue light-illuminated field and remained 200 largely confined to the spatial field upon reaching the boundary (Figure 4 and Supplementary 201 Video 1). Thus, opto-Rac1 induction of lamellipodia formation is spatially restricted.

202 We assessed the phenotypic response to different stimulation duty ratios to gauge the 203 functional efficiency of opto-Rac1 and guide experimental parameters for future use. Duty ratio 204 (ϕ) was chosen as the "sensitivity" parameter because it is easier to precisely control optical 205 stimulation timing than intensity over time. The 15 mW/cm² irradiance was chosen as it is 206 sufficient to saturate flavin photocycling, but this photochemical threshold at the protein-level 207 was not exceeded to avoid photobleaching or compensating for inefficient optogenetic function 208 at the cell signaling level. We quantified the extent of induced lamellipodia formation (Figure 5) 209 as the average movement of the stimulated cell boundary over the first two minutes, since 210 protrusions were clearly observable during this initial post-induction period and the spatial 211 confinement of lamellipodia induction to the illumination field decreases the average movement 212 over longer periods. Opto-Rac1 performed consistently at $\phi = 1.6\%$ duty ratio, which for context 213 is in the low end of the duty ratio range of $\phi \sim 2.5 - 20\%$ that has been reported for related tools 214 for small GTPase signaling with blue light photoreceptors ^{29-31, 37, 48}. Thus, the optogenetic

efficiency of opto-Rac1 is sufficient to perform reliably on commonplace microscopy setups

216 without major photobleaching risks.

Figure 4. Spatially precise induction of lamellipodia formation by opto-Rac1 (a) Fluorescence micrographs of three different transfected HEK cells and a BcLOV4 control. Protrusions are rapidly formed in the patterned illumination field for opto-Rac1, and remain largely restricted to the field even many minutes after reaching the edge. Opto-Rac1 also accumulates selectively within the field in an actin network-dependent manner (refer also to Figure 6). No protrusions are observed for the effector-less control. Scale = 10 μ m. (b) Region of interest (ROI) selection around the illumination field of view after 10 minutes of pulsatile stimulation show sheet-like protrusions. Indices i-iv correspond to those in panel a, with auto-adjusted levels for the ROI. White box = illumination field. Dotted yellow line = mask of original cell boundary. (a-b) λ = 455 nm @ 15 mW/cm², 1.6 – 5.0% duty ratio.

Figure 5. Efficient opto-Rac1 induction of lamellipodia formation. Lamellipodia formation in response to stimulation duty cycles, with irradiance fixed at the saturation threshold for flavin photocycling. Phenotypic response was quantified by average distance of cell border movement in the illumination field after two minutes. N = 19 - 37 independent videos each. Mann-Whitney U test: (*) p < 0.05, (**) p < 0.01 vs. BcLOV4-mCherry control (no Rac1 effector). $\lambda = 455$ nm @ 15 mW/cm^2 .

217 To confirm that the wildtype Rac1 domain can be recruited to the membrane in its 218 inactive GDP-bound form as proposed, we performed the spatially patterned induction 219 experiments in the presence of a Rac1-GEF inhibitor NSC 23766 ^{49, 50}, with a high $\phi = 5\%$ to 220 ensure robust photochemical activation. Opto-Rac1 still selectively bound the membrane in 221 illumination field, but lamellipodia formation was suppressed by this pharmacological inhibition 222 (Figure 6). This finding confirms that its membrane recruitment is GEF-independent and 223 indicates that the wildtype effector domain is in its inactive or GDP-bound when opto-Rac1 is 224 initially recruited to the membrane. This signaling mode is consistent with single-molecule 225 tracking studies showing that membrane localization of Rac-GDP precedes GEF-activation in 226 natural Rac1 signaling, and is sufficient for actin polymerization ³⁸.

Lamellipodia formation was also inhibited in the presence of the actin polymerization inhibitor cytochalasin D ⁵¹, confirming that the cytoskeletal rearrangements were actin-mediated and not a spurious byproduct of other Rac1 signaling pathways or protein accumulation at the inner leaflet (**Figure 6**). Opto-Rac1 did not accumulate strongly in the illumination field in the presence of either inhibitor, unlike when actin polymerization is possible (**Figure 4**), and thus the latter observed accumulation stems from opto-Rac1 binding to a polymerized actin network.

233 The opto-Rac1 signaling mechanism is distinct from previously reported genetically 234 encoded approaches for inducible Rac1 activity, which have used Rac1-activating GEFs or 235 constitutively active (CA) proteins mutated to eliminate inhibitory interactions with GDI 236 (guanosine nucleotide dissociation inhibitor) and GAPs (GTPase-activating protein) ³²⁻³⁷. While 237 membrane recruitment systems have not yet been reported using wildtype Rac1 effector (vs. 238 CA-Rac1 or indirect Rac1-GEFs), its use clearly permits effective opto-Rac1 signaling and 239 suggests that basal GEF levels are sufficient to support signaling in response to rapid increases 240 in membrane concentration of GDP-bound Rac1. It should be noted that mutation of the Rac1 241 domain in opto-Rac1 to CA-Rac1 ³³ (corresponding to the GDI-interaction site, Q61L, and the GAP-interaction sites, E91H and N92H) was toxic with evidence of basal activity 242 243 (Supplementary Figure 6). Thus, the use of wildtype Rac1 effector contributes to the 244 optogenetic efficacy, possibly by reducing basal activity of opto-Rac1, which was negligible 245 under normal laboratory condition (without precautions for blue light-exposure other than brief 246 assay dark-adaptation period) that were less stringent than reported precautions needed to limit 247 basal activity of PA-Rac1, where all cell handling and assays are conducted in darkness 248 (including baffling electronic displays) ³².

249 Opto-Rac1 contributes to the overall optogenetic toolbox for controlling Rac1 signaling. 250 whose members differ in their respective GEF-input signal integration and their consequent downstream effects ^{36, 52, 53}. For example, optogenetic GEF-induced signaling is biased by the 251 252 native preferences of the effector, whereas the wildtype Rac1 effector integrates multiple GEF 253 inputs and conversely, a chimeric CA-Rac1 effector drives downstream processes in a direct 254 GEF-independent manner. Further, the gain-of-function by an engineered GEF saturates at the 255 endogenous GTPase concentration, whereas the maximum for an engineered GTPase itself 256 corresponds to the enhanced GTPase concentration net of overexpression ⁵⁴. Thus, expanding the toolbox offers tailored approaches to probe Rac1 signaling. Opto-Rac1 here perhaps 257 258 recapitulates increases in concentration (e.g. by transcriptional up-regulation, nuclear export, 259 etc.) on very rapid timescales while still integrating natural GEF inputs that influence its output.

Figure 6. Pharmacological inhibition of opto-Rac1 activity to confirm mechanism of optogenetic control. Optogenetic signaling proceeds by GEF-activation of GDP-bound wildtype Rac1 upon membrane localization, followed by downstream actin polymerization. (a-b) Fluorescence micrographs of transfected HEK cells expressing opto-Rac1, treated with the (a) Rac1- GEF inhibitor NSC23766 and (b) the actin polymerization inhibitor cytochalasin D. Opto-Rac1 accumulates at the membrane within the patterned illumination field (box) but does not induce lamellipodia formation. λ = 455 nm @ 15 mW/cm², 5% duty ratio. Scale = 10 µm. (c) Population level data to quantify pharmacological suppression of opto-Rac1 activity. Mann Whitney U test (*) p < 0.05. N = 31 (+NSC23766), N = 30 (+cytochalasin D) independent videos each. Untreated samples represent the same data as in Figure 5.

260 **CONCLUSION**:

261

262 In summary, we have created a single-component optogenetic Rac1 that potently initiates actin polymerization and highly focal lamellipodia formation by blue light-activated 263 264 membrane recruitment of wildtype Rac1 GTPase itself. This work demonstrates how BcLOV4 as a protein technology is a versatile and powerful module for engineering chimeric optogenetic 265 tools to control signaling of membrane-associated proteins, and highlights the importance of 266 267 establishing the structure-function of novel signal transmission modes, such as the foundational 268 light-regulated protein-lipid interaction described here, that are employed by the ubiquitous and 269 inherently modular LOV domain photoreceptors.

270

271

272

273

AUTHOR CONTRIBUTIONS:

274 EEB designed genetic constructs, designed experiments, and conducted all 275 experiments. IAK designed experiments, contributed to all experiments, constructed the 276 patterned illumination system, and performed the blinded data analysis. KY assisted with 277 molecular cloning and cellular assays. LJB and BYC coordinated all research. All authors 278 contributed to data analysis and manuscript preparation.

279

280

281 282

ACKNOWLEDGEMENTS:

283 We dedicate this manuscript in memory of Winslow R. Briggs, a true luminary in 284 We thank the Chris Fang-Yen Laboratory for assistance with photosensory biology. 285 constructing the spatially patterned illuminator. BYC acknowledges the support of National 286 Science Foundation (NSF) Systems and Synthetic Biology (MCB 1652003), NIH/National 287 Institute on Drug Abuse (R21 DA040434), and NIH/National Institute of Neurological Disorders 288 and Stroke (NINDS) (R01 NS101106). LJB acknowledges the support of the W.W. Smith Charitable Trust, ACS-SEAS Discovery Grant, and NIH/National Institute of General Medical 289 290 Sciences (R21 GM132831-01). IAK acknowledges the fellowship support of the Paul and Daisy 291 Soros Fellowship for New Americans and the NIH/National Institutes of Mental Health (NIMH) 292 Ruth L. Kirchstein NRSA (F30 MH122076-01).

293	REFE	RENCES:
294		
295	1.	E. Huala, P. W. Oeller, E. Liscum, IS. Han, E. Larsen and W. R. Briggs, Arabidopsis
296		NPH1: A Protein Kinase with a Putative Redox-Sensing Domain, Science, 1997, 278,
297	-	2120.
298	2.	W. R. Briggs, Phototropism: Some History, Some Puzzles, and a Look Ahead, <i>Plant</i>
299		physiology, 2014, 164 , 13.
300	3.	S. Crosson, S. Rajagopal and K. Moffat, The LOV domain family: photoresponsive
301		signaling modules coupled to diverse output domains, <i>Biochemistry</i> , 2003, 42 , 2-10.
302	4.	A. Losi and W. Gärtner, Solving Blue Light Riddles: New Lessons from Flavin-binding
303		LOV Photoreceptors, <i>Photochemistry and photobiology</i> , 2016, 93 , 141-158.
304	5.	S. T. Glantz, E. J. Carpenter, M. Melkonian, K. H. Gardner, E. S. Boyden, G. K. Wong
305		and B. Y. Chow, Functional and topological diversity of LOV domain photoreceptors,
306		Proceedings of the National Academy of Sciences of the United States of America,
307		2016, 113 , E1442-1451.
308	6.	J. Herrou and S. Crosson, Function, structure and mechanism of bacterial photosensory
309		LOV proteins, Nature reviews. Microbiology, 2011, 9, 713-723.
310	7.	S. M. Harper, L. C. Neil and K. H. Gardner, Structural basis of a phototropin light switch,
311		Science, 2003, 301 , 1541-1544.
312	8.	A. I. Nash, R. McNulty, M. E. Shillito, T. E. Swartz, R. a. Bogomolni, H. Luecke and K. H.
313		Gardner, Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-
314		helix (LOV-HTH) DNA-binding protein, Proceedings of the National Academy of
315		Sciences of the United States of America, 2011, 108 , 9449-9454.
316	9.	R. P. Diensthuber, M. Bommer, T. Gleichmann and A. Möglich, Full-length structure of a
317		sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and
318		modulators, <i>Structure</i> , 2013, 21 , 1127-1136.
319	10.	A. M. Weber, J. Kaiser, T. Ziegler, S. Pilsl, C. Renzl, L. Sixt, G. Pietruschka, S. Moniot,
320	-	A. Kakoti, M. Juraschitz, S. Schrottke, L. Lledo Brvant, C. Steegborn, R. Bittl, G. Maver
321		and A. Möglich, A blue light receptor that mediates RNA binding and translational
322		regulation. Nature Chemical Biology. 2019. 15 . 1085-1092.
323	11.	K. S. Conrad, A. M. Bilwes and B. R. Crane, Light-Induced Subunit Dissociation by a
324		I OV domain Photoreceptor from Rhodobacter sphaeroides <i>Biochemistry</i> 2013 52
325		378-391
326	12	C H Chen B S DeMay A S Gladfelter J C Dunlap and J J Loros Physical
327		interaction between VIVID and white collar complex regulates photoadaptation in
328		Neurospora Proc Natl Acad Sci USA 2010 107 16715-16720
329	13	A Losi K H Gardner and A Möglich Blue-Light Receptors for Optogenetics <i>Chemical</i>
330	10.	Reviews 2018 118 10659-10709
331	14	I M Christie J Gawthorne G Young N J Fraser and A J Roe LOV to BLUE
332	17.	flavonrotein contributions to the ontogenetic toolkit Mol Plant 2012 5 533-544
333	15	S T Glantz E E Berlew Z Jaber B S Schuster K H Gardner and B Y Chow
334	10.	Directly light-regulated binding of RGS-I OV photoreceptors to anionic membrane
335		phospholipids Proceedings of the National Academy of Sciences 2018 115 E7720
336		
337	16	LIIZI. M. Kennedy, P. M. Hughes, I. A. Peteva, I. W. Schwartz, M. D. Ehlers and C. I.
220	10.	Tucker, Banid blue light mediated induction of protein interactions in living cells. Not
220		Meth 2010 7 073 075
240	17	Williams D A Hallott S D Zimmorman T Williams H Vumorofondi J E Dear and
340	17.	B. Guntas, N. A. Hallett, S. F. Zillinethidil, T. Willidilis, D. Tullielelenul, J. E. Bedi and
341 3/10		Localization and activity of signaling protoing. <i>Drosoodings of the National Academy of</i>
242 242		Sciences 2015 112 112
343		

D. Strickland, Y. Lin, E. Wagner, C. M. Hope, J. Zavner, C. Antoniou, T. R. Sosnick, E.

L. Weiss and M. Glotzer, TULIPs: tunable, light-controlled interacting protein tags for cell

344

345

18.

biology, Nat. Methods, 2012, 9, 379-384. 346 347 19. A. A. Kaberniuk, A. A. Shemetov and V. V. Verkhusha, A bacterial phytochrome-based 348 optogenetic system controllable with near-infrared light, Nature methods, 2016, 13, 591-349 597. 350 20. A. Levskaya, O. D. Weiner, W. A. Lim and C. A. Voigt, Spatiotemporal control of cell 351 signalling using a light-switchable protein interaction, *Nature*, 2009, **461**, 997-1001. 352 21. R. DeRose, T. Miyamoto and T. Inoue, Manipulating signaling at will: chemically-353 inducible dimerization (CID) techniques resolve problems in cell biology, *Pflugers Arch*, 354 2013, 465, 409-417. 355 22. S. Voß, L. Klewer and Y.-W. Wu, Chemically induced dimerization: reversible and 356 spatiotemporal control of protein function in cells, Current Opinion in Chemical Biology, 357 2015, 28, 194-201. 358 23. L. Duan, J. Hope, Q. Ong, H.-Y. Lou, N. Kim, C. McCarthy, V. Acero, M. Z. Lin and B. 359 Cui, Understanding CRY2 interactions for optical control of intracellular signaling, Nature 360 communications, 2017, 8, 547. 361 24. R. A. Hallett, S. P. Zimmerman, H. Yumerefendi, J. E. Bear and B. Kuhlman, Correlating 362 in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide, 363 ACS synthetic biology, 2016, 5, 53-64. 364 25. S. P. Zimmerman, R. A. Hallett, A. M. Bourke, J. E. Bear, M. J. Kennedy and B. 365 Kuhlman, Tuning the Binding Affinities and Reversion Kinetics of a Light Inducible Dimer 366 Allows Control of Transmembrane Protein Localization, Biochemistry, 2016, 55, 5264-367 5271. 368 26. P. Hannanta-Anan and B. Y. Chow, Optogenetic Inhibition of Gag Protein Signaling 369 Reduces Calcium Oscillation Stochasticity, ACS synthetic biology, 2018, 7, 1488-1495. 370 P. Hannanta-Anan, S. T. Glantz and B. Y. Chow, Optically inducible membrane 27. 371 recruitment and signaling systems, Current Opinion in Structural Biology, 2019, 57, 84-372 92. 373 28. L. Valon, F. Etoc, A. Remorino, F. di Pietro, X. Morin, M. Dahan and M. Coppey, 374 Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics, 375 Biophysical Journal, 2015, 109, 1785-1797. 376 29. S. de Beco, K. Vaidžiulytė, J. Manzi, F. Dalier, F. di Federico, G. Cornilleau, M. Dahan 377 and M. Coppey, Optogenetic dissection of Rac1 and Cdc42 gradient shaping, Nature 378 communications, 2018, 9, 4816-4816. 379 30. P. R. O'Neill, V. Kalyanaraman and N. Gautam, Subcellular optogenetic activation of 380 Cdc42 controls local and distal signaling to drive immune cell migration, Mol Biol Cell, 381 2016. 27. 1442-1450. 382 31. O. Van Geel, R. Hartsuiker and T. W. J. Gadella, Increasing spatial resolution of 383 photoregulated GTPases through immobilized peripheral membrane proteins, Small 384 GTPases, 2018, DOI: 10.1080/21541248.2018.1507411, 1-10. 385 32. Y. I. Wu, X. Wang, L. He, D. Montell and K. M. Hahn, Spatiotemporal control of small 386 GTPases with light using the LOV domain, *Methods in enzymology*, 2011, **497**, 393-407. 387 33. Y. I. Wu, D. Frey, O. I. Lungu, A. Jaehrig, I. Schlichting and B. H. Kuhlman, K.M., A 388 genetically encoded photoactivatable Rac controls the motility of living cells, *Nature*, 389 2009, **461**, 104-108. 390 34. T. Inoue, W. D. Heo, J. S. Grimley, T. J. Wandless and T. Meyer, An inducible 391 translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. 392 Nature methods, 2005, 2, 415-418. 393 35. F. Castellano, P. Montcourrier and P. Chavrier, Membrane recruitment of Rac1 triggers 394 phagocytosis, Journal of Cell Science, 2000, 113, 2955.

395 396	36.	B. R. Graziano, D. Gong, K. E. Anderson, A. Pipathsouk, A. R. Goldberg and O. D. Weiner, A module for Bac temporal signal integration revealed with optogenetics. <i>The</i>
207		lournal of Call Pialogy 2017 216 2515
200	27	Journal of Cell Biology, 2017, 216, 2515.
398	37.	A. Remonno, S. De Beco, F. Cayrac, F. Di Federico, G. Comilieau, A. Gautieau, M. C.
399		Parrini, J. B. Masson, M. Danan and M. Coppey, Gradients of Raci Nanoclusters
400		Support Spatial Patterns of Rac1 Signaling, Cell reports, 2017, 21, 1922-1935.
401	38.	S. Das, T. Yin, Q. Yang, J. Zhang, Y. I. Wu and J. Yu, Single-molecule tracking of small
402		GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism
403		for polarized signaling, Proceedings of the National Academy of Sciences, 2015, 112 ,
404		E267.
405	39.	ST. Sit and E. Manser, Rho GTPases and their role in organizing the actin
406		cytoskeleton, Journal of Cell Science, 2011, 124 , 679.
407	40.	A. Y. Pollitt and R. H. Insall, WASP and SCAR/WAVE proteins: the drivers of actin
408		assembly, Journal of cell science, 2009, 122 , 2575-2578.
409	41.	T. D. Pollard, Regulation of Actin Filament Assembly by Arp2/3 Complex and Formins,
410		Annual review of biophysics and biomolecular structure, 2007, 36 , 451-477.
411	42.	N. F. Trojanowski and C. Fang-Yen, in <i>C. elegans: Methods and Applications</i> , eds. D.
412		Biron and G. Haspel, Humana Press, Totowa, NJ, 2015, DOI: 10.1007/978-1-4939-
413		2842-2 9. pp. 105-119.
414	43.	P. J. Roberts, N. Mitin, P. J. Keller, E. J. Chenette, J. P. Madigan, R. O. Currin, A. D.
415		Cox O Wilson P Kirschmeier and C J Der Rho Family GTPase modification and
416		dependence on CAAX motif-signaled posttranslational modification. The Journal of
417		hiological chemistry 2008 283 25150-25163
418	44	C. C. Lanning, J. L. Daddona, R. Ruiz-Velasco, S. H. Shafer and C. L. Williams. The
/10		Rac1 C-terminal Polyhasic Region Regulates the Nuclear Localization and Protein
420		Degradation of Pacific Journal of Riological Chemistry, 2004, 279 , 44107, 44210
420	45	D. Michaelson, W. Abidi, D. Guardavaccare, M. Zhou, J. Aboarn, M. Bagano and M. P.
421	45.	D. Michaelson, W. Ablul, D. Guardavaccaro, M. Zhou, I. Aneam, M. Fayano and M. R.
422		promotos coll division. The Journal of coll biology 2009 191 495 406
420	46	D Michaeleen W Abidi D Cuerdevegeere M Zhey L Abeern M Degene and M D
424	40.	D. Michaelson, W. Abidi, D. Guardavaccaro, M. Zhou, I. Aneam, M. Pagano and M. R.
425		Philips, Raci accumulates in the nucleus during the G2 phase of the cell cycle and
420	47	promotes cell division, <i>J Cell Biol</i> , 2008, 181 , 485-496.
427	47.	S. I. Giantz, E. E. Berlew and B. Y. Chow, Synthetic cell-like membrane interfaces for
428	40	probing dynamic protein-lipid interactions, <i>Methods in enzymology</i> , 2019, 622, 249-270.
429	48.	E. Wagner and M. Glotzer, Local RhoA activation induces cytokinetic furrows
430		independent of spindle position and cell cycle stage, The Journal of Cell Biology, 2016,
431		213 , 641.
432	49.	Y. Gao, J. B. Dickerson, F. Guo, J. Zheng and Y. Zheng, Rational design and
433		characterization of a Rac GTPase-specific small molecule inhibitor, <i>Proceedings of the</i>
434		National Academy of Sciences of the United States of America, 2004, 101 , 7618.
435	50.	J. W. Breslin, X. E. Zhang, R. A. Worthylake and F. M. Souza-Smith, Involvement of
436		local lamellipodia in endothelial barrier function, <i>PLoS One</i> , 2015, 10 , e0117970.
437	51.	M. Schliwa, Action of cytochalasin D on cytoskeletal networks, J Cell Biol, 1982, 92, 79-
438		91.
439	52.	H. Marei, A. Carpy, A. Woroniuk, C. Vennin, G. White, P. Timpson, B. Macek and A.
440		Malliri, Differential Rac1 signalling by guanine nucleotide exchange factors implicates
441		FLII in regulating Rac1-driven cell migration, <i>Nature communications</i> , 2016, 7 , 10664.
442	53.	H. Marei and A. Malliri, GEFs: Dual regulation of Rac1 signaling, Small GTPases. 2017.
443		8 , 90-99.
444	54.	L. Valon, A. Marín-Llauradó, T. Wyatt, G. Charras and X. Trepat, Optogenetic control of
445		cellular forces and mechanotransduction, Nature communications, 2017, 8, 14396.

446 End of document