

Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes

Journal:	Environmental Science: Processes & Impacts
Manuscript ID	EM-ART-11-2019-000528.R1
Article Type:	Critical Review

Environmental Significance Statement

Ecosystem nutrient subsidies are the transfer of nutrients across ecosystem boundaries. Subsidies can occur between the terrestrial environment, cryosphere, atmosphere, and aquatic systems. The topic of cross-ecosystem subsidies has gained increased attention over the past two decades. Cross-ecosystem nutrient subsidies are important to lake ecosystems because they influence ecological community structure and ecosystem functioning, such as the rate of nutrient or carbon cycling. This review synthesizes recent freshwater ecosystem subsidy research, identifies knowledge gaps, and identifies remote lakes as ideal target systems for future subsidy research. Environmental changes continue to affect the amount, quality, and timing of nutrient subsidy transfers to lakes. Thus, understanding how nutrient subsidies affect ecosystems will improve our ability to predict lake ecosystem impacts.

Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes Benjamin T. Burpee^{1*} and Jasmine E. Saros¹ ¹Climate Change Institute and School of Biology and Ecology, University of Maine, Orono, ME *Corresponding author: benjaminburpee@gmail.com Abstract Environmental change is continuing to affect the flow of nutrients, material and organisms across ecosystem boundaries. These cross-system flows are termed ecosystem subsidies. Here, we synthesize current knowledge of cross-ecosystem nutrient subsidies between remote lakes and their surrounding terrain, cryosphere, and atmosphere. Remote Arctic and alpine lakes are ideal systems to study the effects of cross ecosystem subsidies because a.) they are positioned in locations experiencing rapid environmental changes, b.) they are ecologically sensitive to even small subsidy changes, c.) they have easily defined ecosystem boundaries, and d.) a variety of standard methods exist that allow for quantification of lake subsidies and their impacts on ecological communities and ecosystem functions. We highlight similarities and differences between Arctic and alpine systems and identify current knowledge gaps to be addressed with future work. It is important to understand the dynamics of nutrient and material flows between lakes and their environments in order to improve our ability to predict ecosystem responses to continued environmental change. Introduction

Ecosystem subsidies, defined as cross-boundary material fluxes between ecosystems¹, are important because they enrich communities with nutrients, materials, and energy that

Page 3 of 83

might otherwise be scarce or unavailable. Commonly discussed nutrients in freshwater ecology research (as well as this review) include the elements nitrogen, phosphorus, silica, iron, and carbon (N, P, Si, Fe, and C, respectively), their inorganic forms (such as dissolved inorganic N, or DIN) and organic forms (such as polyunsaturated fatty acids, or PUFAs) that are present in the environment as resources for organisms. In aquatic environments, nutrient subsidies can support algal communities dominated by few high-nutrient species^{2,3}, change ecosystem function and food web dynamics^{2,4-6}, sustain species abundance, increase community turnover⁷⁻ ⁹, and influence biological richness of animals, plants, and microbiota^{10,11}, but effects will vary depending on environmental nutrient limitation. In this review, we address the need for a synthesis of the growing body of research investigating subsidies to freshwater ecosystems. Due to their sensitivity and location within rapidly changing environments, we focus primarily on Arctic and alpine lake ecosystems. We highlight the common themes, differences, and emerging challenges and opportunities for subsidy research within Arctic and alpine lakes and confirm these remote systems as important locales for continued subsidy research. The study of cross-ecosystem subsidies emerged as ecologists assessed processes occurring over multiple spatial and temporal scales.¹² Growing from this recognition of complex and multiscale ecosystem processes, the two subdisciplines of landscape ecology and meta-ecosystems emerged. Landscape ecology recognized the importance of considering broad geographic scales and heterogeneous patterning of landscapes in shaping ecosystems and ecological communities.¹³ Importantly, two of its main foci include "the interactions and exchanges across heterogeneous landscapes," (172) and "the ways in which fluxes are controlled within heterogeneous matrices" (331).¹⁴ Within the schema of landscape ecology,

ecosystem subsidies are exchanges between heterogeneous environments nested within a broader landscape. Further, the heterogeneity of a landscape (for instance, the variable vegetation cover of lake catchments moving up an elevation gradient) affects the quantity and quality of transported materials. Thus, ecosystem subsidies are centrally important in landscape ecology. To explain how ecological processes operate over multiple spatial scales, Loreau et al¹⁵ described the meta-ecosystem concept. A meta-ecosystem is a group of ecosystems that are connected through fluxes of material, species, and energy. This differs from the landscape ecology perspective in that connected ecosystems need not be spatially continuous or defined at a particular spatial scale (i.e. the landscape scale). Thus, ecosystem subsidies that originate remotely from the site where they are transported (such as agricultural fertilizers that are atmospherically deposited on distant alpine ecosystems) are included within this conceptual framework. The singular topic of cross-ecosystem subsidies, which move across heterogeneous landscapes and enrich receiving ecosystems with nutrients or energy, was explicitly addressed by Polis et al.¹ In particular, Polis et al reviewed the effect of ecosystem subsidies on food web dynamics and described the connectedness of habitats via fluxes of material, nutrients, or organisms. Following Polis et al¹, much of ecosystem subsidy research has remained focused on food web and community effects (e.g. refs. 16-26). At present, new challenges are evident in ecosystem subsidy research. For instance, over the past 20 years studies note that peak productivities and transfers between aquatic/terrestrial habitats can be asynchronous and seasonal (e.g. refs 4,27). In other words,

Page 5 of 83

fluxes can vary temporally.²⁸ In the past decade research has demonstrated that subsidies of matter and organisms can be bidirectional, or reciprocal, across coupled ecosystems.²⁹ Further, ecosystems are experiencing rapid climate change, a driver that exercises both direct and indirect effects upon the timing, direction, quality, and quantity of ecosystem subsidies. Leavitt et al³⁰ demonstrated that in lakes experiencing climate warming, lake inputs can be divided into two categories, energy (E) and mass (M). While lakes will tend to respond coherently through time to changes in E inputs (for instance, increased PAR irradiance), lake responses to M inputs will likely be much more variable depending on a host of catchment and lake properties and processes. Cross-ecosystem subsidies can be categorized as M inputs. The topic of ecosystem subsidies is therefore complex: ecologists are not only concerned with structural ecosystem responses to unidirectional subsidies (e.g. ref. 31), they are concerned with effects of climate change upon the direction, timing, and magnitude of subsidies themselves. There is a hierarchy of factors and responses involved (Figure 1), and many are interactive, making it difficult to focus on any single pair of response/control variables. In the face of this challenge, systems that exhibit naturally well-defined ecosystem boundaries, measurable fluxes of material or organisms, and measurable ecosystem responses to subsidies will lend themselves to ecosystem subsidy research. Lake ecosystems are therefore exemplary for such studies. While lakes are open systems, their physical boundaries are distinct, and they are relatively self-contained depending on water residency time. Following Strayer et al³², we consider lake ecosystem boundaries in this review in terms of our

88 in this review are therefore delineated by the basin and body of lake water, because we are

investigative goals, relevant scale, and processes of interest. The ecosystem boundary of lakes

60

2		
3 4	89	focused on whole-lake ecological responses to ecosystem subsidies. However, we recognize
5 6 7	90	lakes are part of their larger watershed (meta-ecosystem), and the lake subsidies we consider
, 8 9	91	can be categorized as within-basin (e.g. benthic to pelagic transfers such as sediment P release),
10 11 12	92	within-watershed (e.g. groundwater inputs of DOM), and extra-watershed transfers (e.g.
12 13 14	93	atmospheric N deposition).
15 16	94	Fluxes into and out of lakes are measured or modeled with increasing ease and accuracy
17 18 19	95	(e.g., refs. 33-35). The ease with which ecological responses to cross-system transfers are
20 21	96	registered and quantified in lakes also makes them convenient for subsidy research. ³⁶⁻³⁹
22 23 24	97	Because of their position at low points in the landscape, lakes behave as integrators and
25 26	98	archives of the environmental changes that occur across landscapes and catchment areas. ⁴⁰ The
27 28 20	99	sedimentation processes that occur within lake basins produce temporally continuous records
29 30 31	100	of ecosystem change. Thus, the effects of subsidies, and the environmental factors that control
32 33	101	those subsidies, can be recorded in lake sediment records via quantification of algal pigments ⁹ ,
34 35 36	102	diatoms ³ , and isotopes. ⁴¹
37 38	103	Finally, lakes are highly sensitive, behaving as sentinels of ecosystem change in response
39 40 41	104	to environmental drivers. ⁴⁰ Mueller et al ⁴² summarize why high Arctic lakes located on
42 43	105	Ellesmere Island, Canada serve as global sentinel systems of climate warming by drawing on
44 45 46	106	four decades of data collection. Ellesmere Island lake ice-out phenology and mixing regime
40 47 48	107	shifted abruptly in response to changes in air temperature when warming trends changed the
49 50	108	lakes from permanently ice-covered systems to seasonally open water. Seasonally open water
51 52 53	109	exposed the lake surface to wind-driven mixing, thus changing the water column structure.
54 55 56 57	110	Though biological metrics were not explicitly considered by Mueller et al ⁴² , the ecological
50 59		5

Page 7 of 83

communities in Ellesmere Island lakes are dependent on water column mixing regime; thus, these lakes were ecologically sensitive to climate forcing and were likely vulnerable to cascading ecological regime shifts in response to the physical lake changes. As Ellesmere Island lake changes occurred synchronously with ice shelf breakup and changes to permafrost, sea ice, and glaciers, the authors demonstrate that lakes serve as robust sentinels of environmental change beyond the regional scale. In summary, ecological sensitivity, physical boundaries, location within the landscape, and a plethora of standard evaluative methods mean lakes are ideal to study how rates of cross-ecosystem fluxes may shift due to anthropogenic pressures such as land use change, nutrient delivery through atmospheric deposition or non-point sources, and climate change. Dilute, nutrient-poor and cold-water lakes with relatively simple ecological communities are particularly sensitive to cross-ecosystem subsidies. This is due to watershed characteristics of high Arctic and alpine lakes that enhance transport of nutrients to lakes (e.g. refs. 35, 43,44) and because nutrient-poor lake ecosystems respond to lower thresholds of nutrient inputs (for example, alpine lakes in western US respond to lower amounts of atmospherically deposited N compared to other ecoregions).⁴⁵⁻⁴⁷ Thus, high-elevation mountain and Arctic lakes are very responsive to changes in subsidy patterns.^{42,48} Because of Arctic and alpine lake sensitivity, ecosystem responses observed first in these systems provides insight into changes ecologists might expect to eventually observe in lakes situated in warmer climates (i.e. lower latitude and lower elevation climates with higher annual mean air temperature compared to Arctic or high

elevation environments) with more complex and diverse ecological communities.⁴⁰ For these

reasons, Arctic and alpine lakes are exceptional systems in which to conduct nutrient subsidyresearch.

Arctic and alpine lakes have served as systems to evaluate ecosystem subsidies for several decades. In the 1970s, nutrient fluxes were studied in Arctic ponds of Barrow, Alaska to account for ecosystem nutrient budgets.⁴⁹ This study provided early insights into the sources and fates of nutrients within the tundra landscape. Lake eutrophication in the high Canadian Arctic resulting from N and P associated with sewage effluent was evaluated by Schindler et al.⁵⁰ Ecological effects of enhanced N delivery to Lake Tahoe (located in the Sierra Nevada Mountains of California) were evaluated by Goldman⁵¹ using a time series dating back to 1968. Eutrophication from land use changes and urbanization decreased lakewater clarity and increased lake primary productivity.

Arctic and alpine lakes are situated in areas that are experiencing accelerated rates of climate warming.⁵² The pan-Arctic region includes large areas of North America, Europe, and Asia. Major alpine lake districts are distributed globally, including the North American Rocky Mountains, European Alps, Himalayas and Tibetan Plateau in central and western Asia, and the South American Andes. Climate warming controls many environmental changes that are occurring in Arctic and alpine lake catchments, including glacier recession⁵³, catchment "greening"⁵⁴, permafrost degradation⁵⁵⁻⁵⁶, increased abundance of waterfowl⁵⁷, altered quantity and timing of insect emergence⁵⁸, and altered hydrological connectivity.⁵⁹ In turn, many of these environmental changes control the magnitude, frequency, timing, and quality of subsidies delivered to lakes from the atmosphere, cryosphere, and terrestrial catchment. Changes of cross-ecosystem subsidies are presently not well accounted for. Large scale

Page 9 of 83

2		
3 4	154	environmental drivers such as climate warming will continue to impact ecosystem subsidies
5 6 7	155	into the future, making this area of research timely and urgent. Thus, alpine and Arctic areas
8 9	156	are insightful landscapes in which numerous "natural experiments", or comparative studies, can
10 11 12	157	be conducted to understand how cross-ecosystem subsidies affect lakes. Already, researchers
12 13 14	158	have compared effects of glacial meltwater ⁶⁰ , permafrost slumping ⁶¹ , insect emergence ⁶²⁻⁶³ ,
15 16	159	and dissolved organic carbon (DOC) impacts ⁶⁴ on nearby paired Arctic and alpine lake
17 18 19	160	ecosystems that are differentially influenced by environmental changes. Equally important are
20 21	161	the paleoecological insights that lake sediment records provide, whereby pre-Anthropocene
22 23 24	162	algae assemblages or isotope chemistries can be compared to recent ones within the same lake
25 26	163	ecosystem.
27 28 20	164	In this review we will synthesize such studies in order to outline the current state of
30 31	165	ecosystem subsidy research in Arctic and alpine lakes. Previous studies have reviewed subsidy
32 33	166	effects in remote lakes (Catalan et al 2006; Hobbs et al 2010; Catalan et al 2013). ⁶⁵⁻⁶⁷ However,
34 35 36	167	these papers focused on paleolimnological records ⁶⁶⁻⁶⁷ or were location-specific. ⁶⁵ Our review
37 38	168	surveys cross-ecosystem subsidies to remote lakes drawing on both contemporary ecological as
39 40 41	169	well as paleolimnological research. Because of its central importance to cross-ecosystem
42 43	170	subsidies, we will highlight the current and future effects of abrupt climate change. Though we
44 45 46	171	consider community and food web consequences of lake ecosystem subsidies, we emphasize
47 48	172	biological and biogeochemical responses and trends in order to situate cross-ecosystem subsidy
49 50 51	173	research as an important facet of Arctic and alpine carbon (C) and nutrient cycling and climate
52 53	174	change feedback loops. Conceptual models that illustrate current understanding of the drivers
54 55 56	175	and effects of lake subsidies explore this paradigm. Finally, we will address certain challenges
57 58		

and open questions in lake ecosystem subsidy studies and call for research to address theseknowledge gaps.

178 Arctic lake subsidies

179 Cryosphere

Across arctic and alpine landscapes alike, perhaps the most visually obvious change is the rapidly changing cryosphere involving the recession of glaciers, permafrost thawing, and diminishing snowpack. Glaciers concentrate and store atmospheric compounds, including anthropogenic pollutants. In this way, glaciers behave as "natural archives" because the combined effects of emission trends and air circulation patterns is recorded within their ice.⁶⁸ Thus, glaciers are reservoirs and secondary sources of anthropogenic pollutants⁶⁹, because these compounds are present in glacier meltwater and are delivered to downstream ecosystems. Climate warming increases glacial meltwater output and accelerates the release of accumulated pollutants.⁷⁰ While glacial pollutant storage is often associated with mountain glaciers that are in closer proximity to source emissions, anthropogenic organic pollutants have been detected in remote Arctic glacial ice and snowpack.⁷¹⁻⁷³ In addition to pollutants, glacier meltwater contains nutrient solutes as well as minerogenic particulates that are ecologically important. These nutrients and minerals may be sourced from the atmosphere and concentrated in glacier ice to be released upon melt⁷⁴, similar to anthropogenic pollutants, or derived from bedrock material that gets weathered by biogeochemical and physical processes and washed out via subglacial flow.⁷⁵ Ice sheets and glaciers store a significant amount of labile

Page 11 of 83

1

2	
3	196
4	150
5	107
6 7	197
, 8	109
9	190
10	100
11	199
12	200
15 14	200
15	
16	201
17	
18	202
19 20	
20	203
22	
23	204
24	
25	205
26 27	
27	206
29	
30	207
31	
32	208
33 34	
35	209
36	
37	210
38	210
39 40	211
41	211
42	212
43	212
44	212
45 46	213
40 47	24.4
48	214
49	o 4 =
50	215
51	
52 53	216
54	
55	217
56	
57	
58	
60 60	

particulate and dissolved organic matter (DOM)^{76,77}, N⁶⁰, P⁷⁸⁻⁸⁰, Si^{79,81}, as well as many other micronutrients (such as Fe)⁸². Thus, Arctic glacier meltwaters represent an important nutrient subsidy for downstream freshwater ecosystems.

In southwest Greenland, Bhatia et al⁸² and Hawkings et al⁸¹ demonstrated significant amounts of P, N, Si, and Fe are contained in meltwater discharged from the Greenland Ice Sheet. Ice sheet meltwater total P (TP) and DIN were important determinants of distinct algal communities and higher algal biomass in Greenland glacially-fed lakes compared to nearby snow and groundwater-fed lakes.⁸⁰ Similarly, a lake sediment record from northeast Greenland (Bunny Lake, fed by the Renland Ice Cap) show diatom community changes that likely coincided with glacier meltwater inputs starting a thousand years ago.³ Glacially-fed lakes in Svalbard and northern Sweden also exhibited elevated TP concentrations.⁷⁸ Together, these studies show the widespread potential for glacier meltwater being an important source of nutrient subsidies in the Arctic and highlight the potential importance of glacially-fed lakes along the ice sheet behaving as hotspots of C and nutrient cycling as a result of these glacial meltwater additions. Fluxes of particulate and solute nutrients are greater in years of higher melt⁸¹; thus, future climate warming may increase nutrient delivery to freshwater systems. These trends and interactions will likely have important implications for Arctic C and nutrient cycling.83 While significant work has been completed on glacier nutrient subsidies in streams and rivers (e.g. refs. 25,84,85), glacier fed Arctic lakes represent potential hotspots of nutrient cycling⁸⁶ and should be more thoroughly investigated. Compared to alpine regions, little research has been conducted on Arctic lakes to understand how glacial meltwater affects their ecology. Given that meltwater delivery to Arctic lakes will increase due to climate warming, as

2		
- 3 4	218	well as a projected increase in the abundance of glacially-fed Arctic lakes due to glacier
5 6 7	219	recession ⁸⁷ , the ecological responses of these systems should be a research priority.
, 8 9	220	Permafrost is sensitive to changes in air and ground temperatures ⁸⁸⁻⁹⁰ as well as
10 11 12	221	rainfall. ⁹¹ Similar to glaciers, permafrost thaw in Arctic areas is therefore predicted to
12 13 14	222	significantly increase in response to climate warming.55,56,92,93 Permafrost thaw is an important
15 16	223	source of lake nutrient subsidies. Thaw events can be episodic, representing pulse disturbances
17 18 19	224	to lakes, or they can be gradual and persistent, representing press disturbances. ⁹⁴ Moreover,
20 21	225	permafrost thaw contributes to lake nutrient subsidies directly and indirectly (Figure 2). The
22 23 24	226	active layer of soil that sits above the permafrost controls the tundra landscape's hydrology and
25 26	227	biogeochemistry. ^{89,95-98} As such, changes to the active layer depth affect groundwater and
27 28 20	228	nutrient delivery to freshwater ecosystems. ^{89,99,100} However, a deepening of the active layer
29 30 31	229	may have variable results; DOM inputs to freshwaters may increase (e.g. refs. 101-104) or
32 33	230	decrease due to mineral sorption ¹⁰⁵ or groundwater flow paths becoming deeper. ¹⁰⁶⁻¹⁰⁹ The
34 35 36	231	quality of DOM transported to lakes may change to more biolabile pools. ¹¹⁰ Research in Alaska
37 38	232	and the Canadian high Arctic suggested that DIN and TP flux to freshwaters will increase with
39 40 41	233	continued warming.98,99,111-113 Permafrost thaw that results in altered lake catchment
42 43	234	biogeochemical and hydrological processes is an indirect control of nutrient subsidies. In
44 45 46	235	contrast to trends in current literature suggesting Arctic lakes may represent hotspots of
40 47 48	236	nutrient and C cycling, a recent study in Alaska revealed that the transfer and within-lake
49 50	237	respiration of terrestrial organic C was minimal. ¹¹⁴ This study was located in an arid area of
51 52 53	238	interior Alaska that may be broadly representative of arid Arctic landscapes. Instead of
54 55 56 57 58	239	allochthonous DOC mineralization, periods of lake heterotrophy consisted of autotrophically
59		11

produced organic C mineralization. Together, these studies suggest that permafrost thaw will have spatially variable lake subsidy outcomes depending on thaw patterns, active layer depth, soil type, biolability of C and nutrient pools, and local hydrology. Other thermokarst processes, such as permafrost slumping, involve a direct physical transfer of particulate sediments and solutes from terrestrial environments into Arctic lakes. While thermokarst events can form lakes that occupy tundra depressions where permafrost degraded, established lakes within the Arctic landscape (originated from other processes, such as glacial scouring) can be influenced by thermokarst processes within their watersheds. This is a common occurrence in the Canadian and Russian Arctic. For instance, one in ten lakes in certain areas of the Canadian uplands were affected by permafrost slumping.¹¹⁵ In this study, ionic concentrations were higher in lakes affected by permafrost slumping compared to undisturbed lakes. Higher ionic concentrations in affected lakes were due to the exposure of hitherto frozen watershed sediments to weathering processes, and subsequent transfer of soluble materials to lakes by surface runoff. Permafrost thermokarst events in northern Alaska increased DOC and DIN concentrations in feature outflows, with potential ecological consequences for downstream freshwaters.¹¹⁶ In contrast, sedimentation of organic material associated with slump sediments lowered lake nutrient concentrations (total dissolved N and TP) and increased water clarity, with more recently slump-affected basins exhibiting greater clarity.^{115,117-119} Increased water clarity following slumping may have driven increased macrophyte production in affected lakes⁶¹ as well as diatom species turnover with increased

260 prevalence and diversity of periphytic diatoms.¹¹⁹ In the Canadian uplands, lakes disturbed by

- ⁵⁴ ₅₅ 261 permafrost slumping events exhibited doubled macroinvertebrate abundance.¹²⁰ However,

increasing water clarity may expose pelagic organisms to harmful UV radiation.¹¹⁷ Accelerating
rates of thermokarst activity in the Arctic in response to climate warming^{121,122}, coupled with
lake responses to such disturbance events described above, suggests that permafrost slumping
will be an important modulator of lake nutrient subsidies.

Climate warming across the Northern Hemisphere pan-Arctic region is driving a general reduction in snow accumulation since 1979, though there is much regional variability associated with this trend.¹²³ Snow accumulation is an important driver of ecological patterns, such as plant, lichen, and moss species distributions¹²⁴, plant phenology, peak plant greenness¹²⁵, and maximum plant greenness.¹²⁶ As such, changing snow accumulation patterns are an important impact on lake catchment processes. Accumulated snow converts to meltwater during spring thaw¹²⁷, contributing nutrients, minerals, and particulates into lake ecosystems which may increase the relative abundance of littoral epilithic algae¹²⁸ or phytoplankton communities of Arctic lakes.¹²⁹

Shortened lake iced-over periods and earlier spring ice-out is a general trend across the Pan-Arctic in response to climate warming¹³⁰, and ice-out phenology has important implications for Arctic lake stratification (whereby the top epilmnion and bottom hypolimnion physically separate due to temperature-based water density gradients). Increased intensity and stability of lake thermal stratification is an anticipated response to climate warming^{87,131,132}, though this may be modulated by changing ice-out phenology.¹³³ Increased stratification is important for within-lake benthic-to-pelagic subsidies, because hypolimnetic oxygen can become depleted (anoxic) when lake thermal stratification inhibits the diffusion of oxygen from the epilimnion.¹³⁴ Hypolimnetic anoxia increases the chemical reduction potential and favors the release of P

1 2		
3 4	284	from lake sediments that is otherwise associated with Fe and aluminum (AI) during oxygenated
5 6 7	285	conditions. ¹³⁵⁻¹³⁶ In low elevation temperate lakes, sediment P release is related to algae
7 8 9	286	blooms. ¹³⁷⁻¹³⁹ Benthic to pelagic P subsidies may be an important Arctic lake response to
10 11	287	climate warming, but there has been little research of anoxic sediment P release conducted in
12 13	288	Arctic lakes. Determining the mechanisms that control Arctic lake sediment P release should
14 15 16	289	therefore be a research priority, so that we may better predict Arctic lake responses to
17 18	290	increased climate warming and seasonal variability.
19 20 21	291	Reduced river ice jamming in the McKenzie River Delta is a cryosphere change driven by
22 23	292	Arctic warming trends that decreases the duration of hydrological connectivity between rivers
24 25 26	293	and lakes at higher elevations within the Delta (5.2 m above sea level). ¹⁴⁰ In contrast, the
20 27 28	294	duration of river-to-lake connection during peak water levels has increased in lower elevation
29 30	295	areas (2.4 m above sea level) within the Delta, due to sea level rise. It is likely that these trends
31 32 33	296	will have ecological effects because McKenzie River Delta lakes with frequent river-to-lake
34 35	297	connectivity were associated with enhanced colored DOM, P concentrations, and light
36 37 38	298	attenuation rates but lower ammonium and non-colored DOM concentrations averaged over
39 40	299	the open-water season. ¹⁴¹ Patterns of lake nutrient and light availability were likely responsible
41 42 43	300	for higher abundance and production rates of bacterioplankton within less-frequently flooded
43 44 45	301	lakes. These studies demonstrate that even small environmental gradients (i.e. a change from
46 47	302	2.4 to 5.2 m elevation) can alter the directional trends in lake subsidies and the environmental
48 49 50	303	factors that influence them.
51 52	304	Many factors determine the nature, direction, and magnitude of ecological impacts in
53 54	305	aquatic systems from cryosphere-derived subsidies. For instance, glacier meltwater effects will
55 56 57		
58 59		14

60

3 4	306	depend on magnitude of meltwater delivery, glacier bedrock material, and quality of nutrient	s.
5 6 7	307	Permafrost effects will depend on soil quality, depth and biogeochemical activity of the active	j
7 8 9	308	layer, water flow paths, and slumping events. Lastly, recent snow pack trends are highly	
10 11	309	variable throughout the Arctic, which will affect photosynthetically active radiation (PAR) and	
12 13 14	310	spring snowmelt nutrient additions. Parsing out this variability will be critical to understand w	/hy
15 16	311	certain trends are occurring in some areas of the Arctic but not others, or why opposite	
17 18 19	312	responses follow seemingly identical disturbance events in different areas (e.g. DOC	
20 21	313	concentrations following permafrost degradation, or nutrient concentrations following	
22 23 24	314	slumping events).	
25 26 27	315	Atmospheric deposition	
28 29 30	316	N deposition is considered to be more important to lakes in mid-latitude areas that ha	ve
31 32	317	experienced higher anthropogenic development, compared to high-latitude Arctic areas whic	h
33 34 35	318	are more remote and typically have lower rates of N deposition (Figure 3a; refs. 66, 142). For	
36 37	319	example, Hobbs et al ⁶⁶ suggested that changes observed in diatom beta diversity over the 201	th
38 39 40	320	century in the Greenland Arctic are driven by rapid climate warming, versus that observed in	
41 42	321	western US alpine lakes, driven by high rates of atmospheric reactive N (N_r) deposition.	
43 44 45	322	However, Holmgren et al ¹⁴³ observed that recent changes in preserved Arctic lake sediment	
46 47	323	diatom assemblages on Svalbard are coincident with enhanced sediment N derived from	
48 49 50	324	anthropogenic sources, suggesting a causal link between lake ecological change and N	
50 51 52	325	deposition. Diatom sediment records demonstrated that anthropogenic N deposition in the	
53 54	326	Canadian Arctic, along with climate warming, had driven lake conditions and diatom	
55 56 57	327	communities to no-analogue states in two nearby lakes. ¹⁴⁴ Community changes include	
58 59 60			15

Page 17 of 83

3 4	328	increased abundances of Aulacoseira distans, Brachysira vitrea, Fragilaria spp., Cyclotella rossii,
5 6 7	329	and <i>Discostella stelligera</i> , which indicated nutrient enrichment. Similarly, Holmgren et al ¹⁴³
, 8 9	330	demonstrated that four Svalbard lakes exhibited diatom community changes over the past 30
10 11 12	331	years coherent with increased rates of N deposition. A study conducted in sub-Arctic Sweden
12 13 14	332	demonstrated that lakes shifted from N to P limitation as a result of N deposition. ¹⁴⁵ As the
15 16 17	333	study lakes were remote, high latitude, dilute and unproductive, they serve as good analogues
17 18 19	334	for Arctic systems. Climate warming cannot be ruled out as a synergistic driver of these
20 21 22	335	ecological changes because of the coherence of warming, N deposition, and diatom
22 23 24	336	responses. ^{144,146} Taken together, however, these studies suggest a causal link between sensitive
25 26	337	Arctic lake ecosystem change and high latitude N deposition.
27 28 29	338	Though Greenland is remote, it is downwind of North American industrial emission
30 31	339	sources and is thus vulnerable to modifications of the Northern Hemisphere atmosphere. ¹⁴⁷
32 33 34	340	Several ice cores demonstrated recent increases in NO_3^- concentrations in Greenland, ¹⁴⁷⁻¹⁴⁹
35 36	341	Svalbard ^{150,151} and the Canadian Arctic. ^{152,153} Averaged across sites, these records showed a
37 38 20	342	30% increase of NO_3^{-1} flux since preindustrial times (from 2.5 to 3.2 µg cm ⁻² yr ⁻¹), ¹⁵⁴ with more
40 41	343	than a doubling in some locations such as Greenland. 147 N isotope analysis (δ^{15} N) indicated that
42 43	344	NO_{3} in Greenland ice is derived from increasing anthropogenic N emissions since 1850. ¹⁵⁵
44 45 46	345	Matching these cryosphere records, the presence of anthropogenic N deposition has coherently
47 48	346	increased in lake sediment cores across high latitudes of the Northern Hemisphere since the
49 50 51	347	beginning of the 20th century. ¹⁵⁶ An outstanding question, however, is whether N deposition
52 53 54 55 56	348	rates in the Arctic are high enough to be ecologically important.

2		
2 3 4	349	N deposition in the Arctic is typically low (0.2 - 0.5 kg NO_3^{-1} ha ⁻¹ yr ⁻¹) ¹⁴⁴ but Arctic
5 6 7	350	freshwaters are sensitive to small inputs of nutrients. Though rates of N deposition have not
8 9	351	been as high in Arctic areas compared to mid-latitude ones, there is a clearly increasing trend
10 11 12	352	that could be ecologically important. Anderson et al ⁴¹ used lake sediment cores to demonstrate
13 14	353	that coastal Greenland lakes have received increased amounts of anthropogenically sourced Nr
15 16 17	354	since 1860, despite relatively low deposition rates in this area (0.4 kg ha ⁻¹ yr ⁻¹). This trend was
17 18 19	355	not recorded in inland lakes possibly because lower deposition rates (0.2 kg ha ⁻¹ yr ⁻¹), and
20 21 22	356	higher in-lake TN pools and microbial cycling rates could further confound the signal of external
22 23 24	357	anthropogenic inputs. Arens et al ¹⁵⁷ demonstrated by nutrient addition experiments that small
25 26	358	amounts of N deposition (0.5 g m ⁻¹ yr ⁻¹) have nonlinear impacts on terrestrial Arctic ecosystem
27 28 29	359	structure and function, increasing vegetation cover, photosynthesis, and CO_2 exchange.
30 31	360	Similarly, Gordon et al ¹⁵⁸ observed that their lowest N addition treatment (10 kg ha ⁻¹ yr ⁻¹)
32 33 34	361	increased physiologically active bryophyte shoots in Arctic heath, indicating the minimum
35 36	362	ecologically important rate of atmospheric N deposition is likely below this value. These results
37 38	363	suggest even small increases in rates of atmospheric deposition will be ecologically important.
39 40 41	364	The vulnerability of Arctic lakes to environmental change is due to spatially variable acid
42 43	365	neutralizing capacity (ANC), ^{144,159,160} sparse catchment vegetation, short growing seasons,
44 45 46	366	shallow active soil layers, ¹⁶¹ and low in-lake nutrient concentrations and productivity. Evidence
47 48	367	for Arctic freshwater sensitivity comes from ecological and paleoecological studies. For
49 50 51	368	instance, Benstead et al ¹⁶² enriched a small Arctic stream on Alaska's north slope with NH_4 -N
52 53	369	and soluble reactive P (SRP) to 6.4 μ M and 0.45 μ M, respectively. This addition increased algal
54 55 56 57	370	biomass (measured as Chlorophyll <i>a</i> ; Chl <i>a</i>), fungal biomass, rates of litter breakdown, and
58 59 60		17

60

3 4	371	macroinvertebrate abundance and biomass. ¹⁶² In a long-term, whole-lake manipulation
5 6 7	372	experiment in Arctic northern Alaska, half of Lake N-2 was subsidized with 131 mmol N m $^{-2}$ yr $^{-1}$
, 8 9	373	and 10.4 mmol P m ⁻² yr ⁻¹ , approximately five times the normal loading rates of nearby Toolik
10 11 12	374	Lake, while the other half was partitioned off as a control. ¹⁶³ Ecological responses included
12 13 14	375	increased phytoplankton biomass and productivity, lower water clarity, and eventual
15 16	376	hypolimnetic anoxia coupled with sediment P release.
17 18 19	377	Wind can distribute fine particulate matter, including pollen, bacteria, diatoms, and
20 21	378	dust, long distances to Arctic and alpine areas. ^{39,164-168} Dust production, emission, and
22 23 24	379	deposition rates can be high in glacierized Arctic landscapes, such as Canada, Alaska,
25 26	380	Greenland, and Iceland (see Bullard et al ¹⁶⁹), comparable to rates of lower latitude regions such
27 28 20	381	as New South Wales, Australia ¹⁷⁰ or Nevada and California, USA. ¹⁷¹ Glacier dust production
29 30 31	382	occurs when glacial flour (fine mineral particulates resulting from subglacial bedrock erosion) is
32 33	383	transported to floodplains by subglacial meltwater. Winds then deflate the glacier flour, and
34 35 36	384	can transport it across tundra, lakes, rivers, and ocean. Key controls of dust production include
37 38	385	subglacial substrate erodibility, drainage system size and structure, ice mass size, and
39 40 41	386	meltwater runoff rates. ¹⁶⁹ The amount of high-latitude dust contributions to the earth's dust
42 43	387	budget is currently estimated to be ~5% and is expected to increase with climate warming. 172
44 45 46	388	The magnitude of dust events in southwestern Greenland, for example, has increased since the
47 48	389	1990s (calculated using the Dust Storm Index). ¹⁷³ Most of the dust produced in high latitude
49 50 51	390	areas remains in these regions. In western Greenland for example, dust transport from the Ice
52 53	391	Sheet margin was mostly confined to the local landscape, with a small percentage reaching the
54 55 56 57 58 59	392	North Atlantic Ocean, and very little being transported back onto the ice sheet itself. ¹⁷³ This was

due to the consistent direction of the katabatic winds blowing west from the ice sheet,¹⁷⁴ as well as a lack of thermal uplift in the Arctic that is required for long-distance transport of dust-containing stable air parcels.^{175,176} Conversely, dust plumes derived from glaciofluvial deposits along the Gulf of Alaska (GoA) coastal region can be deposited into the ocean several hundred kilometers beyond the continental shelf, serving as an Fe subsidy for Fe-limited marine systems.¹⁷⁷ It is unknown to what extent glaciofluvial-derived dust is deposited into lake ecosystems in this region, but glacially-sourced dust accumulates in nearby terrestrial systems.¹⁷⁸ A sediment core from an interior western Alaska lake isolated from glacial processes suggested dust deposition is related to aridity, lack of catchment vegetation, and windiness as opposed to glacial processes.¹⁷⁹ The ecological effects of dust deposition on Arctic lakes are not well understood.¹⁷³ Because dust production and deflation in Greenland occurs throughout the entire year including the winter months,¹⁷³ accumulated dust on and within lake ice and snow can cause a pulse disturbance to lake ecosystems during snowmelt and ice off periods in spring, in contrast to a more consistent press disturbance of dust addition to lakes throughout the summer months.¹⁸⁰ Glacier flour in southwest Greenland is P and Fe-rich,^{79,82} properties which carry over into deflated dust from this area,¹⁸¹ and coastal Alaska.^{177,178} Fowler et al¹⁸¹ proposed DOM adsorption to Fe-rich dust as a mechanism for recent decadal DOC concentration declines observed in a number of Greenland lakes, though microcosm incubation experiments did not support this hypothesis. To the extent that the P content of glacially derived dust is bioavailable,⁸⁰ dust addition to lakes could stimulate lake bacterial production and metabolism,^{182,183} or in-lake sediment P cycling.

Page 21 of 83

1

2	
3	415
4 5	
6	416
7	
o 9	417
10	110
11 12	418
12	419
14	110
15 16	420
17	
18	421
19 20	
20	422
22	422
23 24	423
24 25	121
26	424
27 28	425
29	
30	426
31 32	
33	427
34 25	420
35 36	428
37	429
38 20	723
40	430
41	
42 43	431
44	
45	432
46 47	422
48	433
49 50	434
50 51	
52	
53 54	
55	
56	
57 58	
50 59	
60	

More evidence is needed to assess the ecological effects of atmospheric N and P deposition in Arctic lakes. This mode of ecosystem subsidization has not been paid due attention in the Arctic, likely because of the relatively low absolute values of N deposition rates compared to low elevation temperate regions. However, studies which attribute recent changes of algal communities in Arctic lake sediment records to climate warming alone¹⁸⁴ may be missing the important contributions of anthropogenically sourced atmospheric deposition. High latitude dust production was only recently assessed as a significant contributor to the global dust budget (see Bullard et al¹⁶⁹), positioning Arctic dust deposition as an intriguing topic of research for terrestrial and aquatic ecologists and biogeochemists. Further, climate warming will likely influence N_r and dust deposition alike. Greenland ice core NO_3^- , a proxy for atmospheric Nr deposition, was correlated with the North Atlantic Oscillation, suggesting greater deposition of anthropogenic N_r occurs when the NAO is in its positive phase.¹⁵⁴ A climate change impact model on atmospheric N deposition suggested that increased precipitation will enhance N deposition rates in northern Europe.¹⁸⁵ Though changes in N deposition will be gradual in most areas, certain areas, including western Norway, may experience a 40% increase in N deposition by 2100 due to projected increases in precipitation. Warming could also release previously deposited and accumulated Nr from perennial snow packs and glaciers in the form of meltwater. Lastly, warming will likely increase dust production in high latitude areas because increased meltwater will deposit greater amounts of glacier flour into floodplain areas.¹⁶⁹

Animal vectors

7 8	436	Animals are important vectors for nutrient transfer between ecosystem types, and this
9 10 11	437	mode of transfer between aquatic and terrestrial systems has received increased attention over
12 13	438	the past decade. Unlike other transfers that have been discussed thus far, animals represent a
14 15	439	bi-directional flow of energy and nutrients, whereby inputs of terrestrial C and nutrients to
16 17 18	440	lakes are cycled back to terrestrial environments by boundary-crossing organisms. ²⁴ The C that
19 20	441	is delivered to terrestrial systems from emerging mosquitos, for instance, is a mix of terrestrial
21 22 23	442	and aquatic material, and the terrestrial:aquatic C ratio depends on the magnitude of terrestrial
24 25	443	inputs into the aquatic ecosystem, as well as light intensity. ¹⁸⁶ Vander Zanden and Gratton ¹⁸⁷
26 27 20	444	highlighted that insect emergence and subsidies to terrestrial systems increased as a function
28 29 30	445	of lake size, while rates of terrestrial inputs of particulate organic C to lakes decreased as a
31 32	446	function of their size. Thus, reciprocal transfers between lakes and terrestrial habitats are
33 34 35	447	modified by environmental variables. A detailed understanding of variables that influence
36 37	448	reciprocal transfers between lakes and watersheds is an important research priority, because it
38 39 40	449	will allow for better assessment of how reciprocal subsidies will be affected by different
40 41 42	450	environmental changes.
43 44	451	In the Arctic, aquatic-terrestrial transfers often take place as abrupt seasonal pulses, and
45 46 47	452	can be limited by distance from the lake, with an exponential decrease of insect infall with
48 49	453	distance from lake. ^{188,189} However, observed transfer distance was greater from lakes (150 m)
50 51 52	454	than from streams (50 m). ^{190,191} For instance, midges (Diptera: Chironomidae) are an important
52 53 54	455	nutrient subsidy from lakes to terrestrial systems. In Iceland, annual midge inputs from lakes

nutrient subsidy from lakes to terrestrial systems. In Iceland, annual midge inputs from lakes

were as high as 1200-2500 kg ha⁻¹ yr⁻¹, though these inputs decreased logarithmically from

Page 23 of 83

shore.¹⁸⁸ Peak rates of midge infall occured in August and can reach rates over 1500 kg ha⁻¹ d⁻¹ at a distance of 5 m from shore (median rate 290 kg ha⁻¹ d⁻¹).¹⁹² Midge N content is 9.2%, and so this seasonal transfer was nutrient-rich, as high as 230 kg N ha⁻¹ yr^{-1.188} δ^{13} C and δ^{15} N isotope analysis demonstrated this subsidy is important for terrestrial arthropods (e.g. spiders), which consume midges directly or indirectly as a food source. Aquatic insects are a high-quality food source, in part because of their polyunsaturated fatty acid content. Martin-Creuzburg et al¹⁹³ demonstrated that the terrestrial subsidies of polyunsaturated fatty acids from aquatic insect emergence was significant (mean rate was 150 mg m⁻² yr⁻¹ within 100 m of shore). Thus, in areas with high midge emergence rates, midges maintain higher abundances of terrestrial arthropods compared to areas with low midge emergence rates. In Iceland and northern Sweden, subsidized terrestrial arthropods include detritivore and herbivore species as well as predators.^{62,194-196} An Icelandic study demonstrated that willow (Salix phylicifolia) located at high-midge emergence lakes contained 8-11% higher N content than those located at low-midge emergence lakes, and herbivorous caterpillars (Hydriomena furcata) were 72% heavier at the high-midge emergence sites.⁶³ Arctic Chironomid midge emergence is synchronous, with the bulk of the community emerging from a single pond within 4 weeks, and a single species emerging within one week.¹⁹⁷ In response to climate warming, Alaskan midge emergence has advanced by one week since the 1970s.¹⁹⁸ As midge adults only live for a few days, such shifts in aquatic insect phenology may have repercussions for Arctic predators, such as avian consumers. For example, in UK lakes in

478 (golden plover, *Pluvialis apricaria*) and tipulid (cranefly) emergence earlier, but at different

the South Pennines, climate warming shifted the dates of egg laying by an Arctic wader species

3 4	479	rates. ¹⁹⁹ Thus, climate predictions for 2070-2090 suggest that first-laying dates for golden
5 6 7	480	plover will advance 25 days, but tipulid emergence only 12 days. As emerging tipulids are
7 8 9	481	important prey resource for golden plover chicks, this phenological mismatch may reduce
10 11	482	breeding success of this species at this location by 11%. Because Arctic lake midge emerge
12 13 14	483	synchronous, short in duration, and is an important resource for Arctic terrestrial and avia
15 16	484	predators, phenology of Arctic lake midges and their predators require more investigation
17 18	485	order to determine if temporal mismatches will occur, and what ecological impact they wi
19 20 21	486	have.
22 23	487	With climate warming and other anthropogenic environmental changes, waterfow
24 25 26	488	habitat range and population sizes are increasing. Global goose population, for example, n
27 28	489	doubled from 1996 (12.5 million) ²⁰⁰ to 2006 (21.4 million). ²⁰¹ Dense nesting colonies of
29 30	490	waterfowl have the potential to transfer significant amounts of terrestrially derived nutrie
32 33	491	and P) into Arctic lake ecosystems in the form of feces. ^{202,203} In Svalbard, goose guano has
34 35	492	caused lake and pond eutrophication, increasing P concentrations four-fold since the 1960
36 37 38	493	A small-scale incubation experiment demonstrated that algal biomass increases from goos
39 40	494	guano-derived nutrients. ²⁰⁵ Sediment cores from Canadian Arctic ponds demonstrated str
41 42 43	495	relationships between algal biomass and chironomid heads in response to N derived from
43 44 45	496	seabird guano. ^{206,207} Paleolimnological records demonstrated an increasing colony population
46 47	497	enriches lake sediment δ^{15} N, indicating a marine to lake linkage. Thus, coastal Arctic lake
48 49 50	498	ecosystems may experience subsidies from different sources compared to inland lakes.
51 52	499	Particular areas of the Arctic, such as Iceland, have received attention regarding lal
53 54	500	land transfers of nutrients in the form of emerging aquatic insects, but there is a lack of
55 56 57		
58		
59 60		
00		

> dvance 25 days, but tipulid emergence only 12 days. As emerging tipulids are an rey resource for golden plover chicks, this phenological mismatch may reduce ccess of this species at this location by 11%. Because Arctic lake midge emergence is s, short in duration, and is an important resource for Arctic terrestrial and avian henology of Arctic lake midges and their predators require more investigation in ermine if temporal mismatches will occur, and what ecological impact they will climate warming and other anthropogenic environmental changes, waterfowl e and population sizes are increasing. Global goose population, for example, nearly m 1996 (12.5 million)²⁰⁰ to 2006 (21.4 million).²⁰¹ Dense nesting colonies of ave the potential to transfer significant amounts of terrestrially derived nutrients (N Arctic lake ecosystems in the form of feces.^{202,203} In Svalbard, goose guano has and pond eutrophication, increasing P concentrations four-fold since the 1960s.²⁰⁴ e incubation experiment demonstrated that algal biomass increases from goose ed nutrients.²⁰⁵ Sediment cores from Canadian Arctic ponds demonstrated strong s between algal biomass and chironomid heads in response to N derived from no.^{206,207} Paleolimnological records demonstrated an increasing colony population e sediment δ^{15} N, indicating a marine to lake linkage. Thus, coastal Arctic lake may experience subsidies from different sources compared to inland lakes. cular areas of the Arctic, such as Iceland, have received attention regarding lake-tors of nutrients in the form of emerging aquatic insects, but there is a lack of

2		
2 3 4	501	research in other Arctic areas where lake-to-land nutrient transfers would be seemingly
5 6 7	502	important. For instance, some Greenland lakes experience high densities of emerging
7 8 9	503	chironomid adults during peak summer, which have not been characterized in terms of nutrient
10 11	504	quality and quantity. Further, with high rates of climate warming in western Greenland,
12 13 14	505	outbreaks of moth larvae (Eurois occulta and Gynaephora groenlandica) have become more
15 16	506	common. ²⁰⁸ These larvae commonly fall into lakes and streams (personal observation). Though
17 18 10	507	larval outbreaks in western Greenland have been linked to terrestrial defoliation ²⁰⁹ and changes
20 21 22	508	in C-burial rates, ²⁰⁸ the effect on aquatic ecosystems is unknown.
23 24 25 26 27	509	Alpine lake subsidies
28 29 30 31 32 33 34 35 36 37 38 39 40	510	Cryosphere
	511	Alpine areas in North America have numerous glaciers and rock glaciers. 1500 glacier
	512	and 10000 rock glacier features have been identified in the western US alone. ²¹⁰ Because of
	513	their abundance and location within the continental US and Europe, studies published to date
	514	that investigate the effects of nutrient-rich glacial meltwater on lake ecological structure and
41 42 43	515	function have largely focused on alpine rather than Arctic lakes (e.g., refs. 2, 60, 210, 211).
44 45	516	Climate warming has increased glacier melt to mountain surface waters in the Pacific
46 47 48	517	Northwest region of the US over the past 70 years. ²¹² Enhanced glacial melting has also
49 50	518	increased glacial lake abundance and area across the Central and Patagonian Andes. ²¹³ Glacier
51 52 53	519	recession is widespread and accelerating throughout the Tibetan Plateau ^{214,215} , and is cited as
54 55 56 57	520	one of the factors leading to increased lake levels across the region. ²¹⁶⁻²¹⁸ In addition to
58 59		24
00		

2			
2 3 4	521	warming trends, climate-mediated dust deposition can alter glacier snow and ice albedo	
5 6 7	522	leading to greater glaciofluvial transport of glacier meltwater to high elevation lakes in	
8 9	523	southwestern Tibet. ²¹⁹ Glacier meltwater subsidizes systems with essential elements such as	
10 11 12	524	Ca, K, Mg, nutrients such as Si, Fe, N and DOM, and organisms such as microbes, though the	
12 13 14	525	characteristics of these subsidies differ among mountain ranges and between glacier types	
15 16 17	526	(rock glaciers vs glaciers). ^{161,219} In contrast to Arctic glacier meltwater, which typically has high	Ρ
17 18 19	527	but low to medium N content, alpine glacier meltwater can have elevated NO_{3} , with subsidize	d
20 21	528	lakes containing concentrations as high as 236 μ g NO ₃ ⁻¹ -N L ⁻¹ . ⁶⁰ Thus, NO ₃ ⁻ -N enriched glacially	-
22 23 24	529	fed lakes in the Beartooth Mountains of Wyoming and Montana exhibit lower diatom species	
25 26	530	richness ⁶⁰ and higher phytoplankton primary productivity rates and biomass compared to	
27 28 29	531	nearby snow and groundwater-fed lakes. ² Although glacially-fed lakes in both Arctic and alpine	ć
30 31	532	areas are often turbid with suspended glacial flour, the target glacially-fed lakes from the	
32 33 34	533	Beartooth Mountains in these studies were clear due to either minimal subglacial weathering	
35 36	534	or upstream entrapment. ⁶⁰ These studies are useful because the clarity of the glacially-fed lake	es
37 38 20	535	makes them similar to snow and groundwater-fed lakes. Thus, the ecological effects of these	
40 41	536	particular glacially-sourced N subsidies could provide insights into remote cold, oligotrophic	
42 43	537	lakes receiving other types of N subsidies (such as atmospheric deposition, or increased goose	
44 45 46	538	guano).	
47 48	539	As in Arctic lakes ⁸⁰ , glacial transport of suspended mineral particulates that constitute	
49 50 51	540	milky-colored glacial flour can alter the transparency and light penetration of alpine lakes,	
52 53	541	giving them a characteristic grey to turquoise hue. ²²⁰ Turbidity can reach high levels in alpine	
54 55 56 57	542	lakes (644 NTU recorded in the Swiss Alps; ²²¹ unit conversion by Sommaruga and Kandolf ²²⁰).	
58 59 60		2	25

Page 27 of 83

Sediment transport is increased during glacial recession as a function of meltwater flux and is therefore affected by climate warming.^{222,223} Because of their small size (<32 μ m)²²⁴ and sharp edges, glacial flour particulates can have direct negative impacts on interception- or filter-feeding aquatic organisms (such as *Daphnia*, and heterotrophic nanoflagellates), that may ingest them.^{220,225} Other physical consequences of suspended glacial flour in alpine lakes includes density underflows (also a function of cold meltwater temperature),²²⁶ a reduced euphotic zone and high UV light attenuation, both of which have consequences for ecosystem primary production rates,²²⁷ phytoplankton and zooplankton stoichiometry,^{228,229} and plankton survival.²²⁷ Further, surface temperature of glacially-fed alpine lakes can be surprisingly warm (late August mean surface temperature from 3 glacially fed lakes was 16.0 °C, calculated from Peter and Sommaruga²³⁰), similar to that of a nearby snow and groundwater-fed, clear lake (15.3 °C).²³⁰ Though mean lake water temperatures can be cooler in glacially-fed lakes compared to snow and groundwater-fed ones (a 1.1 °C difference was demonstrated in Alaska, for example; Koenings et al²²⁵), the warming of the surface by attenuated solar radiation leads to discontinuous polymictic thermal stratification, a situation where thermal stratification of these lakes can undergo fast and abrupt mixing throughout the summer, caused by cold night-time temperatures or precipitation events.²³⁰ While Arctic glacier meltwater contains P that is associated with weathered minerogenic subglacial flour⁸⁰ the source of NO_3^{-} that is concentrated in alpine glacier meltwater is

unclear.²¹¹ Determining the extent to which meltwater NO_3^- is derived from anthropogenic sources, minerogenic material, or subglacial microbial processing of organic material may

564 inform conservation or management decisions. Further, alpine glaciers are projected to

1 ว		
2 3 4	565	disappear in the American Rocky Mountains by 2030, ²³¹ and certain areas of the European Alps
5 6 7	566	by 2050. ²³² It is currently an outstanding question what the ecological effects of glacier
7 8 9	567	disappearance will be on glacially-fed lakes, and whether legacy effects of previously glaciated
10 11 12	568	catchments will persist following deglaciation. For instance, given the abundance of glaciers in
12 13 14	569	the western United States, ²¹⁰ it will be important to determine how C and nutrient cycling may
15 16	570	change as a lake goes from turbid and glacially-fed to clear and fed by groundwater sources.
17 18 19 20	571	Atmospheric deposition
21 22 23	572	Like Arctic lakes, alpine lakes are ecologically sensitive to atmospheric deposition due to
23 24 25	573	their slow weathering bedrock and spatially variable ANC, absent or poorly developed
26 27 28	574	catchment soils, sparse catchment vegetation cover, and low nutrient water chemistry.44,233-234
28 29 30	575	In contrast to Arctic lakes, high elevation exposes alpine lakes to greater rates of atmospheric
31 32	576	deposition. ²³⁵ In mountain regions of the US, enhanced N deposition results from fossil fuel and
33 34 35	577	agricultural emissions. ^{142,236,237}
36 37	578	Atmospheric N deposition can change the nutrient limitation status of lake ecosystems.
38 39 40	579	Many North American alpine lakes were historically N-limited. ^{60,238-240} However, in both North
41 42	580	America and Europe, atmospheric N deposition has shifted lake nutrient limitation patterns
43 44 45	581	from N-limitation to N and P co-limitation or P-limitation. ^{241,242} Ecological responses to N
46 47	582	deposition can be rapid, because primary producers with high reproductive rates, such as
48 49 50	583	phytoplankton, are sensitive to nutrient changes. ^{46,243} Such responses include increased
50 51 52	584	primary productivity, ^{5,244,245} increased phytoplankton biomass ^{5,246} decreased lake clarity, ^{244,245}
53 54 55	585	and directional algal community changes caused by increased dominance by opportunistic
56 57		
58 59 60		27
00		

1 ว		
2 3 4	diatom species such as Fragilaria crotonensis, Asterionella formosa, and Discostella	
5 6 7	587	stelligera, ^{7,8,211,244,245,247,248} that respond rapidly to nutrient enrichment. ^{60,249-251}
7 8 9	588	In addition to N deposition, alpine lakes are ecologically sensitive to P deposition. In
10 11 12 13 14	589	mountain areas, N deposition is associated with both wet deposition (DIN associated with
	590	precipitation or fog droplets ^{252,253}) and dry deposition (consisting of nitric acid and particulate
15 16 17	591	ammonium and nitrate ²⁵⁴). P deposition is associated with dry deposition (associated with
17 18 19	592	particulate matter, or dust). ²⁵⁵ Dust is sourced from anthropogenic activities and biomass
20 21	593	burning, ²⁵⁶ and dust deposition can be related to climate. For instance, dust storms and strong
22 23 24	594	winds have increased in frequency in the Tibetan plateau over the past 44 years, observable via
25 26	595	grain-size analysis in a high-elevation lake sediment record (Lake Sugan, 3,000 m above sea
27 28 29	596	level). ³⁴ A longer lake sediment record spanning 1,600 years from Kusai Lake in the central
30 31	597	Tibetan Plateau suggests that dust deposition is positively related to summer temperature. ²⁵⁷
32 33 34	598	The link between dust and climate was also demonstrated in the southwest Tibetan Plateau by
35 36	599	Conroy et al ²¹⁹ by comparing western Tibet temperature ²⁵⁸ and Dasuopu Ice Core ²⁵⁹ dust
37 38 39	600	deposition records over the past 1000 years. Dust deposition has increased 400% in some areas
40 41	601	of the western US over the past twenty years, with mountainous areas being particularly
42 43	602	impacted. ²⁶⁰ Brahney et al ²⁶¹ compared paleoecological records from two Wind River Range
44 45 46	603	lakes in Wyoming, North and Lonesome, which were compared as dust-affected and control
47 48	604	sites, respectively. The authors demonstrated a tripling in sediment P content, a tenfold
49 50 51	605	increase in diatom production, increasing cyanobacteria, and diatom community changes in
52 53	606	North Lake. These changes correspond to increasing dust flux starting around 1940. Brahney et
54 55 56 57	607	al ²⁶² demonstrated that lakes of the Wind River Range were subsidized by dust deposition rates

Page 30 of 83

3 4	608	as high as 276 μg P m² day-1. The source of this dust was from a local valley, and lakes closer to
5 6 7	609	the source were more affected by P subsidies. Lake ecological effects included enhanced water
, 8 9	610	and sediment P concentrations, greater phytoplankton and zooplankton biomass, and
10 11 12	611	dominance of diatom communities by high-nutrient species, such as Asterionella formosa.
12 13 14	612	Dust may also originate from distant sources. In the Mediterranean region of Europe,
15 16	613	for example, dust deposition was dominated by material from the Sahara-Sahel desert region in
17 18 19	614	northern Africa, with maximum inputs occurring during spring and summer. ²⁶³ SRP contained ir
20 21	615	this dust and deposited in the SW Mediterranean stimulated bacterial abundance and
22 23 24	616	decreased phytoplankton species diversity in an alpine lake in the Spanish Sierra Nevada
25 26	617	Mountains. ²⁶⁴ Reche et al ²⁶⁵ observed positive effects of dust inputs on bacterial abundance in
27 28 29	618	two alpine lakes of the Sierra Nevada, Spain, though no effect on bacterial community
30 31	619	composition was observed. In addition to P, Saharan dust can deliver chromophoric, aromatic,
32 33 24	620	and fluorescent DOM to European alpine lakes. ²⁶⁶ Saharan dust input could therefore be
34 35 36	621	partially responsible for the relatively higher concentrations of DOC and CDOM in lakes of Sierr
37 38	622	Nevada versus those of the Pyrenees and Alps that do not receive this input. ²⁶⁷ Saharan dust
39 40 41	623	also transfered viable bacteria (Gammaproteobacteria) that were deposited and grew in alpine
42 43	624	lake water in the Austrian Alps. ²⁶⁸ Similarly, Reche et al ²⁶⁵ observed growth of
44 45 46	625	Gammaproteobacteria in dust-inoculated water of the oligotrophic Quéntar Reservoir in Spain.
47 48	626	Together, these studies suggest that atmospheric dust deposition can indirectly affect lake
49 50 51	627	microbial community assemblages by influencing environmental selection pressures (such as P
52 53	628	availability or DOM quality) or microbial assemblages can be directly affected by the
54 55 56 57 58	629	introduction of exogenous species.

Page 31 of 83

3 4	630	Determining what factors determine lake ecological sensitivity will be a critical research
5 6 7	631	priority that will be able to inform lake management schemes. For instance, critical loads of N
7 8 9	632	deposition (thresholds below which effects of deposition cannot be detected) ²⁶⁹ are typically
10 11	633	low (1.0-1.5 kg N ha ⁻¹ yr ⁻¹) for high elevation lake systems in the Sierras and Rocky Mountains of
12 13 14	634	western United States. ^{45,46} However, nutrient deposition rates alone are not a good predictor of
15 16	635	lake ecological sensitivity and response to enrichment. For instance, elevation (positive
17 18 19	636	association), talus cover (positive association), unvegetated catchment area (positive
20 21	637	association), alluvium (negative association), and riparian areas (negative association) were
22 23 24	638	important factors in determining surface water susceptibility (measured from stream and lake
24 25 26	639	outlets) to nutrient enrichment following atmospheric N deposition in Yosemite National Park,
27 28 20	640	USA. ⁴⁴ There are other factors, such as lake depth, clarity, and nutrient limitation that may be
29 30 31	641	important in determining lake sensitivity. Analyses that include these factors across multiple
32 33	642	spatial scales will be important in explaining the local and regional variation that we observe in
34 35 36	643	lake responses to atmospheric deposition.
37 38 39	644	Animal vectors

Like Arctic lakes, high-elevation lakes are connected to their terrestrial environments via reciprocal flows of material. While inputs to alpine lake ecosystems are often passive hydrological or atmospheric processes determined by slope gradient and gravity, lake-to-terrestrial solid and liquid subsidies rely on animal vectors. For alpine lake ecosystems, the relative importance of aquatic- or terrestrial-derived subsidies to its neighboring environment can depend on lake elevation. For instance, based on research in the Sierra Nevada and Klamath mountain ranges of the western United States, Piovia-Scott et al⁶ hypothesized that

2		
3 4	652	terrestrial C inputs were important controls for in-lake processes at lower elevations, and in
5 6 7	653	contrast, in-lake processes were relatively more important for terrestrial consumers at higher
8 9	654	elevation. Though lower-elevation lakes had higher absolute rates of lake-to-land C transfer
10 11 12	655	than high-elevation lakes in the form of emergent insects and amphibians, the difference
12 13 14	656	between lake C output vs. lake C input was smaller in low elevation lakes. This is due to the fact
15 16 17	657	that high elevation catchments deliver significantly less terrestrial C to lake ecosystems.
17 18 19	658	Further, because relatively little C was terrestrially derived in high elevation lakes, their
20 21	659	ecosystems were dependent on inorganic C fixation, making them net C sinks. Lower elevation
22 23 24	660	lake ecosystems, with greater amounts of terrestrial organic C, were instead CO_2 sources.
25 26	661	Although on average lake-to-land animal C transfer decreased with lake elevation across the
27 28 29	662	Klamath mountain landscape, the density of terrestrial insect infall was higher in high-elevation
30 31	663	lakes close to shore compared to lower elevation lakes, creating a hotspot of C and nutrient
32 33	664	deposition. ⁶
34 35 36	665	Many species of trout have been introduced into naturally fishless alpine lakes for sport
37 38	666	fishing. ²⁷⁰⁻²⁷³ The presence of predatory fish can significantly reduce the quantity of lake-to-land
39 40 41	667	animal C and nutrient transfer due to predation on insect and amphibian larvae. ⁶ For instance,
42 43	668	trout have reduced insect emergence in the Sierra Nevada (U.S.), such that fishless lakes can
44 45 46	669	have 20 times more emergent insect biomass. ²⁷⁴ Introduced trout have reduced amphibian
40 47 48	670	abundance in mountain lakes by predation, ²⁷⁵⁻²⁷⁷ as has the fungal pathogen Batrachochytrium
49 50	671	dendrobatidis. ²⁷⁸ Greig et al ⁵⁸ demonstrated that predatory fish reduce not only insect
52 53	672	emergence directly by predation, but also reduce decomposition of terrestrial organic detritus
54 55 56 57 58	673	indirectly, where increased phytoplankton blooms influenced by pelagic trophic cascades
59		31

Page 33 of 83

3 4	674	increase sedimentation rates and establish anoxic benthic conditions. Thus, in addition to	
5 6 7	675	reducing lake-to-land subsidies, predatory fish may also modulate land-to-lake C transfer by	
7 8 9	676	reducing the amount of terrestrial C that is incorporated into aquatic consumer pathways. Su	ıch
10 11 12	677	food web interactions that decouple cross-system subsidies can have important effects on	
12 13 14	678	reciprocal communities; in Sierra Nevada (U.S.) lakes, introduced trout outcompete Rosey-	
15 16	679	finches (Leucosticte tephrocotis dawsoni) for mayfly larvae, so that Rosey-finches are 6 times	i
17 18 19	680	more abundant at fishless lakes. ²⁷⁹ Introduced trout also outcompete and consume native from the second	og
20 21	681	species (Rana muscosa) such that these frog species are 10 times more abundant in fishless	
22 23 24	682	lakes of the Sierra Nevada (U.S.). ²⁷⁴	
25 26	683	Quality of a subsidy and its relative availability in the receiving environment is also an	l
27 28 20	684	important factor when considering lake-to-land nutrient subsidies. ^{21,23,280} For instance, long-	
29 30 31	685	chain polyunsaturated fatty acids (LC-PUFAs) are critical nutrients for organismal cell	
32 33	686	membranes, structure, development, function, and signaling. ²⁸¹⁻²⁸³ LC-PUFAs occur	
34 35 36	687	disproportionally in aquatic environments because they are synthesized by algae, but not by	
37 38	688	terrestrial plants, ^{281,284,285} and they bioaccumulate rapidly (twice the rate of bulk C) in higher	
39 40 41	689	trophic levels because of their nutritional status. ²⁸⁶ Thus, mobile or metamorphic organisms	
42 43	690	such as frogs, salamanders, aquatic insects, and birds ^{280,286-290} represent an important	
44 45 46	691	terrestrial nutrient subsidy (LC-PUFA) that is disproportionate to the mass bulk of the	
40 47 48	692	transferred material.	
49 50	693	The ecological effects of climate warming on lake-to-land transfers in alpine areas	
51 52 53	694	requires more attention. For instance, it is unknown what effects climate warming will have	on
54 55	695	the timing, magnitude, species composition, and nutrient quality of lake-to-land transfers	
56 57 58			
59 60			32

across Northern hemisphere alpine areas. Further, the environmental factors that determine
average lake respiration vs primary production along an elevation gradient⁶ may become less
distinct, so that high elevation lakes may become net heterotrophic, and lake-to-land nutrient
contributions become relatively less important.

15 700 Conclus

Conclusions and synthesis

The environmental forces acting upon Arctic and alpine lakes are similar: warming rates in the Arctic are greater than the Northern Hemisphere average,²⁹¹ and many alpine regions exhibit accelerated warming as well.²⁹² Atmospheric deposition is subsidizing both areas with N and P,^{156,169,241,242,260} though deposition rates and sources of deposition differ between Arctic and alpine areas. Despite high spatial variability, annual precipitation is on average declining in Arctic areas,¹²³ resulting in reduced annual snowpack and contributing to glacier shrinkage. Though these environmental factors are changing Arctic and alpine lakes nutrient subsidies (both in terms of material inputs and outputs), these changes are not entirely parallel (Figure 4). For instance, both Arctic and alpine landscapes contain an abundance of glacially-fed lakes, but nutrient subsidies delivered into lake ecosystems via glacier meltwater vary regionally depending on bedrock and atmospheric deposition patterns (e.g. refs. 60 and 80). Ecosystem subsidies across Arctic and alpine landscapes will lead to changes in lake ecosystem C and nutrient cycling depending on a suite of lake, landscape, and climatological variables. For instance, DOC groundwater exports are variable in Arctic landscapes depending on soil and groundwater flow path properties.^{106,107} Due to expected trajectories of climatological and environmental changes, Arctic lakes may become greater sources of CO₂ and

Page 35 of 83

1 ว	
2 3 4	71
5 6 7	71
7 8 9	71
10 11 12	72
12 13 14	72
15 16	72
17 18 19	72
20 21	72
22 23 24	72
25 26	72
27 28 29	72
30 31	72
32 33	72
34 35 36	73
37 38	73
39 40 41	73
42 43	73
44 45 46	73
47 48	73
49 50	73
51 52 53	73
54 55	73
56 57 58	
59 60	

717	CH_4 as respiration and methanogenesis increase from enhanced nutrient and C availability and
718	stronger thermal stratification. Lower-latitude Arctic lakes generally have more vegetated
719	watersheds and developed soils than alpine lakes, thus DOC will likely be important in Arctic
720	lakes compared to alpine ones. DOC is an important factor in determining thermal stratification
721	of Arctic lakes to the extent that it contributes to PAR absorption. ²⁹³ Thus, lakes experiencing
722	greater DOC subsidies from their surrounding catchments may exhibit enhanced thermal
723	stratification ¹²⁹ (Figure 3). In turn, stronger thermal stratification could contribute to
724	hypolimnetic anoxia resulting in greater in-lake P cycling as it is released from the sediments. ²⁹⁴
725	Further, larger DOC contributions could increase lake respiration, anoxic hypolimnetic
726	methanogenesis, and denitrification rates. ²⁹⁵⁻²⁹⁸ In contrast, alpine lakes can be expected to
727	increase rates of primary production and C fixation, because declining seasonal snowpack
728	coupled with steep alpine catchments with sparse vegetation means that little DOC is
729	transferred into alpine lake ecosystems. ⁶ With relatively scarce organic C, increased nutrient
730	loading from glaciers, snowmelt, and atmospheric deposition will likely increase rates of
731	primary production in alpine lakes, establishing them as C sinks. ⁶
732	In the Arctic, increased waterfowl abundance enhances the transfer of terrestrial- and
733	marine-derived nutrients to lakes and ponds, 202,203,206,207 with the potential to cause
734	eutrophication of these remote ecosystems. Lake-to-land transfer of C and nutrients is
735	dominated by insect emergence in both alpine and Arctic lake ecosystems. Increased insect
736	emergence that tracks warming and nutrient availability could lead to altered nutrient cycling in
737	lake catchments. For instance, in lake catchments with high rates of emergent insect infall,
738	nutrient content of plants and size and abundance of herbivorous caterpillars increased. ⁶³
Similarly, herbivorous, detritivorous, and predatory arthropod abundance increases.⁶² Climate warming and increased nutrient loading to Arctic and alpine lakes can be expected to change the timing, magnitude, and species composition of emergence.^{6,58} Phenological mismatches may occur in both Arctic and alpine landscapes between emergent insects and their terrestrial and avian predators but more Arctic- and alpine-specific research is needed to confirm and characterize these mismatches, as remote lakes are presently underrepresented in this relatively new research area.

Cross-ecosystem subsidies are mass (M) inputs, and as Leavitt et al³⁰ describe, lake ecosystem responses to M inputs are variable. This variability comes from differences in lake catchments, ecological communities, physical structure, and water and sediment chemistry that interact with M inputs. Additionally, differences in lake energy budgets between Arctic and alpine areas will likely interact with subsidies in different ways. Many alpine lakes are located at low latitudes with greater annual solar irradiance than those at high latitudes. For instance, among 59 lakes surveyed across the Tibetan Plateau, latitude was positively related to ice cover duration, reflecting lower temperatures and decreased irradiance toward the north.²⁹⁹ Thus, researchers can expect variation in responses between Arctic and alpine lakes to similar drivers, as well as variation of responses amongst lake groups in either region. From a lake management and conservation standpoint, an important outstanding research priority involves accounting for this variation by assessing what factors determine lake sensitivity and responses to large-scale drivers, such as warming, permafrost thaw, or atmospheric deposition. In closing, we have summarized cross-ecosystem subsidies to Arctic and alpine lake ecosystems from three major sources: the cryosphere, atmosphere, and animals. Though

Page 37 of 83

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
26	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

761	aquatic-terrestrial links were not addressed with their own explicit category, terrestrial-aquatic
762	interactions were considered across all three types of nutrient subsidy classification. It is clear
763	from this review that there are many questions to be addressed before we have an in-depth
764	understanding of how nutrient subsidies are controlled by environmental factors, and how they
765	in turn control the ecological behavior of cold, dilute, oligotrophic lakes. Research that assesses
766	these factors will be crucial not only for Arctic and alpine ecologists and biogeochemists, but
767	the broader ecological community. This is because ecosystem subsidies provide an important
768	framework to understand and assess the types of environmental and ecosystem changes that
769	will continue to occur in the 21^{st} century. Our goal in this review has been not only to
770	summarize recent ecosystem subsidy research in Arctic and alpine areas, but to promote
771	remote lakes as exemplary systems with much to contribute to ecosystem subsidy research.
772	Remote lakes in rapidly changing areas have much insight to provide concerning the
773	mechanisms, processes, and ecological impacts of cross-ecosystem nutrient subsidies that
774	occur in other ecosystems, such as low-elevation temperate lakes and streams.

775 Conflicts of interest

There are no conflicts to declare.

1 2		
3 4 5 6	777	Acknowledgements
7 8 9	778	We would like to thank Kevin Simon, Amanda Klemmer, Mark Skidmore, and Brian McGill for
10 11	779	their preliminary review and comments. The funding for this article was provided by NSF
12 13 14	780	(award no. 1144423).
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	781	
43 44 45		
46 47		
48 49		
49 50		
51 52		
53		
54 55		
56		
57		
58 59		
60		

782	Not	es and references	
783	1.	Polis GA, Anderson WB, Holt RD. Toward an integration of landscape and food web	
784		ecology: the dynamics of spatially subsidized food webs. Annual review of ecology and	
785		systematics. 1997 Nov;28(1):289-316.	
786	2.	Slemmons KE, Saros JE. Implications of nitrogen-rich glacial meltwater for	
787		phytoplankton diversity and productivity in alpine lakes. Limnology and Oceanography.	
788		2012 Nov;57(6):1651-63.	
789	3.	Slemmons KE, Medford A, Hall BL, Stone JR, McGowan S, Lowell T, Kelly M, Saros JE.	
790		Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland	ł,
791		East Greenland throughout the Holocene: Abrupt reorganizations began 1000 years	
792		before present. The Holocene. 2017 Jul;27(7):929-40.	
793	4.	Nakano S, Murakami M. Reciprocal subsidies: dynamic interdependence between	
794		terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences.	
795		2001 Jan 2;98(1):166-70.	
796	5.	Nydick KR, Lafrancois BM, Baron JS, Johnson BM. Nitrogen regulation of algal biomass,	
797		productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA.	•
798		Canadian Journal of Fisheries and Aquatic Sciences. 2004 Jul 1;61(7):1256-68.	
799	6.	Piovia-Scott J, Sadro S, Knapp RA, Sickman J, Pope KL, Chandra S. Variation in reciprocal	
800		subsidies between lakes and land: perspectives from the mountains of California.	
801		Canadian Journal of Fisheries and Aquatic Sciences. 2016 May 31;73(11):1691-701.	
		c	2
	782 783 784 785 786 787 788 789 790 791 792 793 793 794 795 795 796 795 796 795 796 795 796 795 796 797 798 799 800 801	782 Not 783 1. 784 1. 785 2. 786 2. 787 3. 788 3. 790 3. 791 4. 792 4. 793 4. 794 5. 795 5. 797 6. 800 6.	 Notes and references Polis GA, Anderson WB, Holt RD. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual review of ecology and systematics. 1997 Nov;28(1):289-316. Slemmons KE, Saros JE. Implications of nitrogen-rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes. Limnology and Oceanography. 2012 Nov;57(6):1651-63. Slemmons KE, Medford A, Hall BL, Stone JR, McGowan S, Lowell T, Kelly M, Saros JE. Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland East Greenland throughout the Holocene: Abrupt reorganizations began 1000 years before present. The Holocene. 2017 Jul;27(7):929-40. Nakano S, Murakami M. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences. 2001 Jan 2;98(1):166-70. Nydick KR, Lafrancois BM, Baron JS, Johnson BM. Nitrogen regulation of algal biomass, productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA Canadian Journal of Fisheries and Aquatic Sciences. 2004 Jul 1;61(7):1256-68. Piovia-Scott J, Sadro S, Knapp RA, Sickman J, Pope KL, Chandra S. Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California. Canadian Journal of Fisheries and Aquatic Sciences. 2016 May 31;73(11):1691-701.

3 4	802	7.	Wolfe AP, Baron JS, Cornett RJ. Anthropogenic nitrogen deposition induces rapid
5 6 7	803		ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of
7 8 9	804		Paleolimnology. 2001 Jan 1;25(1):1-7.
10 11	805	8.	Wolfe AP, Van Gorp AC, Baron JS. Recent ecological and biogeochemical changes in
12 13 14	806		alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to
15 16	807		anthropogenic nitrogen deposition. Geobiology. 2003 Oct;1(2):153-68.
17 18 10	808	9.	Slemmons KE, Saros JE, Stone JR, McGowan S, Hess CT, Cahl D. Effects of glacier
20 21	809		meltwater on the algal sedimentary record of an alpine lake in the central US Rocky
22 23	810		Mountains throughout the late Holocene. Journal of paleolimnology. 2015 Apr
24 25 26	811		1;53(4):385-99.
27 28	812	10.	Xiankai L, Jiangming M, Shaofeng D. Effects of nitrogen deposition on forest biodiversity.
29 30 31	813		Acta Ecologica Sinica. 2008 Nov 1;28(11):5532-48.
32 33	814	11.	Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M,
34 35 36	815		Cinderby S, Davidson E, Dentener F, Emmett B. Global assessment of nitrogen
37 38	816		deposition effects on terrestrial plant diversity: a synthesis. Ecological applications. 2010
39 40	817		Jan 1;20(1):30-59.
41 42 43	818	12.	Levin SA. The problem of pattern and scale in ecology: the Robert H. MacArthur award
44 45	819		lecture. Ecology. 1992 Dec;73(6):1943-67.
46 47 48	820	13.	Turner MG. Landscape ecology: the effect of pattern on process. Annual review of
49 50	821		ecology and systematics. 1989 Nov;20(1):171-97.
51 52 53	822	14.	Pickett ST, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological
53 54 55	823		systems. Science. 1995 Jul 21;269(5222):331-4.
56 57			
58			

2				
3 4	824	15.	Loreau M, Mouquet N, Holt RD. Meta-ecosystems: a theoretical framework for a spat	ial
5 6 7	825		ecosystem ecology. Ecology Letters. 2003 Aug;6(8):673-9.	
7 8 9	826	16.	Nakano S, Miyasaka H, Kuhara N. Terrestrial–aquatic linkages: riparian arthropod inpu	ıts
10 11	827		alter trophic cascades in a stream food web. Ecology. 1999 Oct;80(7):2435-41.	
12 13 14	828	17.	Holt RD. Food webs in space: on the interplay of dynamic instability and spatial	
15 16	829		processes. Ecological Research. 2002 Mar 1;17(2):261-73.	
17 18 10	830	18.	Huxel GR, McCann K, Polis GA. Effects of partitioning allochthonous and autochthono	us
20 21	831		resources on food web stability. Ecological Research. 2002 Jul 1;17(4):419-32.	
22 23	832	19.	Sears AL, Holt RD, Polis GA. Feast and famine in food webs: the effects of pulsed	
24 25 26	833		productivity. Food webs at the landscape level. University of Chicago Press, Chicago,	
27 28	834		Illinois, USA. 2004 Feb 22:359-86.	
29 30 31	835	20.	Barrett K, Anderson WB, Wait DA, Grismer LL, Polis GA, Rose MD. Marine subsidies al	ter
32 33	836		the diet and abundance of insular and coastal lizard populations. Oikos. 2005	
34 35 26	837		Apr;109(1):145-53.	
30 37 38	838	21.	Marczak LB, Thompson RM, Richardson JS. Meta-analysis: trophic level, habitat, and	
39 40	839		productivity shape the food web effects of resource subsidies. Ecology. 2007	
41 42 43	840		Jan;88(1):140-8.	
44 45	841	22.	Leroux SJ, Loreau M. Subsidy hypothesis and strength of trophic cascades across	
46 47 48	842		ecosystems. Ecology letters. 2008 Nov;11(11):1147-56.	
49 50	843	23.	Marcarelli AM, Baxter CV, Mineau MM, Hall Jr RO. Quantity and quality: unifying food	l
51 52	844		web and ecosystem perspectives on the role of resource subsidies in freshwaters.	
53 54 55	845		Ecology. 2011 Jun;92(6):1215-25.	
56 57				
58 59 60				40

2			
3 4	846	24.	Scharnweber K, Vanni MJ, Hilt S, Syväranta J, Mehner T. Boomerang ecosystem fluxes:
5 6 7	847		organic carbon inputs from land to lakes are returned to terrestrial food webs via
, 8 9	848		aquatic insects. Oikos. 2014 Dec;123(12):1439-48.
10 11	849	25.	Fellman JB, Hood E, Raymond PA, Hudson J, Bozeman M, Arimitsu M. Evidence for the
12 13 14	850		assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnology
15 16	851		and Oceanography. 2015 Jul;60(4):1118-28.
17 18 19 20 21	852	26.	Creed IF, Bergström AK, Trick CG, Grimm NB, Hessen DO, Karlsson J, Kidd KA, Kritzberg E,
	853		McKnight DM, Freeman EC, Senar OE. Global change-driven effects on dissolved organic
22 23	854		matter composition: Implications for food webs of northern lakes. Global change
24 25 26	855		biology. 2018 Aug;24(8):3692-714.
27 28	856	27.	Takimoto G, Iwata T, Murakami M. Seasonal subsidy stabilizes food web dynamics:
29 30 31	857		balance in a heterogeneous landscape. Ecological Research. 2002 Jul 1;17(4):433-9.
32 33	858	28.	Yang LH, Bastow JL, Spence KO, Wright AN. What can we learn from resource pulses?
34 35 36	859		Ecology. 2008 Mar;89(3):621-34.
37 38	860	29.	Soininen J, Bartels PI, Heino J, Luoto M, Hillebrand H. Toward more integrated
39 40 41	861		ecosystem research in aquatic and terrestrial environments. BioScience. 2015 Jan
41 42 43	862		24;65(2):174-82.
44 45	863	30.	Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ,
46 47 48	864		Hobbs WO, Jeppesen E, Korhola A. Paleolimnological evidence of the effects on lakes of
49 50	865		energy and mass transfer from climate and humans. Limnology and Oceanography.
51 52 53	866		2009 Nov;54(6part2):2330-48.
54 55			
56 57 58			
20			

2 3	867	21	Caraco N. Colo I. When terrestrial organic matter is sent down the river: the importance
4 5	807	51.	Caraco N, cole J. When terrestilar organic matter is sent down the river. the importance
6 7	868		of allochthonous carbon inputs to the metabolism of lakes and rivers. Food webs at the
8 9	869		landscape level. 2004 Feb 22:301-16.
10 11 12	870	32.	Strayer DL, Power ME, Fagan WF, Pickett ST, Belnap J. A classification of ecological
13 14	871		boundaries. BioScience. 2003 Aug 1;53(8):723-9.
15 16 17	872	33.	Coppin P, Lambin E, Jonckheere I, Muys B. Digital change detection methods in natural
17 18 19	873		ecosystem monitoring: A review. InAnalysis of multi-temporal remote sensing images
20 21	874		2002 (pp. 3-36).
22 23 24	875	34.	Qiang M, Chen F, Zhang J, Zu R, Jin M, Zhou A, Xiao S. Grain size in sediments from Lake
24 25 26	876		Sugan: a possible linkage to dust storm events at the northern margin of the Qinghai–
27 28	877		Tibetan Plateau. Environmental Geology. 2007 Feb 1;51(7):1229-38.
29 30 31	878	35.	Nanus L, Clow DW, Saros JE, Stephens VC, Campbell DH. Mapping critical loads of
32 33	879		nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA. Environmental
34 35 36	880		Pollution. 2012 Jul 1;166:125-35.
37 38	881	36.	Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S.
39 40 41	882		Diatoms. In Tracking environmental change using lake sediments 2002 (pp. 155-202).
42 43	883		Springer, Dordrecht.
44 45	884	37.	Leavitt PR, Hodgson DA. Sedimentary pigments. In Tracking environmental change using
46 47 48	885		lake sediments 2002 (pp. 295-325). Springer, Dordrecht.
49 50	886	38.	Smol JP, Birks HJ, Last WM. Using biology to study long-term environmental change. In
51 52	887		Tracking environmental change using lake sediments 2002 (pp. 1-3). Springer,
54 55	888		Dordrecht.
56 57			
58 59			۵۵
60			

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	889	39.	Harper MA. 22 Diatoms as markers of atmospheric transport. In The diatoms:	
	890		applications for the environmental and earth sciences. 2001 Jul 19:429.	
	891	40.	Williamson CE, Saros JE, Vincent WF, Smol JP. Lakes and reservoirs as sentinels,	
	892		integrators, and regulators of climate change. Limnology and Oceanography. 2009	
	893		Nov;54(6 part 2):2273-82.	
	894	41.	Anderson NJ, Curtis CJ, Whiteford EJ, Jones VJ, McGowan S, Simpson GL, Kaiser J.	
17 18	895		Regional variability in the atmospheric nitrogen deposition signal and its transfer to the	е
19 20 21	896		sediment record in Greenland lakes. Limnology and Oceanography. 2018	
22 23	897		Sep;63(5):2250-65.	
24 25 26	898	42.	Mueller DR, Van Hove P, Antoniades D, Jeffries MO, Vincent WF. High Arctic lakes as	
27 28	899		sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing.	
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	900		Limnology and Oceanography. 2009 Nov;54(6 part 2):2371-85.	
	901	43.	Sickman JO, Melack JM, Stoddard JL. Regional analysis of inorganic nitrogen yield and	
	902		retention in high-elevation ecosystems of the Sierra Nevada and Rocky Mountains. In	
	903		The Nitrogen Cycle at Regional to Global Scales 2002 (pp. 341-374). Springer, Dordrech	ıt.
	904	44.	Clow DW, Nanus L, Huggett B. Use of regression-based models to map sensitivity of	
	905		aquatic resources to atmospheric deposition in Yosemite National Park, USA. Water	
	906		Resources Research. 2010 Sep;46(9), DOI: 10.1029/2009WR008316.	
	907	45.	Saros JE, Clow DW, Blett T, Wolfe AP. Critical nitrogen deposition loads in high-elevation	n
	908		lakes of the western US inferred from paleolimnological records. Water, Air, & Soil	
	909		Pollution. 2011 Mar 1;216(1-4):193-202.	
54 55				
50 57 58				
59				43

1 2			
3 4	910	46.	Baron JS, Driscoll CT, Stoddard JL, Richer EE. Empirical critical loads of atmospheric
5 6 7	911		nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes.
, 8 9	912		Bioscience. 2011 Aug 1;61(8):602-13.
10 11 12	913	47.	Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R,
12 13 14	914		Bowman WD, Clark CM, Emmett B. Effects of nitrogen deposition and empirical nitrogen
15 16	915		critical loads for ecoregions of the United States. Ecological Applications. 2011
17 18 19	916		Dec;21(8):3049-82.
20 21	917	48.	Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM,
22 23 24	918		Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA. Lakes as sentinels of climate
24 25 26	919		change. Limnology and oceanography. 2009 Nov;54(6 part 2):2283-97.
27 28 20	920	49.	Hobbie JE. Limnology of tundra ponds, Barrow, Alaska. 1980. Dowden, Hutchinson &
29 30 31	921		Ross, Stroudsburg, PA.
32 33	922	50.	Schindler DW, Kalff J, Welch HE, Brunskill GJ, Kling H, Kritsch N. Eutrophication in the
34 35 36	923		High Arctic—Meretta Lake, Cornwallis Island (75 N Lat.). Journal of the Fisheries Board
37 38	924		of Canada. 1974 May 1;31(5):647-62.
39 40 41	925	51.	Goldman CR. Primary productivity, nutrients, and transparency during the early onset of
42 43	926		eutrophication in ultra-oligotrophic Lake Tahoe, Califomia-Nevada 1. Limnology and
44 45 46	927		oceanography. 1988 Nov;33(6):1321-33.
40 47 48	928	52.	Hassan R, Scholes R, Ash N. Ecosystems and human well-being: current state and trends.
49 50	929		Volume 1. Washington, DC: Island Press; 2005.
51 52 53	930	53.	Meier MF, Dyurgerov MB, McCabe GJ. The health of glaciers: Recent changes in glacier
54 55	931		regime. Climatic change. 2003 Jul 1;59(1-2):123-35.
56 57 58			
59 60			44

- 54. Guay KC, Beck PS, Berner LT, Goetz SJ, Baccini A, Buermann W. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Global Change Biology. 2014 Oct;20(10):3147-58.
- 55. Jorgenson MT, Racine CH, Walters JC, Osterkamp TE. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic change. 2001 Mar 1;48(4):551-79.
- 56. Jorgenson MT, Shur YL, Pullman ER. Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters. 2006 Jan; 33(2), DOI: 10.1029/2005GL024960.
- Fox AD, Madsen J, Boyd H, Kuijken E, Norriss DW, Tombre IM, Stroud DA. Effects of 57.
- agricultural change on abundance, fitness components and distribution of two
- arctic-nesting goose populations. Global Change Biology. 2005 Jun;11(6):881-93.
- 58. Greig HS, Kratina P, Thompson PL, Palen WJ, Richardson JS, Shurin JB. Warming,
- eutrophication, and predator loss amplify subsidies between aquatic and terrestrial

ecosystems. Global Change Biology. 2012 Feb;18(2):504-14.

- Lane SN, Bakker M, Gabbud C, Micheletti N, Saugy JN. Sediment export, transient 59.
- landscape response and catchment-scale connectivity following rapid climate warming

and Alpine glacier recession. Geomorphology. 2017 Jan 15;277:210-27.

60. Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA, Stone JR, Williamson CE,

Wolfe AP. Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen.

- Environmental science & technology. 2010 Jun 7;44(13):4891-6.

Page 47 of 83

1 2			
3 4	952	61.	Mesquita PS, Wrona FJ, Prowse TD. Effects of retrogressive permafrost thaw slumping
5 6 7	953		on sediment chemistry and submerged macrophytes in Arctic tundra lakes. Freshwater
7 8 9	954		Biology. 2010 Nov;55(11):2347-58.
10 11	955	62.	Dreyer J, Hoekman D, Gratton C. Lake-derived midges increase abundance of shoreline
12 13 14	956		terrestrial arthropods via multiple trophic pathways. Oikos. 2012 Feb;121(2):252-8.
15 16	957	63.	Bultman H, Hoekman D, Dreyer J, Gratton C. Terrestrial deposition of aquatic insects
17 18 10	958		increases plant quality for insect herbivores and herbivore density. Ecological
20 21	959		entomology. 2014;39(4):419-26.
22 23	960	64.	Mariash HL, Cazzanelli M, Rautio M, Hamerlik L, Wooller MJ, Christoffersen KS. Changes
24 25 26	961		in food web dynamics of low Arctic ponds with varying content of dissolved organic
27 28	962		carbon. Arctic, Antarctic, and Alpine Research. 2018 Jan 1;50(1), DOI:
29 30 31	963		10.1080/15230430.2017.1414472.
32 33	964	65.	Catalan J, Camarero L, Felip M, Pla S, Ventura M, Buchaca T, Bartumeus F, Mendoza GD,
34 35 36	965		Miró A, Casamayor EO, Medina-Sánchez JM. High mountain lakes: extreme habitats and
37 38	966		witnesses of environmental changes. limnetica. 2006;25(1-2):551-84.
39 40 41	967	66.	Hobbs WO, Telford RJ, Birks HJ, Saros JE, Hazewinkel RR, Perren BB, Saulnier-Talbot É,
41 42 43	968		Wolfe AP. Quantifying recent ecological changes in remote lakes of North America and
44 45	969		Greenland using sediment diatom assemblages. PloS one. 2010 Apr 2;5(4), DOI:
46 47 48	970		10.1371/journal.pone.0010026.
49 50	971	67.	Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson NJ, Kopáček J, Stuchlík
51 52 53	972		E, Schmidt R, Koinig KA, Camarero L. Global change revealed by palaeolimnological
54 55			
56 57			
58 59			46
60			

60

2 3 4	973		records from remote lakes: a review. Journal of Paleolimnology. 2013 Mar 1;49(3):513-
5 6 7	974		35.
7 8 9	975	68.	Wang X, Gong P, Zhang Q, Yao T. Impact of climate fluctuations on deposition of DDT
10 11	976		and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records.
12 13 14	977		Environmental pollution. 2010 Feb 1;158(2):375-80.
15 16	978	69.	Schmid P, Bogdal C, Blüthgen N, Anselmetti FS, Zwyssig A, Hungerbühler K. The missing
17 18 19	979		piece: sediment records in remote mountain lakes confirm glaciers being secondary
20 21	980		sources of persistent organic pollutants. Environmental science & technology. 2011 Jan
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	981		1;45(1):203-8.
	982	70.	Bogdal C, Nikolic D, Lüthi MP, Schenker U, Scheringer M, Hungerbühler K. Release of
	983		legacy pollutants from melting glaciers: model evidence and conceptual understanding.
	984		Environmental science & technology. 2010 Jun 1;44(11):4063-9.
	985	71.	Wania F, Mackay D. Global fractionation and cold condensation of low volatility
	986		organochlorine compounds in polar regions. Ambio. 1993 Feb 1:10-8.
	987	72.	Kawamura K, Suzuki I, Fuji Y, Watanabe O. Ice core record of polycyclic aromatic
	988		hydrocarbons over the past 400 years. Naturwissenschaften. 1994 Nov 1;81(11):502-5.
	989	73.	AMAP. AMAP Assessment 2002: Persistent organic pollutants. Arctic monitoring and
	990		assessment programme (AMAP). Oslo, Norway.
	991	74.	Daly GL, Wania F. Organic contaminants in mountains. Environmental science &
	992		technology. 2005 Jan 15;39(2):385-98.
52 53	993	75.	Williams MW, Knauf M, Cory R, Caine N, Liu F. Nitrate content and potential microbial
54 55	994		signature of rock glacier outflow, Colorado Front Range. Earth Surface Processes and
50 57 58			
59			4

2 3 4	995		Landforms: The Journal of the British Geomorphological Research Group. 2007
5 6 7	996		Jun;32(7):1032-47.
7 8 9	997	76.	Hood E, Fellman J, Spencer RG, Hernes PJ, Edwards R, D'Amore D, Scott D. Glaciers as a
10 11 12	998		source of ancient and labile organic matter to the marine environment. Nature. 2009
12 13 14	999		Dec;462(7276):1044.
15 16	1000	77.	Hood E, Battin TJ, Fellman J, O'neel S, Spencer RG. Storage and release of organic carbon
17 18 19	1001		from glaciers and ice sheets. Nature geoscience. 2015 Feb;8(2):91.
20 21	1002	78.	Hodson A, Mumford P, Lister D. Suspended sediment and phosphorus in proglacial
22 23 24	1003		rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving
25 26	1004		waters. Hydrological processes. 2004 Sep;18(13):2409-22.
27 28 29	1005	79.	Hawkings J, Wadham J, Tranter M, Telling J, Bagshaw E, Beaton A, Simmons SL, Chandler
30 31	1006		D, Tedstone A, Nienow P. The Greenland Ice Sheet as a hot spot of phosphorus
32 33	1007		weathering and export in the Arctic. Global Biogeochemical Cycles. 2016 Feb
34 35 36	1008		1;30(2):191-210.
37 38	1009	80.	Burpee BT, Anderson D, Saros JE. Assessing ecological effects of glacial meltwater on
39 40 41	1010		lakes fed by the Greenland Ice Sheet: The role of nutrient subsidies and turbidity. Arctic,
42 43	1011		Antarctic, and Alpine Research. 2018 Jan 1;50(1), DOI:
44 45 46	1012		10.1080/15230430.2017.1420953.
47 48	1013	81.	Hawkings JR, Wadham JL, Tranter M, Lawson E, Sole A, Cowton T, Tedstone AJ,
49 50 51	1014		Bartholomew I, Nienow P, Chandler D, Telling J. The effect of warming climate on
52 53	1015		nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 2015
54 55 56	1016		Jan 1;1:94-104.
57 58			
59 60			48

60

2				
3 4 5	1017	82.	Bhatia MP, Kujawinski EB, Das SB, Breier CF, Henderson PB, Charette MA. Greenland	
5 6 7	1018		meltwater as a significant and potentially bioavailable source of iron to the ocean.	
, 8 9	1019		Nature Geoscience. 2013 Apr;6(4):274.	
10 11	1020	83.	Lyons W, Finlay J. Biogeochemical processes in high-latitude lakes and rivers. Oxford	
12 13 14	1021		University Press, Oxford; 2008 Sep 11.	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	1022	84.	Brittain JE, Milner AM. Ecology of glacier-fed rivers: current status and concepts.	
	1023		Freshwater Biology. 2001 Dec;46(12):1571-8.	
	1024	85.	Scott D, Hood E, Nassry M. In-stream uptake and retention of C, N and P in a supragia	acial
	1025		stream. Annals of Glaciology. 2010;51(56):80-6.	
	1026	86.	McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harve	Y
	1027		JW, Johnston CA, Mayorga E, McDowell WH. Biogeochemical hot spots and hot	
	1028		moments at the interface of terrestrial and aquatic ecosystems. Ecosystems. 2003 Ju	ın
	1029		21;6(4):301-12.	
	1030	87.	Anderson NJ, Saros JE, Bullard JE, Cahoon SM, McGowan S, Bagshaw EA, Barry CD,	
	1031		Bindler R, Burpee BT, Carrivick JL, Fowler RA. The Arctic in the twenty-first century:	
	1032		Changing biogeochemical linkages across a paraglacial landscape of Greenland.	
41 42 43	1033		BioScience. 2017 Feb 1;67(2):118-33.	
44 45	1034	88.	Hinkel KM, Nelson FE. Spatial and temporal patterns of active layer thickness at	
46 47 48	1035		Circumpolar Active Layer Monitoring (CALM) sites in northern Alaska, 1995–2000.	
49 50	1036		Journal of Geophysical Research: Atmospheres. 2003 Jan 27;108(D2), DOI:	
51 52 53	1037		10.1029/2001JD000927.	
53 54 55				
56 57				
58 59				49

2 3	1020	00	The set Y. Chara M. Carith Cl. Dischara and DM. Cibbert Carity and a state of a state
4 5	1038	89.	Zhang Y, Chen W, Smith SL, Riseborough DW, Cihlar J. Soil temperature in Canada during
5 6 7	1039		the twentieth century: Complex responses to atmospheric climate change. Journal of
, 8 9	1040		Geophysical Research: Atmospheres. 2005 Feb 16;110(D3), DOI:
10 11 12	1041		10.1029/2004JD004910.
12 13 14	1042	90.	Romanovsky VE, Sazonova TS, Balobaev VT, Shender NI, Sergueev DO. Past and recent
15 16	1043		changes in air and permafrost temperatures in eastern Siberia. Global and Planetary
17 18 10	1044		Change. 2007 Apr 1;56(3-4):399-413.
20 21	1045	91.	Kokelj SV, Tunnicliffe J, Lacelle D, Lantz TC, Chin KS, Fraser R. Increased precipitation
22 23	1046		drives mega slump development and destabilization of ice-rich permafrost terrain,
24 25 26	1047		northwestern Canada. Global and Planetary Change. 2015 Jun 1;129:56-68.
27 28	1048	92.	Lawrence DM, Slater AG. A projection of severe near-surface permafrost degradation
29 30 31	1049		during the 21st century. Geophysical Research Letters. 2005 Dec 1;32(24), DOI:
32 33	1050		10.1029/2005GL025080.
34 35	1051	93.	Anisimov O, Reneva S. Permafrost and changing climate: the Russian perspective.
36 37 38	1052		AMBIO: A Journal of the Human Environment. 2006 Jun;35(4):169-76.
39 40	1053	94.	Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF,
41 42 43	1054		Canario J, Cory RM, Deshpande BN. Reviews and syntheses: Effects of permafrost thaw
44 45	1055		on Arctic aquatic ecosystems. Biogeosciences. 2015;12(23):7129-67.
46 47 48	1056	95.	Hinzman LD, Kane DL, Gieck RE, Everett KR. Hydrologic and thermal properties of the
40 49 50	1057		active layer in the Alaskan Arctic. Cold Regions Science and Technology. 1991 May
51 52	1058		1;19(2):95-110.
53 54 55			
56 57			
58 59			50
60			

1 2			
3 4	1059	96.	Waelbroeck C, Monfray P, Oechel WC, Hastings S, Vourlitis G. The impact of permafrost
5 6 7	1060		thawing on the carbon dynamics of tundra. Geophysical Research Letters. 1997 Feb
8 9	1061		1;24(3):229-32.
10 11 12	1062	97.	Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S,
13 14	1063		Kuhry P, Lafleur PM, Lee H, Mazhitova G. Vulnerability of permafrost carbon to climate
15 16 17	1064		change: Implications for the global carbon cycle. BioScience. 2008 Sep 1;58(8):701-14.
18 19	1065	98.	Frey KE, McClelland JW. Impacts of permafrost degradation on arctic river
20 21	1066		biogeochemistry. Hydrological Processes: An International Journal. 2009 Jan
22 23 24	1067		1;23(1):169-82.
25 26	1068	99.	Hobbie JE, Peterson BJ, Bettez N, Deegan L, O'Brien WJ, Kling GW, Kipphut GW, Bowden
27 28 29	1069		WB, Hershey AE. Impact of global change on the biogeochemistry and ecology of an
30 31	1070		Arctic freshwater system. Polar Research. 1999 Jan 12;18(2):207-14.
32 33 34	1071	100.	White D, Hinzman L, Alessa L, Cassano J, Chambers M, Falkner K, Francis J, Gutowski WJ,
34 35 36	1072		Holland M, Holmes RM, Huntington H. The arctic freshwater system: Changes and
37 38	1073		impacts. Journal of geophysical research: Biogeosciences. 2007 Dec 1;112(G4), DOI:
39 40 41	1074		10.1029/2006JG000353.
42 43	1075	101.	Carey SK. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine
44 45 46	1076		catchment. Permafrost and Periglacial Processes. 2003 Apr;14(2):161-71.
47 48	1077	102.	Frey KE, Smith LC. Amplified carbon release from vast West Siberian peatlands by 2100.
49 50 51	1078		Geophysical Research Letters. 2005 May;32(9), DOI: 10.1029/2004GL022025.
52 53			
54 55			
50 57 58			
59 60			51

2 3	4070	400	the last and the oblight of the stand of the stand of the standard of the stan
4	1079	103.	Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M. Lability of
6 7	1080		DOC transported by Alaskan rivers to the Arctic Ocean. Geophysical Research Letters.
8 9	1081		2008 Feb;35(3), DOI: 10.1029/2007GL032837.
10 11 12	1082	104.	Spencer RG, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins
12 13 14	1083		A. Detecting the signature of permafrost thaw in Arctic rivers. Geophysical Research
15 16	1084		Letters. 2015 Apr 28;42(8):2830-5.
17 18 19	1085	105.	Kawahigashi M, Kaiser K, Kalbitz K, Rodionov A, Guggenberger G. Dissolved organic
20 21	1086		matter in small streams along a gradient from discontinuous to continuous permafrost.
22 23 24	1087		Global Change Biology. 2004 Sep;10(9):1576-86.
24 25 26	1088	106.	Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP. A decrease in
27 28	1089		discharge-normalized DOC export by the Yukon River during summer through autumn.
29 30 31	1090		Geophysical Research Letters. 2005 Nov;32(21), DOI: 10.1029/2005GL024413.
32 33	1091	107.	Walvoord MA, Striegl RG. Increased groundwater to stream discharge from permafrost
34 35 36	1092		thawing in the Yukon River basin: Potential impacts on lateral export of carbon and
37 38	1093		nitrogen. Geophysical Research Letters. 2007 Jun;34(12), DOI: 10.1029/2007GL030216.
39 40	1094	108.	Harms TK, Jones Jr JB. Thaw depth determines reaction and transport of inorganic
41 42 43	1095		nitrogen in valley bottom permafrost soils: Nitrogen cycling in permafrost soils. Global
44 45	1096		Change Biology. 2012 Sep;18(9):2958-68.
46 47 48	1097	109.	Harms TK, Edmonds JW, Genet H, Creed IF, Aldred D, Balser A, Jones JB. Catchment
49 50	1098		influence on nitrate and dissolved organic matter in Alaskan streams across a latitudinal
51 52	1099		gradient. Journal of Geophysical Research: Biogeosciences. 2016 Feb;121(2):350-69.
53 54 55			
56 57			
58 59			ED
60			52

1 2			
3 4	1100	110.	Abbott BW, Larouche JR, Jones Jr JB, Bowden WB, Balser AW. Elevated dissolved organic
5 6 7	1101		carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical
7 8 9	1102		Research: Biogeosciences. 2014 Oct;119(10):2049-63.
10 11 12	1103	111.	McClelland JW, Stieglitz M, Pan F, Holmes RM, Peterson BJ. Recent changes in nitrate
12 13 14	1104		and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska.
15 16 17	1105		Journal of Geophysical Research: Biogeosciences. 2007 Dec;112(G4), DOI:
17 18 19	1106		10.1029/2006JG000371.
20 21	1107	112.	Dugan HA, Lamoureux SF, Lewis T, Lafrenière MJ. The impact of permafrost disturbances
22 23 24	1108		and sediment loading on the limnological characteristics of two high Arctic lakes.
24 25 26	1109		Permafrost and Periglacial Processes. 2012 Apr;23(2):119-26.
27 28 20	1110	113.	Khosh MS, McClelland JW, Jacobson AD, Douglas TA, Barker AJ, Lehn GO. Seasonality of
29 30 31	1111		dissolved nitrogen from spring melt to fall freezeup in Alaskan Arctic tundra and
32 33	1112		mountain streams. Journal of Geophysical Research: Biogeosciences. 2017 Jul
34 35 36	1113		1;122(7):1718-37.
37 38	1114	114.	Bogard MJ, Kuhn CD, Johnston SE, Striegl RG, Holtgrieve GW, Dornblaser MM, Spencer
39 40 41	1115		RG, Wickland KP, Butman DE. Negligible cycling of terrestrial carbon in many lakes of the
42 43	1116		arid circumpolar landscape. Nature Geoscience. 2019 Mar;12(3):180.
44 45 46	1117	115.	Kokelj SV, Zajdlik B, Thompson MS. The impacts of thawing permafrost on the chemistry
40 47 48	1118		of lakes across the subarctic boreal-tundra transition, Mackenzie Delta region, Canada.
49 50	1119		Permafrost and Periglacial Processes. 2009 Apr;20(2):185-99.
51 52 53			
54 55			
56 57			
59			53

2 3	1120	116	Abbott RW Jones IB Godsey SE Larouche IB Bowden WB Patterns and persistence of
4 5	1120	110.	Abbolt BW, Jones JB, Gousey SL, Larouche JN, Bowden WB. Patterns and persistence of
6 7	1121		hydrologic carbon and nutrient export from collapsing upland permafrost.
8 9	1122		Biogeosciences. 2015 Jun 17;12(12):3725-40.
10 11 12	1123	117.	Thompson MS, Kokelj SV, Prowse TD, Wrona FJ. The impact of sediments derived from
12 13 14	1124		thawing permafrost on tundra lake water chemistry: an experimental approach. In
15 16	1125		Proceedings of the 9th International Conference on Permafrost, edited by: Kane, DL and
17 18 10	1126		Hinkel, KM 2008 Jun (Vol. 2, pp. 1763-1768).
20 21	1127	118.	Thompson MS, Wrona FJ, Prowse TD. Shifts in plankton, nutrient and light relationships
22 23	1128		in small tundra lakes caused by localized permafrost thaw. Arctic. 2012 Dec 1:367-76.
24 25 26	1129	119.	Thienpont JR, Ruehland KM, Pisaric MF, Kokelj SV, Kimpe LE, Blais JM, Smol JP. Biological
27 28	1130		responses to permafrost thaw slumping in Canadian Arctic lakes. Freshwater Biology.
29 30 31	1131		2013 Feb;58(2):337-53.
32 33	1132	120.	Moquin PA, Mesquita PS, Wrona FJ, Prowse TD. Responses of benthic invertebrate
34 35 36	1133		communities to shoreline retrogressive thaw slumps in Arctic upland lakes. Freshwater
37 38	1134		Science. 2014 Sep 29;33(4):1108-18.
39 40	1135	121.	Lantz TC, Kokelj SV. Increasing rates of retrogressive thaw slump activity in the
41 42 43	1136		Mackenzie Delta region, NWT, Canada. Geophysical Research Letters. 2008 Mar;35(6),
44 45	1137		DOI: 10.1029/2007GL032433.
46 47 48	1138	122.	Segal RA, Lantz TC, Kokelj SV. Acceleration of thaw slump activity in glaciated landscapes
49 50	1139		of the Western Canadian Arctic. Environmental Research Letters. 2016 Mar 17;11(3),
51 52 53	1140		DOI: 10.1088/1748-9326/11/3/034025.
54 55			
56			
57 58			
59 60			54

1 2				
3 4	1141	123.	Liston GE, Hiemstra CA. The changing cryosphere: Pan-Arctic snow trends (1979–2009)	•
5 6 7	1142		Journal of Climate. 2011 Nov;24(21):5691-712.	
, 8 9	1143	124.	Niittynen P, Luoto M. The importance of snow in species distribution models of arctic	
10 11	1144		vegetation. Ecography. 2018 Jun;41(6):1024-37.	
12 13 14	1145	125.	Zeng H, Jia G, Forbes BC. Shifts in Arctic phenology in response to climate and	
15 16	1146		anthropogenic factors as detected from multiple satellite time series. Environmental	
17 18 19	1147		Research Letters. 2013 Sep 4;8(3), DOI: 10.1088/1748-9326/8/3/035036.	
20 21	1148	126.	Pedersen SH, Liston GE, Tamstorf MP, Abermann J, Lund M, Schmidt NM. Quantifying	
22 23	1149		snow controls on vegetation greenness. Ecosphere. 2018 Jun;9(6), DOI:	
24 25 26	1150		10.1002/ecs2.2309.	
27 28	1151	127.	Jones HG. The ecology of snow-covered systems: a brief overview of nutrient cycling ar	۱d
29 30 31	1152		life in the cold. Hydrological processes. 1999 Oct;13(14-15):2135-47.	
32 33	1153	128.	McGowan S, Gunn HV, Whiteford EJ, Anderson NJ, Jones VJ, Law AC. Functional	
34 35 36	1154		attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West	
37 38	1155		Greenland lakes. Journal of paleolimnology. 2018 Aug 1;60(2):273-98.	
39 40 41	1156	129.	Rosén P, Cunningham L, Vonk J, Karlssona J. Effects of climate on organic carbon and th	ie
41 42 43	1157		ratio of planktonic to benthic primary producers in a subarctic lake during the past 45	
44 45	1158		years. Limnology and Oceanography. 2009 Sep;54(5):1723-32.	
46 47 48	1159	130.	Šmejkalová T, Edwards ME, Dash J. Arctic lakes show strong decadal trend in earlier	
49 50	1160		spring ice-out. Scientific reports. 2016 Dec 7;6:38449.	
51 52 53	1161	131.	Winder M, Sommer U. Phytoplankton response to a changing climate. Hydrobiologia.	
54 55	1162		2012 Nov 1;698(1):5-16.	
56 57				
58 59				

2 3	1163	132.	Vincent WF. Laurion I. Pienitz R. Walter Anthony KM. Climate impacts on Arctic lake
4 5	1105	192.	
6 7	1164		ecosystems. Climatic change and global warming of inland waters: Impacts and
8 9	1165		mitigation for ecosystems and societies. 2013:27-42.
10 11	1166	133.	Warner KA, Fowler RA, Northington RM, Malik HI, McCue J, Saros JE. How does changing
12 13 14	1167		ice-out affect arctic versus boreal lakes? A comparison using two years with ice-out that
15 16	1168		differed by more than three weeks. Water. 2018 Jan;10(1):78.
17 18 10	1169	134.	Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P. Consequences of the
20 21	1170		2003 European heat wave for lake temperature profiles, thermal stability, and
22 23	1171		hypolimnetic oxygen depletion: Implications for a warmer world. Limnology and
24 25 26	1172		Oceanography. 2006 Mar;51(2):815-9.
27 28	1173	135.	Marsden MW. Lake restoration by reducing external phosphorus loading: the influence
29 30 31	1174		of sediment phosphorus release. Freshwater Biology. 1989 Apr;21(2):139-62.
32 33	1175	136.	Søndergaard M, Jensen JP, Jeppesen E. Role of sediment and internal loading of
34 35 36	1176		phosphorus in shallow lakes. Hydrobiologia. 2003 Nov 1;506(1-3):135-45.
37 38	1177	137.	Sommer U. Seasonal succession of phytoplankton in Lake Constance. Bioscience. 1985
39 40	1178		Jun 1;35(6):351-7.
41 42 43	1179	138.	French TD, Petticrew EL. Chlorophyll a seasonality in four shallow eutrophic lakes
44 45	1180		(northern British Columbia, Canada) and the critical roles of internal phosphorus loading
46 47 48	1181		and temperature. Hydrobiologia. 2007 Jan 1;575(1):285-99.
49 50	1182	139.	Wilhelm S, Adrian R. Impact of summer warming on the thermal characteristics of a
51 52	1183		polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater
55 55	1184		Biology. 2008 Feb;53(2):226-37.
56 57			
58 59			56
60			

2			
3 4	1185	140.	Lesack LF, Marsh P. Lengthening plus shortening of river-to-lake connection times in the
5 6 7	1186		Mackenzie River Delta respectively via two global change mechanisms along the arctic
7 8 9	1187		coast. Geophysical Research Letters. 2007 Dec 16;34(23).
10 11	1188	141.	Spears BM, Lesack LF. Bacterioplankton production, abundance, and nutrient limitation
12 13 14	1189		among lakes of the Mackenzie Delta (western Canadian arctic). Canadian Journal of
15 16	1190		Fisheries and Aquatic Sciences. 2006 Apr 1;63(4):845-57.
17 18	1191	142.	Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP,
19 20 21	1192		Cleveland CC, Green PA, Holland EA, Karl DM. Nitrogen cycles: past, present, and future.
22 23	1193		Biogeochemistry. 2004 Sep 1;70(2):153-226.
24 25 26	1194	143.	Holmgren SU, Bigler C, Ingólfsson O, Wolfe AP. The Holocene–Anthropocene transition
20 27 28	1195		in lakes of western Spitsbergen, Svalbard (Norwegian High Arctic): climate change and
29 30	1196		nitrogen deposition. Journal of Paleolimnology. 2010 Feb 1;43(2):393-412.
31 32 33	1197	144.	Wolfe AP, Cooke CA, Hobbs WO. Are current rates of atmospheric nitrogen deposition
34 35	1198		influencing lakes in the eastern Canadian Arctic? Arctic, Antarctic, and Alpine Research.
36 37 38	1199		2006 Aug 1;38(3):465-76.
39 40	1200	145.	Bergström AK, Jonsson A, Jansson M. Phytoplankton responses to nitrogen and
41 42 43	1201		phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric
43 44 45	1202		nitrogen deposition. Aquatic Biology. 2008 Nov 4;4(1):55-64.
46 47	1203	146.	Wolfe AP, Hobbs WO, Birks HH, Briner JP, Holmgren SU, Ingólfsson Ó, Kaushal SS, Miller
48 49 50	1204		GH, Pagani M, Saros JE, Vinebrooke RD. Stratigraphic expressions of the Holocene–
51 52	1205		Anthropocene transition revealed in sediments from remote lakes. Earth-Science
53 54 55	1206		Reviews. 2013 Jan 1;116:17-34.
56 57			
58 59			57
60			

1 2			
- 3 4	1207	147.	Laj P, Palais JM, Sigurdsson H. Changing sources of impurities to the Greenland ice sheet
5 6 7	1208		over the last 250 years. Atmospheric Environment. Part A. General Topics. 1992 Oct
, 8 9	1209		1;26(14):2627-40.
10 11 12	1210	148.	Mayewski PA, Lyons WB, Spencer MJ, Twickler MS, Buck CF, Whitlow S. An ice-core
13 14	1211		record of atmospheric response to anthropogenic sulphate and nitrate. Nature. 1990
15 16	1212		Aug;346(6284):554.
17 18 19	1213	149.	Fischer H, Wagenbach D, Kipfstuhl J. Sulfate and nitrate firn concentrations on the
20 21	1214		Greenland ice sheet: 1. Large-scale geographical deposition changes. Journal of
22 23 24	1215		Geophysical Research: Atmospheres. 1998 Sep 20;103(D17):21927-34.
25 26	1216	150.	Simões JC, Zagorodnov VS. The record of anthropogenic pollution in snow and ice in
27 28 29	1217		Svalbard, Norway. Atmospheric Environment. 2001 Jan 1;35(2):403-13.
30 31	1218	151.	Isaksson E, Hermanson M, Hicks S, Igarashi M, Kamiyama K, Moore J, Motoyama H, Muir
32 33	1219		D, Pohjola V, Vaikmäe R, van de Wal RS. Ice cores from Svalbard—useful archives of past
34 35 36	1220		climate and pollution history. Physics and Chemistry of the Earth, Parts A/B/C. 2003 Jan
37 38	1221		1;28(28-32):1217-28.
39 40 41	1222	152.	Goto-Azuma K, Koerner RM. Ice core studies of anthropogenic sulfate and nitrate trends
42 43	1223		in the Arctic. Journal of Geophysical Research: Atmospheres. 2001 Mar
44 45 46	1224		16;106(D5):4959-69.
47 48	1225	153.	Yalcin K, Wake CP. Anthropogenic signals recorded in an ice core from Eclipse Icefield,
49 50	1226		Yukon Territory, Canada. Geophysical Research Letters. 2001 Dec 1;28(23):4487-90.
52 53	1227	154.	Burkhart JF, Bales RC, McConnell JR, Hutterli MA. Influence of North Atlantic Oscillation
54 55	1228		on anthropogenic transport recorded in northwest Greenland ice cores. Journal of
56 57			
58 59 60			58
50			

1 2			
2 3 4	1229		Geophysical Research: Atmospheres. 2006 Nov 27;111(D22), DOI:
5 6 7	1230		10.1029/2005JD006771.
, 8 9	1231	155.	Hastings MG, Jarvis JC, Steig EJ. Anthropogenic impacts on nitrogen isotopes of ice-core
10 11 12	1232		nitrate. Science. 2009 Jun 5;324(5932):1288.
12 13 14	1233	156.	Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney
15 16	1234		BP, Gregory-Eaves I, Holmgren S, Lisac MJ. A coherent signature of anthropogenic
17 18 19	1235		nitrogen deposition to remote watersheds of the northern hemisphere. Science. 2011
20 21	1236		Dec 16;334(6062):1545-8.
22 23 24	1237	157.	Arens SJ, Sullivan PF, Welker JM. Nonlinear responses to nitrogen and strong
25 26	1238		interactions with nitrogen and phosphorus additions drastically alter the structure and
27 28 20	1239		function of a high arctic ecosystem. Journal of Geophysical Research: Biogeosciences.
30 31	1240		2008 Sep 1;113(G3), doi:10.1029/2007JG000508.
32 33	1241	158.	Gordon CW, Wynn JM, Woodin SJ. Impacts of increased nitrogen supply on high Arctic
34 35 36	1242		heath: the importance of bryophytes and phosphorus availability. New Phytologist. 2001
37 38	1243		Mar;149(3):461-71.
39 40 41	1244	159.	Betts-Piper AM, Zeeb BA, Smol JP. Distribution and autecology of chrysophyte cysts
42 43	1245		from high Arctic Svalbard lakes: preliminary evidence of recent environmental change.
44 45 46	1246		Journal of Paleolimnology. 2004 May 1;31(4):467-81.
40 47 48	1247	160.	Lepori F, Keck F. Effects of atmospheric nitrogen deposition on remote freshwater
49 50	1248		ecosystems. Ambio. 2012 May 1;41(3):235-46.
51 52 53			
54 55			
56 57 58			
59 60			59

2 3	1249	161.	Birks HJ. Jones VJ. Rose NL. Recent environmental change and atmospheric	
4 5	4950			
6 7	1250		contamination on Svalbard as recorded in lake sediments—an introduction. Journal of	
8 9	1251		Paleolimnology. 2004 May 1;31(4):403-10.	
10 11 12	1252	162.	Benstead JP, Deegan LA, Peterson BJ, Huryn AD, Bowden WB, Suberkropp K, Buzby KM,	
13 14	1253		Green AC, Vacca JA. Responses of a beaded Arctic stream to short-term N and P	
15 16 17	1254		fertilisation. Freshwater Biology. 2005 Feb;50(2):277-90.	
17 18 19	1255	163.	O'Brien WJ, Barfield M, Bettez N, Hershey AE, Hobbie JE, Kipphut G, Kling G, Miller MC.	
20 21	1256		Long-term response and recovery to nutrient addition of a partitioned arctic lake.	
22 23	1257		Freshwater Biology. 2005 May;50(5):731-41.	
24 25 26	1258	164.	Burckle LH, Gayley RI, Ram M, Petit JR. Diatoms in Antarctic ice cores: some implications	5
27 28	1259		for the glacial history of Antarctica. Geology. 1988 Apr 1;16(4):326-9.	
29 30 31	1260	165.	Gayley RI, Ram M, Stoermer EF. Seasonal variations in diatom abundance and	
32 33	1261		provenance in Greenland ice. Journal of Glaciology. 1989;35(120):290-2.	
34 35 36	1262	166.	Donarummo Jr J, Ram M, Stoermer EF. Possible deposit of soil dust from the 1930's US	
37 38	1263		dust bowl identified in Greenland ice. Geophysical Research Letters. 2003 Mar;30(6).	
39 40 41	1264	167.	Rousseau DD, Schevin P, Ferrier J, Jolly D, Andreasen T, Ascanius SE, Hendriksen SE,	
41 42 43	1265		Poulsen U. Long-distance pollen transport from North America to Greenland in spring.	
44 45	1266		Journal of Geophysical Research: Biogeosciences. 2008 Jun;113(G2).	
46 47 48	1267	168.	Weide DM, Fritz SC, Brinson BE, Thompson LG, Billups WE. Freshwater diatoms in the	
49 50	1268		Sajama, Quelccaya, and Coropuna glaciers of the South American Andes. Diatom	
51 52 53	1269		Research. 2017 Apr 3;32(2):153-62.	
54 55				
56 57				
58 59			- Fi	n
60				5

2			
3 4	1270	169.	Bullard JE. Contemporary glacigenic inputs to the dust cycle. Earth Surface Processes
5 6 7	1271		and Landforms. 2013 Jan;38(1):71-89.
7 8 9	1272	170.	McTainsh GH, Lynch AW. Quantitative estimates of the effect of climate change on dust
10 11	1273		storm activity in Australia during the Last Glacial Maximum. Geomorphology. 1996 Sep
12 13 14	1274		1;17(1-3):263-71.
15 16	1275	171.	Reheis MC, Kihl R. Dust deposition in southern Nevada and California, 1984–1989:
17 18 10	1276		Relations to climate, source area, and source lithology. Journal of Geophysical Research:
20 21	1277		Atmospheres. 1995 May 20;100(D5):8893-918.
22 23	1278	172.	Bullard JE, Baddock M, Bradwell T, Crusius J, Darlington E, Gaiero D, Gasso S, Gisladottir
24 25 26	1279		G, Hodgkins R, McCulloch R, McKenna-Neuman C. High-latitude dust in the Earth
27 28	1280		system. Reviews of Geophysics. 2016 Jun;54(2):447-85.
29 30 31	1281	173.	Bullard JE, Mockford T. Seasonal and decadal variability of dust observations in the
32 33	1282		Kangerlussuaq area, west Greenland. Arctic, Antarctic, and Alpine Research. 2018 Jan
34 35	1283		1;50(1), DOI: 10.1080/15230430.2017.1415854.
30 37 38	1284	174.	van den Broeke MR, Duynkerke PG, Oerlemans J. The observed katabatic flow at the
39 40	1285		edge of the Greenland ice sheet during GIMEX-91. Global and Planetary Change. 1994
41 42 43	1286		Jan 1;9(1-2):3-15.
44 45	1287	175.	Arnalds O, Dagsson-Waldhauserova P, Olafsson H. The Icelandic volcanic aeolian
46 47 49	1288		environment: Processes and impacts—A review. Aeolian Research. 2016 Mar 1;20:176-
40 49 50	1289		95.
51 52			
53 54			
55 56			
57 58			
60			61

1 2			
3 4	1290	176.	Zwaaftink CG, Grythe H, Skov H, Stohl A. Substantial contribution of northern
5 6 7	1291		high-latitude sources to mineral dust in the Arctic. Journal of Geophysical Research:
, 8 9	1292		Atmospheres. 2016 Nov 27;121(22):13-678.
10 11	1293	177.	Crusius J, Schroth AW, Gasso S, Moy CM, Levy RC, Gatica M. Glacial flour dust storms in
12 13 14	1294		the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a
15 16	1295		source of bioavailable iron. Geophysical Research Letters. 2011 Mar 1;38(6).
17 18 19	1296	178.	Muhs DR, Budahn JR, McGeehin JP, Bettis III EA, Skipp G, Paces JB, Wheeler EA. Loess
20 21	1297		origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National
22 23 24	1298		Park, Alaska. Aeolian Research. 2013 Dec 1;11:85-99.
24 25 26	1299	179.	Dorfman JM, Stoner JS, Finkenbinder MS, Abbott MB, Xuan C, St-Onge G. A 37,000-year
27 28	1300		environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic
29 30 31	1301		Alaska. Quaternary Science Reviews. 2015 Nov 15;128:81-97.
32 33	1302	180.	Bullard JE. The distribution and biogeochemical importance of high-latitude dust in the
34 35 36	1303		Arctic and Southern Ocean-Antarctic regions. Journal of Geophysical Research:
37 38	1304		Atmospheres. 2017 Mar 16;122(5):3098-103.
39 40 41	1305	181.	Fowler RA, Saros JE, Osburn CL. Shifting DOC concentration and quality in the freshwater
42 43	1306		lakes of the Kangerlussuaq region: An experimental assessment of possible mechanisms.
44 45 46	1307		Arctic, Antarctic, and Alpine Research. 2018 Jan 1;50(1), DOI:
40 47 48	1308		10.1080/15230430.2018.1436815.
49 50	1309	182.	Carlsson P, Caron DA. Seasonal variation of phosphorus limitation of bacterial growth in
51 52 53	1310		a small lake. Limnology and Oceanography. 2001 Jan;46(1):108-20.
54 55			
56 57			
59 60			62

2			
3 4	1311	183.	del Giorgio PA, Newell RE. Phosphorus and DOC availability influence the partitioning
5 6 7	1312		between bacterioplankton production and respiration in tidal marsh ecosystems.
, 8 9	1313		Environmental microbiology. 2012 May;14(5):1296-307.
10 11	1314	184.	Smol JP, Wolfe AP, Birks HJ, Douglas MS, Jones VJ, Korhola A, Pienitz R, Rühland K,
12 13 14	1315		Sorvari S, Antoniades D, Brooks SJ. Climate-driven regime shifts in the biological
15 16	1316		communities of arctic lakes. Proceedings of the National Academy of Sciences. 2005 Mar
17 18 10	1317		22;102(12):4397-402.
20 21	1318	185.	Hole L, Engardt M. Climate change impact on atmospheric nitrogen deposition in
22 23	1319		northwestern Europe: a model study. AMBIO: A Journal of the Human Environment.
24 25 26	1320		2008 Feb;37(1):9-18.
27 28	1321	186.	Kraus JM, Vonesh JR. Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a
29 30 31	1322		test of controls and implications for cross-ecosystem linkages. Oecologia. 2012 Dec
32 33	1323		1;170(4):1111-22.
34 35	1324	187.	Vander Zanden MJ, Gratton C. Blowin'in the wind: reciprocal airborne carbon fluxes
36 37 38	1325		between lakes and land. Canadian Journal of Fisheries and Aquatic Sciences. 2011 Jan
39 40	1326		7;68(1):170-82.
41 42 43	1327	188.	Gratton C, Donaldson J, Vander Zanden MJ. Ecosystem linkages between lakes and the
44 45	1328		surrounding terrestrial landscape in northeast Iceland. Ecosystems. 2008 Aug
46 47 48	1329		1;11(5):764-74.
40 49 50	1330	189.	Gratton C, Zanden MJ. Flux of aquatic insect productivity to land: comparison of lentic
51 52	1331		and lotic ecosystems. Ecology. 2009 Oct;90(10):2689-99.
53 54 55			
56 57			
58 59			63
60			

1 2				
3 4	1332	190.	Petersen I, Winterbottom JH, Orton S, Friberg N, Hildrew AG, Spiers DC, Gurney WS.	
5 6 7	1333		Emergence and lateral dispersal of adult Plecoptera and Trichoptera from Broadstone	
8 9	1334		Stream, UK. Freshwater Biology. 1999 Nov;42(3):401-16.	
10 11 12	1335	191.	Power ME, Rainey WE, Parker MS, Sabo JL, Smyth A, Khandwala S, Finlay JC, McNeely	
13 14	1336		FC, Marsee K, Anderson C. River-to-watershed subsidies in an old-growth conifer forest	
15 16 17	1337		Food webs at the landscape level. 2004 Feb 22:217-40.	
18 19	1338	192.	Gardarsson A, Einarsson A, Jonsson E, Gislason GM, Olafsson JS, Hrafnsdottir T, Ingvaso	n
20 21 22	1339		HR. Population indices of Chironomidae at Myvatn over 20 years, 1977–1996. Myvatn,	
22 23 24	1340		Iceland: Myvatn Research Station. 2000.	
25 26	1341	193.	Martin-Creuzburg D, Kowarik C, Straile D. Cross-ecosystem fluxes: Export of	
27 28 29	1342		polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects	•
30 31	1343		Science of the Total Environment. 2017 Jan 15;577:174-82.	
32 33 34	1344	194.	Jonsson M, Wardle DA. The influence of freshwater-lake subsidies on invertebrates	
35 36	1345		occupying terrestrial vegetation. Acta Oecologica. 2009 Sep 1;35(5):698-704.	
37 38 39	1346	195.	Hoekman D, Dreyer J, Jackson RD, Townsend PA, Gratton C. Lake to land subsidies:	
40 41	1347		experimental addition of aquatic insects increases terrestrial arthropod densities.	
42 43	1348		Ecology. 2011 Nov 1;92(11):2063-72.	
44 45 46	1349	196.	Hoekman D, Bartrons M, Gratton C. Ecosystem linkages revealed by experimental lake-	
47 48	1350		derived isotope signal in heathland food webs. Oecologia. 2012 Nov 1;170(3):735-43.	
49 50 51	1351	197.	Butler MG. Emergence phenologies of some arctic Alaskan Chironomidae. In	
52 53 54 55 56	1352		Chironomidae 1980 Jan 1 (pp. 307-314). Pergamon.	
57 58 59			6	54

2				
3 4	1353	198.	Braegelman SD. Seasonality of some Arctic Alaskan chironomids (Doctoral dissertatio	n,
5 6 7	1354		North Dakota State University).	
7 8 9	1355	199.	Pearce-Higgins JW, Yalden DW, Whittingham MJ. Warmer springs advance the breed	ing
10 11	1356		phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia.	
12 13 14	1357		2005 Apr 1;143(3):470-6.	
15 16	1358	200.	Madsen J, Reed A, Andreev A. Status and trends of geese (Anser sp., Branta sp.) in the	e
17 18 10	1359		world: a review, updating and evaluation. Gibier Faune Sauvage. 1996;13(2):337-53.	
20 21	1360	201.	Wetlands International. Waterbird population estimates, 4th ed. Wageningen, The	
22 23	1361		Netherlands: Wetlands International. 2006.	
24 25 26	1362	202.	Hahn S, Bauer S, Klaassen M. Estimating the contribution of carnivorous waterbirds to	0
27 28	1363		nutrient loading in freshwater habitats. Freshwater Biology. 2007 Dec;52(12):2421-33	3.
29 30 31	1364	203.	Côté G, Pienitz R, Velle G, Wang X. Impact of geese on the limnology of lakes and pon	nds
32 33	1365		from Bylot Island (Nunavut, Canada). International Review of Hydrobiology. 2010	
34 35	1366		May;95(2):105-29.	
36 37 38	1367	204.	Hessen DO, Tombre IM, van Geest G, Alfsnes K. Global change and ecosystem	
39 40	1368		connectivity: How geese link fields of central Europe to eutrophication of Arctic	
41 42 43	1369		freshwaters. Ambio. 2017 Feb 1;46(1):40-7.	
44 45	1370	205.	Tugend, C.A., III, and Saros, Jasmine E. Effects of Geese and Caribou on Nutrient and	
46 47	1371		Carbon Cycling in Southwest Greenland. Thesis for the completion of a Master of	
48 49 50	1372		Science degree, University of Maine. 2017.	
51 52	1373	206.	Michelutti N, Liu H, Smol JP, Kimpe LE, Keatley BE, Mallory M, Macdonald RW, Dougla	as
53 54 55	1374		MS, Blais JM. Accelerated delivery of polychlorinated biphenyls (PCBs) in recent	
56 57				
58 59				65
60				

1

Page 67 of 83

2 3 4	1375		sediments near a large seabird colony in Arctic Canada. Environmental pollution. 2009
5 6	1376		Oct 1;157(10):2769-75.
7 8 9	1377	207.	Griffiths K, Michelutti N, Blais JM, Kimpe LE, Smol JP. Comparing nitrogen isotopic
10 11	1378		signals between bulk sediments and invertebrate remains in High Arctic seabird-
12 13 14	1379		influenced ponds. Journal of Paleolimnology. 2010 Aug 1;44(2):405-12.
15 16	1380	208.	Lund M, Raundrup K, Westergaard-Nielsen A, López-Blanco E, Nymand J, Aastrup P.
17 18 19	1381		Larval outbreaks in West Greenland: instant and subsequent effects on tundra
20 21	1382		ecosystem productivity and CO_2 exchange. Ambio. 2017 Feb 1;46(1):26-38.
22 23 24	1383	209.	Post E, Pedersen C. Opposing plant community responses to warming with and without
25 26	1384		herbivores. Proceedings of the National Academy of Sciences. 2008 Aug
27 28	1385		26;105(34):12353-8.
29 30 31	1386	210.	Fegel TS, Baron JS, Fountain AG, Johnson GF, Hall EK. The differing biogeochemical and
32 33	1387		microbial signatures of glaciers and rock glaciers. Journal of Geophysical Research:
34 35 36	1388		Biogeosciences. 2016 Mar 1;121(3):919-32.
37 38	1389	211.	Williams JJ, Nurse A, Saros JE, Riedel J, Beutel M. Effects of glaciers on nutrient
39 40 41	1390		concentrations and phytoplankton in lakes within the Northern Cascades Mountains
41 42 43	1391		(USA). Biogeochemistry. 2016 Dec 1;131(3):373-85.
44 45	1392	212.	Granshaw FD, Fountain AG. Glacier change (1958–1998) in the north Cascades national
46 47 48	1393		park complex, Washington, USA. Journal of Glaciology. 2006;52(177):251-6.
49 50	1394	213.	Wilson R, Glasser NF, Reynolds JM, Harrison S, Anacona PI, Schaefer M, Shannon S.
51 52	1395		Glacial lakes of the Central and Patagonian Andes. Global and Planetary Change. 2018
55 55	1396		Mar 1;162:275-91.
56 57			
58 59 60			66

2 3	1397	214.	Yao T. Pu J. Lu A. Wang Y. Yu W. Recent glacial retreat and its impact on hydrological
4 5	1208		processes on the Tibetan Plateau. China, and surrounding regions. Arctic, Antarctic, and
6 7	1398		
8 9 10	1399		Alpine Research. 2007 Nov 1;39(4):642-50.
10 11 12	1400	215.	Kehrwald NM, Thompson LG, Tandong Y, Mosley-Thompson E, Schotterer U, Alfimov V,
13 14	1401		Beer J, Eikenberg J, Davis ME. Mass loss on Himalayan glacier endangers water
15 16	1402		resources. Geophysical Research Letters. 2008 Nov;35(22).
17 18 19	1403	216.	Zhang G, Xie H, Kang S, Yi D, Ackley SF. Monitoring lake level changes on the Tibetan
20 21	1404		Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment. 2011
22 23 24	1405		Jul 15;115(7):1733-42.
24 25 26	1406	217.	Liu J, Wang S, Yu S, Yang D, Zhang L. Climate warming and growth of high-elevation
27 28	1407		inland lakes on the Tibetan Plateau. Global and Planetary Change. 2009 Jun 1;67(3-
29 30 31	1408		4):209-17.
32 33	1409	218.	Zhang G, Yao T, Xie H, Kang S, Lei Y. Increased mass over the Tibetan Plateau: From lakes
34 35 36 37 38 39 40 41	1410		or glaciers? Geophysical Research Letters. 2013 May 28;40(10):2125-30.
	1411	219.	Conroy JL, Overpeck JT, Cole JE, Liu KB, Wang L, Ducea MN. Dust and temperature
	1412		influences on glaciofluvial sediment deposition in southwestern Tibet during the last
42 43	1413		millennium. Global and planetary change. 2013 Aug 1;107:132-44.
44 45	1414	220.	Sommaruga R, Kandolf G. Negative consequences of glacial turbidity for the survival of
40 47 48	1415		freshwater planktonic heterotrophic flagellates. Scientific reports. 2014 Feb 17;4:4113.
49 50	1416	221.	Bonalumi M, Anselmetti FS, Kaegi R, Wüest A. Particle dynamics in high-Alpine proglacial
51 52 53	1417		reservoirs modified by pumped-storage operation. Water Resources Research. 2011
54 55	1418		Sep;47(9), DOI: 10.1029/2010WR010262.
56 57			
58 59			67

1

2 3 4	1419	222.	Leonard EM, Reasoner MA. A continuous Holocene glacial record inferred from
5 6 7	1420		proglacial lake sediments in Banff National Park, Alberta, Canada. Quaternary Research.
7 8 9	1421		1999 Jan;51(1):1-13.
10 11 12	1422	223.	Vinebrooke RD, Thompson PL, Hobbs W, Luckman BH, Graham MD, Wolfe AP. Glacially
12 13 14	1423		mediated impacts of climate warming on alpine lakes of the Canadian Rocky Mountains.
15 16 17	1424		Internationale Vereinigung für theoretische und angewandte Limnologie:
17 18 19	1425		Verhandlungen. 2010 Jan 1;30(9):1449-52.
20 21	1426	224.	Brown GH, Tranter M, Sharp MJ. Experimental investigations of the weathering of
22 23 24	1427		suspended sediment by alpine glacial meltwater. Hydrological Processes. 1996
25 26	1428		Apr;10(4):579-97.
27 28 29	1429	225.	Koenings JP, Burkett RD, Edmundson JM. The exclusion of limnetic Cladocera from
30 31	1430		turbid glacier-meltwater lakes. Ecology. 1990 Feb;71(1):57-67.
32 33 34	1431	226.	Gilbert R, Crookshanks S. Sediment waves in a modern high-energy glacilacustrine
35 36	1432		environment. Sedimentology. 2009 Apr;56(3):645-59.
37 38	1433	227.	Sommaruga R. When glaciers and ice sheets melt: consequences for planktonic
39 40 41	1434		organisms. Journal of plankton research. 2015 Apr 29;37(3):509-18.
42 43	1435	228.	Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH. The light: nutrient ratio in
44 45 46	1436		lakes: the balance of energy and materials affects ecosystem structure and process. The
47 48	1437		American Naturalist. 1997 Dec;150(6):663-84.
49 50	1438	229.	Laspoumaderes C, Modenutti B, Souza MS, Bastidas Navarro M, Cuassolo F, Balseiro E.
51 52 53	1439		Glacier melting and stoichiometric implications for lake community structure:
54 55			
56 57 58			
59 60			68

2 3 4	1440		zooplankton species distributions across a natural light gradient. Global change biology.
5 6	1441		2013 Jan;19(1):316-26.
7 8 9	1442	230.	Peter H, Sommaruga R. Alpine glacier-fed turbid lakes are discontinuous cold polymictic
10 11	1443		rather than dimictic. Inland Waters. 2017 Jan 2;7(1):45-54.
12 13 14	1444	231.	Hall MH, Fagre DB. Modeled climate-induced glacier change in Glacier National Park,
15 16	1445		1850–2100. BioScience. 2003 Feb 1;53(2):131-40.
17 18 19	1446	232.	Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W. Rapid disintegration of Alpine
20 21	1447		glaciers observed with satellite data. Geophysical research letters. 2004 Nov;31(21),
22 23 24	1448		DOI: 10.1029/2004GL020816.
25 26	1449	233.	Psenner R. Living in a dusty world: airborne dust as a key factor for alpine lakes. Water,
27 28 20	1450		Air, and Soil Pollution. 1999 Jun 1;112(3-4):217-27.
29 30 31	1451	234.	Nanus L, Campbell DH, Williams MW. Sensitivity of alpine and subalpine lakes to
32 33	1452		acidification from atmospheric deposition in Grand Teton National Park and Yellowstone
34 35 36	1453		National Park, Wyoming. Denver, Colorado: US Geological Survey; 2005.
37 38	1454	235.	Williams MW, Tonnessen KA. Critical loads for inorganic nitrogen deposition in the
39 40 41	1455		Colorado Front Range, USA. Ecological Applications. 2000 Dec;10(6):1648-65.
42 43	1456	236.	Howarth RW, Boyer EW, Pabich WJ, Galloway JN. Nitrogen use in the United States from
44 45 46	1457		1961–2000 and potential future trends. AMBIO: A Journal of the Human Environment.
40 47 48	1458		2002 Mar;31(2):88-97.
49 50	1459	237.	Hundey EJ, Moser KA, Longstaffe FJ, Michelutti N, Hladyniuk R. Recent changes in
51 52 53	1460		production in oligotrophic Uinta Mountain lakes, Utah, identified using paleolimnology.
54 55	1461		Limnology and Oceanography. 2014 Nov;59(6):1987-2001.
56 57 59			
59 60			69

1 2			
3 4	1462	238.	Elser JJ, Marzolf ER, Goldman CR. Phosphorus and nitrogen limitation of phytoplankton
5 6 7	1463		growth in the freshwaters of North America: a review and critique of experimental
8 9	1464		enrichments. Canadian Journal of fisheries and aquatic sciences. 1990 Jul 1;47(7):1468-
10 11 12	1465		77.
13 14	1466	239.	Nydick KR, Lafrancois BM, Baron JS, Johnson BM. Lake-specific responses to elevated
15 16	1467		atmospheric nitrogen deposition in the Colorado Rocky Mountains, USA. Hydrobiologia.
17 18 19	1468		2003 Dec 1;510(1-3):103-14.
20 21	1469	240.	Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO,
22 23 24	1470		Meixner T, Johnson DW, Neitlich P. Ecological effects of nitrogen deposition in the
25 26	1471		western United States. BioScience. 2003 Apr 1;53(4):404-20.
27 28 20	1472	241.	Bergström AK, Jansson M. Atmospheric nitrogen deposition has caused nitrogen
30 31	1473		enrichment and eutrophication of lakes in the northern hemisphere. Global Change
32 33	1474		Biology. 2006 Apr;12(4):635-43.
34 35 36	1475	242.	Elser JJ, Andersen T, Baron JS, Bergström AK, Jansson M, Kyle M, Nydick KR, Steger L,
37 38 20	1476		Hessen DO. Shifts in lake N:P stoichiometry and nutrient limitation driven by
39 40 41	1477		atmospheric nitrogen deposition. Science. 2009 Nov 6;326(5954):835-7.
42 43	1478	243.	Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R,
44 45 46	1479		Bowman WD, Clark CM, Emmett B. Effects of nitrogen deposition and empirical nitrogen
47 48	1480		critical loads for ecoregions of the United States. Ecological Applications. 2011
49 50 51	1481		Dec;21(8):3049-82.
52 53			
54 55			
50 57 58			
59 60			70
1 2			
--	------	------	--
3 4	1482	244.	Goldman CR. Primary productivity, nutrients, and transparency during the early onset of
5 6 7 8 9 10 11 2 13 14 15 6 7 8 9 10 11 2 13 14 15 6 7 8 9 10 11 2 13 14 15 6 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1483		eutrophication in ultra-oligotrophic Lake Tahoe, California-Nevada. Limnology and
	1484		Oceanography. 1988 Nov;33(6):1321-33.
	1485	245.	Jassby AD, Reuter JE, Axler RP, Goldman CR, Hackley SH. Atmospheric deposition of
	1486		nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada).
	1487		Water Resources Research. 1994 Jul;30(7):2207-16.
	1488	246.	Sickman JO, Melack JM, Clow DW. Evidence for nutrient enrichment of high-elevation
	1489		lakes in the Sierra Nevada, California. Limnology and Oceanography. 2003
	1490		Sep;48(5):1885-92.
	1491	247.	Baron J, Norton SA, Beeson DR, Herrmann R. Sediment diatom and metal stratigraphy
	1492		from Rocky Mountain lakes with special reference to atmospheric deposition. Canadian
	1493		Journal of Fisheries and Aquatic Sciences. 1986 Jul 1;43(7):1350-62.
	1494	248.	Spaulding SA, Otu MK, Wolfe AP, Baron JS. Paleolimnological records of nitrogen
	1495		deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming,
	1496		USA. Arctic, Antarctic, and Alpine Research. 2015 Nov 1;47(4):703-17.
	1497	249.	Saros JE, Michel TJ, Interlandi SJ, Wolfe AP. Resource requirements of Asterionella
	1498		formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent
	1499		phytoplankton community reorganizations. Canadian Journal of Fisheries and Aquatic
	1500		Sciences. 2005 Jul 1;62(7):1681-9.
49 50	1501	250.	Köster D, Pienitz R. Seasonal diatom variability and paleolimnological inferences-a case
51 52 53	1502		study. Journal of Paleolimnology. 2006 Feb 1;35(2):395-416.
54 55			
56 57 58			
59 60			71

1 2				
3 4	1503	251.	Saros JE, Stone JR, Pederson GT, Slemmons KE, Spanbauer T, Schliep A, Cahl D,	
5 6 7	1504		Williamson CE, Engstrom DR. Climate-induced changes in lake ecosystem structure	
, 8 9	1505		inferred from coupled neo-and paleoecological approaches. Ecology. 2012	
10 11	1506		Oct;93(10):2155-64.	
12 13 14	1507	252.	Zannetti P. Dry and Wet Deposition. In Air Pollution Modeling 1990 (pp. 249-262).	
15 16	1508		Springer, Boston, MA.	
17 18 19	1509	253.	Burns DA. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and	
20 21	1510		southern Wyoming—a review and new analysis of past study results. Atmospheric	
22 23 24	1511		Environment. 2003 Mar 1;37(7):921-32.	
25 26	1512	254.	Butler TJ, Likens GE, Vermeylen FM, Stunder BJ. The impact of changing nitrogen oxid	e
27 28 29 30 31 32 33 34 35 36 37 38	1513		emissions on wet and dry nitrogen deposition in the northeastern USA. Atmospheric	
	1514		Environment. 2005 Sep 1;39(27):4851-62.	
	1515	255.	Morales-Baquero R, Pulido-Villena E, Reche I. Atmospheric inputs of phosphorus and	
	1516		nitrogen to the southwest Mediterranean region: Biogeochemical responses of high	
	1517		mountain lakes. Limnology and Oceanography. 2006 Mar;51(2):830-7.	
39 40 41	1518	256.	Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond	ГC,
42 43	1519		Chen Y, Cohen DD, Herut B, Kubilay N. Global distribution of atmospheric phosphorus	;
44 45 46	1520		sources, concentrations and deposition rates, and anthropogenic impacts. Global	
47 48	1521		biogeochemical cycles. 2008 Dec;22(4), DOI: 10.1029/2008GB003240.	
49 50 51 52 53	1522	257.	Liu X, Yu Z, Dong H, Chen HF. A less or more dusty future in the Northern Qinghai-	
	1523		Tibetan Plateau? Scientific reports. 2014 Oct 22;4:6672.	
54 55 56				
50 57 58				
59				7

Environmental Science: Processes & Impacts

2			
3 4	1524	258.	Bao Y, Bräuning A, Yafeng S. Late Holocene temperature fluctuations on the Tibetan
5 6 7	1525		Plateau. Quaternary Science Reviews. 2003 Nov 1;22(21-22):2335-44.
, 8 9	1526	259.	Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN. A high-
10 11 12	1527		resolution millennial record of the South Asian monsoon from Himalayan ice cores.
12 13 14	1528		Science. 2000 Sep 15;289(5486):1916-9.
15 16	1529	260.	Brahney J, Ballantyne AP, Sievers C, Neff JC. Increasing Ca ²⁺ deposition in the western
17 18 19	1530		US: The role of mineral aerosols. Aeolian Research. 2013 Sep 1;10:77-87.
20 21	1531	261.	Brahney J, Mahowald N, Ward DS, Ballantyne AP, Neff JC. Is atmospheric phosphorus
22 23 24	1532		pollution altering global alpine Lake stoichiometry? Global Biogeochemical Cycles. 2015
25 26	1533		Sep;29(9):1369-83.
27 28 29	1534	262.	Brahney J, Ballantyne AP, Kociolek P, Spaulding S, Otu M, Porwoll T, Neff JC. Dust
30 31	1535		mediated transfer of phosphorus to alpine lake ecosystems of the Wind River Range,
32 33	1536		Wyoming, USA. Biogeochemistry. 2014 Aug 1;120(1-3):259-78.
35 36	1537	263.	Moulin C, Lambert CE, Dulac F, Dayan U. Control of atmospheric export of dust from
37 38	1538		North Africa by the North Atlantic Oscillation. Nature. 1997 Jun;387(6634):691.
39 40 41	1539	264.	Pulido-Villena E, Reche I, Morales-Baquero R. Evidence of an atmospheric forcing on
42 43	1540		bacterioplankton and phytoplankton dynamics in a high mountain lake. Aquatic
44 45 46	1541		sciences. 2008 Apr 1;70(1):1-9.
47 48	1542	265.	Reche I, Ortega-Retuerta E, Romera O, Villena EP, Baquero RM, Casamayor EO. Effect of
49 50 51	1543		Saharan dust inputs on bacterial activity and community composition in Mediterranean
52 53	1544		lakes and reservoirs. Limnology and Oceanography. 2009 May;54(3):869-79.
54 55 56			
50 57			
59 60			73

1 2			
3 4 5	1545	266.	Mladenov N, Lípez-Ramos J, McKnight DM, Rechea I. Alpine lake optical properties as
5 6 7	1546		sentinels of dust deposition and global change. Limnology and oceanography. 2009
8 9	1547		Nov;54(6part2):2386-400.
10 11 12	1548	267.	Mladenov N, Pulido-Villena E, Morales-Baquero R, Ortega-Retuerta E, Sommaruga R,
12 13 14	1549		Reche I. Spatiotemporal drivers of dissolved organic matter in high alpine lakes: Role of
15 16	1550		Saharan dust inputs and bacterial activity. Journal of Geophysical Research:
17 18 19	1551		Biogeosciences. 2008 Jun 1;113(G2), DOI: 10.1029/2008JG000699.
20 21	1552	268.	Peter H, Hörtnagl P, Reche I, Sommaruga R. Bacterial diversity and composition during
22 23 24	1553		rain events with and without Saharan dust influence reaching a high mountain lake in
24 25 26	1554		the Alps. Environmental microbiology reports. 2014 Dec;6(6):618-24.
27 28 20	1555	269.	Burns DA, Blett T, Haeuber R, Pardo LH. Critical loads as a policy tool for protecting
29 30 31	1556		ecosystems from the effects of air pollutants. Frontiers in Ecology and the Environment.
32 33	1557		2008 Apr;6(3):156-9.
34 35 36	1558	270.	Nelson JS, Paetz MJ. The fishes of Alberta. University of Alberta; 1992.
37 38	1559	271.	Knapp RA. Non-native trout in natural lakes of the Sierra Nevada: an analysis of their
39 40 41	1560		distribution and impacts on native aquatic biota. In Sierra Nevada ecosystem project:
42 43	1561		final report to Congress 1996 (Vol. 3, pp. 363-407).
44 45 46	1562	272.	Miró A, Ventura M. Historical use, fishing management and lake characteristics explain
40 47 48	1563		the presence of non-native trout in Pyrenean lakes: Implications for conservation.
49 50	1564		Biological Conservation. 2013 Nov 1;167:17-24.
51 52 53			
54 55			
56 57			
59 60			74

1 2			
3 4 5	1565	273.	Tiberti R, Nelli L, Brighenti S, Iacobuzio R, Rolla M. Spatial distribution of introduced
5 6 7	1566		brook trout Salvelinus fontinalis (Salmonidae) within alpine lakes: evidences from a fish
8 9	1567		eradication campaign. The European Zoological Journal. 2017 Jan 1;84(1):73-88.
10 11 12	1568	274.	Finlay JC, Vredenburg VT. Introduced trout sever trophic connections in watersheds:
12 13 14	1569		consequences for a declining amphibian. Ecology. 2007 Sep;88(9):2187-98.
15 16	1570	275.	Knapp RA. Effects of nonnative fish and habitat characteristics on lentic herpetofauna in
17 18 19	1571		Yosemite National Park, USA. Biological Conservation. 2005 Jan 1;121(2):265-79.
20 21	1572	276.	Matthews KR, Pope KL, Preisler HK, Knapp RA. Effects of nonnative trout on Pacific
22 23 24	1573		treefrogs (Hyla regilla) in the Sierra Nevada. Copeia. 2001 Dec;2001(4):1130-7.
24 25 26	1574	277.	Welsh Jr HH, Pope KL, Boiano D. Sub-alpine amphibian distributions related to species
27 28	1575		palatability to non-native salmonids in the Klamath mountains of northern California.
29 30 31	1576		Diversity and Distributions. 2006 May;12(3):298-309.
32 33	1577	278.	Rachowicz LJ, Knapp RA, Morgan JA, Stice MJ, Vredenburg VT, Parker JM, Briggs CJ.
34 35 36	1578		Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology.
37 38	1579		2006 Jul;87(7):1671-83.
39 40 41	1580	279.	Epanchin PN, Knapp RA, Lawler SP. Nonnative trout impact an alpine-nesting bird by
42 43	1581		altering aquatic-insect subsidies. Ecology. 2010 Aug;91(8):2406-15.
44 45 46	1582	280.	Fritz KA, Whiles MR, Trushenski JT. Subsidies of long-chain polyunsaturated fatty acids
40 47 48	1583		from aquatic to terrestrial environments via amphibian emergence. Freshwater Biology.
49 50	1584		2019 May;64(5):832-42.
51 52 53	1585	281.	Brett MT, Müller-Navarra DC. The role of highly unsaturated fatty acids in aquatic
54 55	1586		foodweb processes. Freshwater Biology. 1997 Dec;38(3):483-99.
56 57			
58 59			75

1 2			
3 4	1587	282.	Arts MT, Kohler CC. Health and condition in fish: the influence of lipids on membrane
5 6 7	1588		competency and immune response. In Lipids in Aquatic Ecosystems 2009 (pp. 237-256).
, 8 9	1589		Springer, New York, NY.
10 11 12	1590	283.	Parrish CC. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystems
12 13 14	1591		2009 (pp. 309-326). Springer, New York, NY.
15 16	1592	284.	Gladyshev MI, Sushchik NN, Makhutova ON. Production of EPA and DHA in aquatic
17 18 19	1593		ecosystems and their transfer to the land. Prostaglandins & Other Lipid Mediators. 2013
20 21	1594		Dec 1;107:117-26.
22 23 24	1595	285.	Hixson SM, Sharma B, Kainz MJ, Wacker A, Arts MT. Production, distribution, and
25 26	1596		abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental
27 28 20	1597		dichotomy between freshwater and terrestrial ecosystems. Environmental Reviews.
30 31	1598		2015 Aug 25;23(4):414-24.
32 33	1599	286.	Gladyshev MI, Sushchik NN, Anishchenko OV, Makhutova ON, Kolmakov VI, Kalachova
34 35 36	1600		GS, Kolmakova AA, Dubovskaya OP. Efficiency of transfer of essential polyunsaturated
37 38	1601		fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir.
39 40 41	1602		Oecologia. 2011 Feb 1;165(2):521-31.
42 43	1603	287.	Gladyshev MI, Arts MT, Sushchik NI. Preliminary estimates of the export of omega-3
44 45 46	1604		highly unsaturated fatty acids (EPA+ DHA) from aquatic to terrestrial ecosystems. In
47 48	1605		Lipids in Aquatic Ecosystems 2009 (pp. 179-210). Springer, New York, NY.
49 50 51	1606	288.	Gladyshev MI, Krylov AV, Sushchik NN, Malin MI, Makhutova ON, Chalova IV, Kalacheva
52 53	1607		GS. Transfer of essential polyunsaturated fatty acids from an aquatic to terrestrial
54 55 56			
57 58			
59			76

2 3 4	1608		ecosystem through the fish-bird trophic pair. In Doklady Biological Sciences 2010 Apr	[.] 1
5 6	1609		(Vol. 431, No. 1, p. 121). Springer Science & Business Media.	
/ 8 9	1610	289.	Gladyshev MI, Kharitonov AY, Popova ON, Sushchik NN, Makhutova ON, Kalacheva G	iS.
10 11	1611		Quantitative estimation of dragonfly role in transfer of essential polyunsaturated fatt	ty
12 13 14	1612		acids from aquatic to terrestrial ecosystems. In Doklady Biochemistry and Biophysics	
15 16	1613		2011 Jun 1 (Vol. 438, No. 1, pp. 141-143). MAIK Nauka/Interperiodica.	
17 18 19	1614	290.	Yermokhin MV, Sushchik NN, Tabachishin VG, Kalacheva GS, Kolmakova AA, Gladysh	ev
20 21	1615		MI. Amphibia as a Vector of Transfer of Long-Chain Polyunsaturated Omega-3 Fatty	
22 23	1616		Acids from Aquatic to Terrestrial Ecosystems. In Doklady Biochemistry and Biophysics	S
24 25 26	1617		2018 Jul 1 (Vol. 481, No. 1, pp. 195-197). Pleiades Publishing.	
27 28	1618	291.	Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM. The emergence of surfac	ce-
29 30 31	1619		based Arctic amplification. The Cryosphere. 2009 Feb 4;3(1):11-9.	
32 33	1620	292.	Pepin N, Bradley RS, Diaz HF, Baraër M, Caceres EB, Forsythe N, Fowler H, Greenwoo	d G,
34 35 36	1621		Hashmi MZ, Liu XD, Miller JR. Elevation-dependent warming in mountain regions of t	he
37 38	1622		world. Nature Climate Change. 2015 May;5(5):424.	
39 40 41 42 43	1623	293.	Saros JE, Northington RM, Osburn CL, Burpee BT, John Anderson N. Thermal	
	1624		stratification in small arctic lakes of southwest Greenland affected by water	
44 45	1625		transparency and epilimnetic temperatures. Limnology and Oceanography. 2016	
46 47 48	1626		Jul;61(4):1530-42.	
49 50	1627	294.	Nürnberg GK. The prediction of internal phosphorus load in lakes with anoxic	
51 52	1628		hypolimnia. Limnology and oceanography. 1984 Jan;29(1):111-24.	
55 54 55				
56 57				
58 59				77

2			
3 4	1629	295.	Kling GW, Kipphut GW, Miller MC. Arctic lakes and streams as gas conduits to the
5 6 7	1630		atmosphere: implications for tundra carbon budgets. Science. 1991 Jan
7 8 9	1631		18;251(4991):298-301.
9 10 11 12	1632	296.	Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K,
12 13 14	1633		Fortino K, Knoll LB, Kortelainen PL. Lakes and reservoirs as regulators of carbon cycling
15 16	1634		and climate. Limnology and oceanography. 2009 Nov;54(6part2):2298-314.
17 18	1635	297.	Northington RM, Saros JE. Factors controlling methane in arctic lakes of southwest
19 20 21	1636		Greenland. PloS one. 2016 Jul 25;11(7), DOI: 10.1371/journal.pone.0159642.
22 23	1637	298.	Molot LA, Dillon PJ. Nitrogen mass balances and denitrification rates in central Ontario
24 25 26	1638		lakes. Biogeochemistry. 1993 Sep 1;20(3):195-212.
27 28	1639	299.	Kropáček J, Maussion F, Chen F, Hoerz S, Hochschild V. Analysis of ice phenology of lakes
29 30 21	1640		on the Tibetan Plateau from MODIS data. The Cryosphere. 2013;7(1):287.
31 32 33	1641		
34 35			
36			
37 38			
39			
40			
41 42			
43			
44			
45			
46 47			
48			
49			
50			
51			
52			
53 54			
54 55			
56			
57			
58			
59			78