

Solar UV radiation and microbial life in the atmosphere

Journal:	Photochemical & Photobiological Sciences
Manuscript ID	PP-ART-10-2017-000407.R3
Article Type:	Paper
Date Submitted by the Author:	03-Jun-2018
Complete List of Authors:	Madronich, Sasha; National Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling Björn, Lars Olof; Lunds Universitet Biologisk-geovetenskapliga verksamhetsomradet, Department of Biology McKenzie, Richard; NIWA, Lauder

SCHOLARONE[™] Manuscripts

1	Solar UV radiation and microbial life in the atmosphere
2	
3	^{1*} Sasha Madronich, ² Lars Olof Björn, and ³ Richard L. McKenzie
4	¹ NCAR, Boulder, CO, 80303, USA
5	² Lund University, Dept. of Biology, Sölvegatan 35, S-22362 Lund, Sweden
6	³ NIWA Lauder, PB 50061, Omakau, Central Otago, 9352, New Zealand
7	*Corresponding author
8	
9	Abstract
10	Many microorganisms are alive while suspended in the atmosphere, and some
11	seem to be metabolically active during their time there. One of the most
12	important factors threatening their life and activity is solar ultraviolet (UV)
13	radiation. Quantitative understanding of the spatial and temporal survival
14	patterns in the atmosphere, and of the ultimate deposition of microbes to the
15	surface, is limited by a number factors some of which are discussed here. These
16	include consideration of appropriate spectral sensitivity functions for biological
17	damage (e.g. inactivation), and the estimation of UV radiation impingent on a
18	microorganism suspended in the atmosphere.
19	We show that for several bacteria (E. coli, S. typhimurium, and P. acnes) the
20	inactivation rates correlate well with irradiances weighted by the DNA damage
21	spectrum in the UV-B spectral range, but when these organisms show significant
22	UV-A (or visible) sensitivities, the correlations become clearly non-linear. The
23	existence of these correlations enables the use of a single spectrum (here DNA
24	damage) as a proxy for sensitivity spectra of other biological effects, but with
25	some caution when the correlations are strongly non-linear.
26	The radiative quantity relevant to the UV exposure of a suspended particle is
27	the fluence rate at an altitude above ground, while down-welling irradiance at
28	ground-level is the quantity most commonly measured or estimated in satellite-
29	derived climatologies. Using a radiative transfer model that computes both
30	quantities, we developed a simple parameterization to exploit the much larger
31	irradiance data bases to estimate fluence rates, and present the first fluence-rate
32	based climatology of DNA-damaging UV radiation in the atmosphere.

The estimation of fluence rates in the presence of clouds remains a particularly challenging problem. Here we note that both reductions and enhancements in the UV radiation field are possible, depending mainly on cloud optical geometry and prevailing solar zenith angles. These complex effects need to be included in model simulations of the atmospheric life cycle of the organisms.

39

40 **1. Introduction**

41

42 It is well-known that the atmosphere is important for life on our planet, and also 43 that life affects the composition of the atmosphere. But we do not usually 44 consider free air, high above the ground and ocean, as a habitat for continuous 45 life. Recently it has been established that there are birds which spend almost all 46 their life, except when breeding, on the wing¹⁻³. They eat, drink, sleep and 47 sometimes mate while flying. But in this paper we shall focus on microbial life in 48 the atmosphere, and its relation with a potentially hostile ultraviolet (UV) 49 environment.

50 The purpose of the present paper is to review some of the published 51 literature, noting several critical issues that underlie quantitative understanding. 52 We build on existing knowledge to produce a climatology of UV radiation that is 53 relevant to the survival of airborne organisms. We shall start with the kinds, 54 distribution and spread of microorganisms, then continue with the extent to 55 which they can survive in the atmosphere, with particular focus on the effect of 56 UV radiation. Recognized as a major environmental cause of skin cancer in 57 humans and animals⁴, UV radiation has been shown in laboratory studies to 58 effectively kill or inactivate many microorganisms. We consider the availability 59 of UV radiation in the atmosphere from the perspective of a suspended biological 60 particle, contrasting clear and cloudy sky conditions. Using the DNA damage 61 spectrum as a proxy for multiple damage mechanisms, a climatology of DNA-62 damaging UV radiation is obtained with a radiative transfer model and satellite-63 observed ozone and clouds, that clearly shows the large seasonal and 64 geographical variability in UV exposures experienced by airborne 65 microorganisms.

67	2 Airborne microorganisms
68	
69	2.1 Types of airborne microorganisms
70	Many different types of microorganisms are present in the atmosphere (see
71	Table 1). Most research in this area has been carried out on fungi and bacteria,
72	particularly those which cause disease in man, animals and crops. Pollen has also
73	been extensively researched, the main reason being that pollen from many plants
74	(as are some fungal spores) are allergenic. Another reason for studying pollen
75	carried by wind is that pollen is used to study past plant distribution, and for a
76	correct interpretation of distribution of ancient pollen it is necessary to have an
77	idea of how far it might have travelled before being deposited. A third reason to
78	study how pollen travels carried by air is the risk of unwanted cross-pollination
79	of crops, especially genetically modified crops ¹⁰ . Some research has been carried
80	out also on other airborne organisms, such as algae ^{15,16} and amoebae ¹⁷ . So-called
81	dust seeds are so small that we should perhaps include them among
82	microorganisms, and in many cases they are dispersed mainly by wind. The seed
83	of Bartonia sp. (Gentianaceae) is 170 μ m long ¹⁸ , that of the orchid Dichaea
84	panamensis 160 μ m by 70 μ m ⁵ .
85	
86	2.2 Spread of airborne microorganisms
87	Suspension near sources can occur by many mechanisms. Some organisms are
88	carried aloft in dust storms (e.g., refs. 19-21), but also aquatic microorganisms
89	will escape to the atmosphere in strong wind or by breakage of bubbles at the
90	water surface ²² . Many microorganisms collected from a cloud on a mountain
91	were derived from terrestrial vegetation ²³ , and Lighthart ¹³ citing earlier sources
92	also stresses the great contribution from vegetation. Presumably the natural
93	shaking of leaves by wind injects some organisms into the air. Other organisms,
94	such as ferns 24,25 , mosses 26,27 and fungi $^{28-30}$ (see also review by Sakes et al. 31)
95	actively eject their spores into the air. Another example is described by Dressaire
96	et al. ³² : cooling of air by evaporation from mushrooms causes air to come down
97	from above and form a horizontal flow outward from the fungus. When the flow

98 encounters a barrier it rises upward again, carrying spores with it.

99 The terminal velocity (Table 1) is an important limitation to how far 100 suspended particles can be transported vertically as well as horizontally by 101 winds, and multiday transport is unlikely if this velocity is much larger than about 1 cm s⁻¹ (\approx 1 km day⁻¹). The smaller and less dense organisms with lower 102 103 terminal velocities have a greater chance of long-range dispersal. At the same 104 time small organisms are less able to protect themselves against ultraviolet 105 radiation. It should be noted that although bacteria are among the smallest of the 106 organisms listed in Table 1, they usually appear in air in clusters or attached to 107 other particles. Thus Lighthart¹³ reported that bacteria-carrying particles are 108 dominated by sizes \geq 7 µm as compared to typical single-bacterial sizes of 0.65– 109 1.1 µm. Clauss³³ found that atmospheric particles containing culturable bacteria 110 often had sizes of around 10 µm, while those containing culturable fungi often 111 had sizes around 3 µm. Thus effective particle sizes for bacteria are comparable 112 to those of eukaryotes. By comparison, typical cloud droplets have radii of about 113 10 µm³⁴. 114 Transport to higher altitudes occurs primarily by turbulence and convection 115 in the boundary layer. Near the surface upward air motions are caused by 116 incoming solar radiation heating the ground, the same currents that allow eagles 117 to circle upwards without moving their wings. Large fires also cause upward air 118 currents, and anthropogenic biomass burning is known to propel

microorganisms upwards³⁵. Convective activity over large forest fires, or the
Asian summer monsoon anticyclone³⁶ might also lift microorganisms all the way
to the stratosphere. Some microorganisms are also found in the stratosphere³⁷⁻⁴⁰,
where gravito-photophoresis⁴¹ may play a role.

123 The smaller a microorganism is, the longer it is likely to stay in the air, but 124 many of the types mentioned can spread over vast distances, given sufficiently 125 strong winds^{20,42}. Pollen can blow across the Alps⁴³, from Germany and northern 126 France to Spain across the Pyrénées⁴⁴, from Texas or Oklahoma to Canada⁴⁵, and 127 probably from the Baltic states to northern Sweden⁴⁶. Two moss species were 128 found on the new volcanic island Surtsey as early as 1967 when eruptions 129 ceased, and several new bryophyte species were discovered every year until 130 1973 when regular sampling ended⁴⁷. Presumably moss spores had arrived by 131 wind from the nearest larger island some 6 km away. Smaller particles such as

132	viruses, bacteria and fungal spores may spread globally in air. For instance,
133	fungal spores have spread from Australia to New Zealand ⁴⁸ and hundreds of km
134	over USA ⁴⁹ .
135	
136	2.3 Ultraviolet radiation and survival of microorganisms in air
137	Environmental factors that may shorten life-span of microorganisms in air are
138	ultraviolet (and to a lesser extent visible) solar radiation, desiccation and
139	repeated freeze-thaw cycles $50-52$. In a simulation of various factors in the
140	stratosphere UV radiation was the most severe one for spores of Bacillus
141	subtilis ⁵³ .
142	Singer and Ames 54 observed that bacteria normally well-exposed to sunlight
143	tend to have a higher content of guanine plus cytosine in their DNA than bacteria
144	living more in the dark, and explained how this may contribute to increased UV
145	resistance. Members of the genus Bacillus have UV protecting spore coats and
146	DNA repair machinery in the endospores which counteract damage from solar
147	UV radiation ⁵⁵ . It was found that many of the living bacteria in dust at high
148	altitude were either actinomycetes with high guanine plus cytosine content in
149	their DNA, or spore-forming bacilli ⁵⁶ . The survival of several different bacteria to
150	specific doses of UV-A (315–400 nm) and UV-B (280–315 nm) in the laboratory
151	are shown in Table 2.
152	We can draw the following conclusions from Table 2: (1) On an energy basis
153	UV-B (in the absence of UV-A) is much more potent than UV-A. (2) There are
154	large variations in sensitivity among bacteria. (3) There is no correlation
155	between UV-A and UV-B sensitivity among the various bacteria. (4) For some
156	bacteria, such as Acinetobacter, Brevibacterium or Micrococcus, solar UV-A,
157	because of its higher fluence rate, is probably more important than UV-B. A
158	review of the literature on photoinactivation of bacteria by monochromatic
159	visible light of various wavelengths is provided by Hessling et al. ⁵⁸
160	Unfortunately, experimental studies of the impact of solar radiation on
161	pollen ^{59,60} , bacteria and other microorganisms have been conducted mostly on
162	hydrated cells (usually on agar gel). This leads to an underestimation of
163	sensitivity in dry air, in which repair of damage is inhibited. In the real
164	atmosphere, conditions intermediate between dry and wet can be encountered,

e.g. at high relative humidity for microbes attached to hygroscopic aerosol

166 particles. Furthermore, because repair is partly light-dependent (photo-repair)

and driven mainly by UV-A radiation, experiments with only UV-B radiation will

168 generally overestimate effects of solar UV-B.

169

170 2.4 Action Spectra

171 The spectral sensitivity of organisms is commonly represented by action spectra, 172 for which a particular endpoint, e.g. photo-inactivation, is measured as a function 173 of wavelength. A few examples of spectral sensitivity of bacteria are given in Fig. 174 1. Many other sensitivity spectra have also been published (Table 3). For several 175 reasons they should be regarded as rather approximate: (1) There are often 176 large deviations from exponential decay of viability with fluence, e.g. sometimes 177 with slower initial or final decay, so the inactivation constant depends on fluence 178 (i.e. is not really a constant); (2) in general the organisms have been in an 179 aqueous medium, in which the radiation sensitivity is likely to differ from that in 180 air; (3) in air the sensitivity also depends on relative humidity, temperature and 181 the metabolic state of the organism. Good spectral resolution in these action 182 spectra is particularly important in the UV-B band, where absorption by 183 stratospheric ozone modulates transmission by several order of magnitudes over 184 a mere few tens of nanometers. 185 The action spectra point to DNA as a dominant chromophore for 186 photoinactivation (Fig. 1), and this absorption is mirrored in the inactivation 187 spectra of Escherichia coli and Salmonella typhimurium. For E. coli, we show both 188 the spectrum for aerobic conditions measured by Webb and Brown⁶⁵, and with a 189 UV-A tail observed in lab-grown *E. coli* by Silverman and Nelson⁶⁹. Other 190 chromophores such as porphyrins may impress their signatures (e.g., in 191 *Propionibacterium acnes*). Thus, the action spectra shown in Fig. 1 cover a range 192 of qualitatively different spectral behaviors, and illustrate several issues related 193 to their use. 194 The absolute sensitivity to different wavelengths depends not only on the 195 biological action spectrum, but also on the spectrum of the available solar

196 radiation. Such spectra can be measured directly (see Sect. 3.1), or calculated

197 with radiative transfer models that simulate the propagation of solar radiation

198 through the atmosphere. Here, we use the Tropospheric Ultraviolet-Visible 199 (TUV) model⁸³, described in the Supplementary Materials, to provide UV spectra 200 applicable to a wide range of conditions. 201 Figure 2 shows the contributions of different wavelengths to total inactivation 202 rates, for high sun conditions at sea level, using the action spectra of Fig. 1. The 203 steep *E. coli* (aerobic) and *S. typhimurium* are dominated by UV-B radiation, with 204 only a few percent contribution from longer wavelengths. The UV-A tail observed 205 from lab-grown E. coli causes UV-A contributions that are comparable to those of 206 UV-B wavelengths, while for *P. acnes* the contributions are fairly evenly 207 distributed over the observed range 320-440 nm, but with unclear possible 208 contributions from outside this range. 209 The different relative importance of different wavelengths, evident in Fig. 2, 210 has notable consequences. One of these is that the inactivation rates of different 211 organisms may or may not be simply proportional to one another. This is shown 212 in Fig. 3, where (relative to DNA damage) good linearity is seen for S. 213 *typhimurium* and *E. coli* (aerobic), but correlations are much poorer (see 214 flattening curves) for the two spectra with large UV-A contributions. The 215 linearity (or lack of) depends on the causes of the variations: If – as is the case in 216 Fig. 3 – the variations in DNA damage are largely due to clear-sky variations in 217 the solar zenith angle (particularly in the slant crossing of stratospheric O_3 218 layers), the UV-A variations will be disproportionately smaller than UV-B 219 variations; while variations in cloudiness (not shown) would affect UV-A and UV-220 B similarly and thus retain simple proportionality. 221 Notwithstanding this and other limitations, plots such as Fig. 3 provide a quick 222 way to estimate inactivation rates for a number of different effects if one 223 standard metric, e.g. DNA-damaging radiation, is known. For example, a typical 224 mid-latitude summer day with DNA damage radiation of 100 J m⁻² day⁻¹, implies 225 for *S. typhimurium* a survival reduction by 400 e-folds day⁻¹, or equivalently an 226 1/e reduction (to 37% of initial value) in \approx 3 minutes. In these cases, the 227 maximum transport distances are clearly limited. 228 229 3. UV Exposure of DNA in the Atmosphere

231 We consider next the DNA-weighted radiation specifically normalized at 254 nm, 232 as a key indicator for the most UV-B sensitive processes, such as *S. typimurium* 233 and E. coli (aerob.) inactivation described above. The normalization at 254 nm is 234 somewhat arbitrary, but possibly useful given that many inactivation studies 235 have used the 254 nm line of low-pressure Hg lamps⁸⁴. Thus, tropospheric 236 irradiances calculated with this normalized DNA spectrum are equivalent to the 237 energy (e.g., $\int s^{-1} m^{-2}$) of 254 nm photons that would have the same effect (e.g. 238 inactivation). However, this assumes that the action spectrum is accurate over 239 several orders of magnitude (from 254 to tropospheric UV-B wavelengths), so 240 this conversion of laboratory data at 254 to tropospheric wavelengths can be 241 problematic⁸⁵.

242

243

244 **3.1 Irradiance Incident on a Horizontal Surface**

The most commonly measured quantity of UV radiation is the spectral irradiance
incident on a horizontal plane (usually the detector), at the surface of the Earth.
Measurements from high elevation mountain stations are available but must be
distinguished from the fewer observations available from balloon or aircraft
above ground.

250 A climatology of observations of ground-based spectral UV-B and UV-A 251 irradiance has been established previously, using high-quality spectral data from 252 the Network for the Detection of Atmospheric Composition Change (NDACC)⁸⁶⁻⁸⁸. 253 Relationships between monthly mean UV-B and DNA-weighted UV at a subset of 254 those sites were used to estimate DNA-weighted irradiances (see Supplementary 255 Material). These were then re-normalized to unity at 254 nm for comparability 256 with the data shown in Fig. 3. The weighted irradiances thus derived are shown 257 in Fig. 4. The data show strong latitudinal variation. Seasonal changes are 258 relatively small in the tropics, but become more pronounced at mid to high 259 latitudes. At the highest latitudes, irradiances are zero during the polar night. As 260 noted previously for other UV weightings⁸⁹ southern mid-latitude doses in 261 summer tend to be significantly higher than at comparable Northern Hemisphere 262 locations. Highest values, ca. 220 J m⁻² day⁻¹, are achieved at Mauna Loa, Hawaii 263 (3.4 km elevation), while in Barrow, Alaska summer values are notably lower

than in Antarctica. The difference between dry and wet climates is also seen, e.g.,

265	with Alice Springs and Darwin, the latter experiencing frequent cloud and
266	rainfall during December – March. These large seasonal and latitudinal
267	variations in DNA-damaging UV could potentially have profound effects on
268	survival rates of airborne species.
269	
270	3.2 Scalar Irradiance, or Actinic Flux, or Fluence Rate
271	Irradiance, the radiation impinging on a horizontal surface, is not the radiative
272	quantity most relevant to airborne particles. A horizontal plate (a typical
273	irradiance detector) will heat more/less when tilted to/away from the incident
274	solar beam, while an airborne particle is indifferent to the direction from which
275	the light originates, at least to the extent that it is spherical or randomly oriented.
276	This total radiation, independent of direction, is known by various names
277	including actinic flux, scalar irradiance, or fluence rate ^{85,90} , with the latter used
278	here.
279	The relationship between fluence rate and irradiance depends on the angular
280	distribution of the radiation field, and can be complex. Nader and White 91
281	measured fluence rates in urban Los Angeles by placing sensors on the six faces
282	of a cube (with appropriate geometric corrections), and compared thisto
283	irradiance measured by a single upward facing sensor. The ratio of fluence rate
284	to irradiance varied from about 1.2 at high sun angle, to about 2.2 at low sun
285	angle. Similar values have been measured using spherically shaped detectors ⁹² ,
286	or by systematic sampling of radiation incident from different sky directions
287	with irradiance sensors ⁹³ . A major controlling factor is the direct/diffuse ratio
288	(the solar beam compared to the sky radiation) which in turn depends on
289	atmospheric conditions (clouds, ground reflectivity), wavelength, solar zenith
290	angle, and altitude. Models $^{94\text{-}97}$ generally reproduced the observed values $^{92,98\text{-}100}$
291	fairly well if the surrounding atmosphere is well known (though that is often not
292	true). Measurements at high spectral resolution have allowed more accurate
293	estimates of molecular photo-dissociation coefficients important in the
294	formation of smog ¹⁰¹⁻¹⁰³ .
295	The ratio of fluence rate at any altitude to the irradiance at the surface is
296	shown in Fig. 5, for daily DNA-weighted radiation and cloud-free conditions. The

fluence rate is systematically larger than the irradiance, by a factor of 2 or more near the surface and increasing with altitude. This is due to the importance of photons reaching the biological target from the sides, whereas such photons would be barely detected by a horizontal plate (irradiance detector). It should be noted that this illustration assumed a minimal surface albedo (5%). With larger surface albedo, e.g. 90% as possible over snow, the fluence rate enhancements would be even larger.

A fit of the data presented in Fig. 5 (described in the Supplementary Materials)
led to the simple parameterization for the ratio, *R*, of fluence rate at any altitude
z, to the irradiance at ground level.

307 $R \approx 2.6 + 0.8 z - (0.8 + 0.5 z) \cos \Theta_{\rm N}$ Eq. (1)

308

 $\Theta_{\rm N}$ = solar zenith angle at noon

309 z =altitude, km

This simple formula provides an estimate of the enhancement in DNA-damaging radiation as a function of altitude and location/season (through the noon solar zenith angle). It should be recalled that this parameterization is based on DNAdamaging radiation, 24-hour average, clear sky conditions, and should be tested for validity for extended uses. Note that the enhancement factor *R* increases with altitude, due to the contribution of increased reflections from the atmosphere below.

317

318 3.3 A Global Climatology

319 The development of a simple parameterization (Eq. 1) relating irradiance and 320 fluence rate means that available climatologies for surface irradiance, whether 321 from observations (as discussed in Section 3.1), or from modeling, can be used to 322 estimate corresponding climatologies of fluence rates. This is illustrated in Fig. 6, 323 in which we extended the climatology of surface UV irradiance given by Lee-324 Taylor et al.¹⁰⁴ by normalizing the DNA values to 254 nm and converting to 325 fluence using Eq. 1. The model calculations in Fig. 6 show similar geographic and 326 temporal patterns as the irradiance measurements shown in Fig. 4, with fluences 327 being typically larger by a factor of two or more (However, note that for the 328 spatial resolution used in Fig. 6, the altitude of the Mauna Loa Observatory 329 (MLO) is not fully resolved, so the maximum fluence there appears less than

330 twice the measured maximum irradiance). For cloud-free skies, the ground-331 based climatology can be extended to higher altitudes using Eq. 1; in cloudy 332 conditions Eq. 1 is a reasonable approximation only near the ground, but not 333 within and above cloud (see Sect. 4.2, and Sect. S3 of the Suppl. Materials) 334 The DNA fluences and hence survival times depend strongly on latitude and 335 season. Survival times with respect to UV damage are very much longer in winter 336 than in summer, particularly at higher latitudes, and are shortest in the tropics 337 where seasonal variations are also small.

338

339 4 Life in Clouds

340

A particularly interesting and complex topic is the effect of clouds on microbial
survival, all the more so because much data about bioaerosols comes from
collected cloud and rain water. Clouds offer refuge from dehydration, which was
previously mentioned as one of the environmental factors most damaging to
microbial life. But they also have complex temperature and radiative effects that
require consideration.

347

348 **4.1 Microbial Activity in Clouds**

349 Generally, temperatures decrease as we ascend through the troposphere, and life 350 processes usually proceed more slowly at colder temperatures. But we should 351 not overestimate the ability of low temperature to stop life processes. Mykytczuk 352 et al.¹⁰⁵ found that the bacterium *Planococcus halocryophilus* is able to grow and 353 divide at minus 15°C, (although the optimum temperature is around plus 25°C) 354 and is still metabolically active at -25°C; and *Psychromonas ingrahamii* is still 355 able to grow at -12°C ¹⁰⁶. *P. ingrahamii* normally lives in and on sea ice for which 356 temperatures range from -1.8°C and -30°C, and the sea ice surface accounts for a 357 large part of the primary production in the polar oceans.

While it has been known for a long time that microorganisms are present in air, only recently has evidence started to show that some microorganisms carry out life processes while aloft^{107,108}. Many of the organisms are carried aloft in dry conditions (dust storms, e.g., refs. 19-21) and although spore germination has been observed at a water activity of only 0.64 ¹⁰⁹ and bacterial cell division below a water activity of 0.69¹¹⁰, biological activity takes place primarily in low

12

364 clouds with life-friendly temperatures. Delort et al.¹¹¹ have given an overview of 365 the microbial population in clouds. Most bacteria reaching the stratosphere are 366 rapidly killed by ultraviolet radiation¹¹². Repeated freeze-thaw cycles are 367 particularly detrimental to microorganisms. 368 Cloud droplets and dry aerosols can be sampled using balloons¹¹³ or aircraft, or from the ground on mountains¹¹⁴. The easiest way to get information about 369 370 organisms in tropospheric clouds is to investigate rainwater collected under 371 stringent conditions, although direct collection of cloud droplets is preferable. 372 Also investigation of hailstones^{115,116} provides a way to sample cloud organisms. 373 Hu et al.¹¹⁷ found that a large fraction of the bacteria in rainwater were viable. 374 However, this does not mean that they necessarily were biologically active while 375 in the atmosphere prior to precipitation. Klein et al.¹¹⁸ tried to obtain 376 information on biological activity by measuring ribosomal DNA and RNA 377 molecules. Since metabolically active cells have more ribosomes (e.g., ref. 119) 378 they (often) have a higher rRNA to rDNA ratio. Krumins et al.¹²⁰, using rRNA 379 abundance as a proxy, came to the conclusion that a bacterium, Sphingomonas 380 *aerolata*, originally isolated from air, can be metabolically active while 381 suspended in air. However, the positive correlation between rRNA/rDNA and 382 growth rate does not hold for all bacteria¹²¹, and thus some of their conclusions 383 may need further support. Since RNA is more UV-resistant than DNA¹²², UV 384 radiation may be a confounding factor here. By studying the incorporation of 385 added ³H -thymidine into bacterial cells in cloud-water, Sattler et al.¹²³ estimated 386 a cell number doubling time varying from 3.6 to 19.5 days. Protein synthesis was 387 estimated by incorporation of ¹⁴C-leucine. From this they deduced an average 388 carbon assimilation rate of 12 ng L⁻¹ day⁻¹, with a maximum of 28 ng L⁻¹ day⁻¹. 389 They conclude that the global bacterial production of organic carbon in clouds 390 may be in the range of 1-10 Tg carbon per year, a very small amount compared 391 to the carbon cycle as a whole. Vaïtilingom et al¹¹⁴ stress that for realistic 392 simulation of biological activity in cloud water, ultraviolet radiation must be 393 provided, and studied how its presence accelerated the destruction of hydroxyl

radicals.

395 More certain evidence for microbial activity in the atmosphere could be 396 obtained if one could define and measure chemical reactions taking place in the 397 atmosphere that can be carried out only by living organisms. Direct monitoring 398 of reactions in clouds is difficult, but Amato et al.¹²⁴, as well as Matulová et al.¹²⁵ 399 showed that bacteria collected from cloud water are able to transform various 400 organic substances present in the atmosphere and cloud water. Adenosine triphosphate was generated at 17°C by organisms in collected cloud water. 401 402 *Pseudomonas* species, such as *P. syringae*, are considered to be among the more 403 active bacteria in clouds, since they can develop at low temperature. A review of 404 organic compounds present in fogs and clouds is provided by Herckes et al.¹²⁶. 405 Other photo-biological processes are also possible: Does photosynthesis take 406 place in organisms suspended in the atmosphere? Klein¹²⁷ found that members 407 of *Rhodospirillales* were abundant in both the total and potentially active 408 communities in cloudwater. This order comprises non-sulfur purple bacteria, 409 and one species (Acidisphaera rubrifaciens), otherwise known from its presence 410 in hot springs, is also present in cloud-water. It contains bacteriochlorophyll, and 411 grows on a number of carbon compounds present in cloud water. Growth is stimulated by illumination, but whether the bacterium carries out 412 413 photosynthesis is not quite clear¹²⁸. Cyanobacteria have been found in cloudwater¹²⁹ and rainwater¹³⁰. Potentially they should be able to carry out 414 415 photosynthesis in the atmosphere in the absence of organic carbon or a 416 reductant other than water. Whether they do that has not been established. 417 The residence time in the atmosphere is probably limiting the extent to which organisms are able to reproduce while aloft. Burrows et al.¹³¹ estimated the 418 419 residence time for 1 µm particles to range from less than a week if they finally act 420 as condensation nuclei to around 180 days if they do not form condensation 421 nuclei. Based on this, the generation times of organisms in cloud water measured 422 by Sattler et al.¹²³, temperatures in the atmosphere and other factors, Klein¹²⁷ in 423 her thesis drew the conclusion that at least some organisms could go through 424 more than 50 generations while in the atmosphere. This is probably an 425 overestimate, since it is based on the size of "naked" individual bacteria, while 426 bacteria are usually clumped together or attached to other particles, and in any

427 case they would need to be associated with water containing nutrients to grow428 and divide.

We may conclude that although bacteria can be metabolically active in clouds,

their growth and production of organic compounds there is probably negligible

431 in comparison to their activity in other environments, but may have a non-

432 negligible impact on cloud water composition^{111,132}.

433

434 **4.2 Clouds and DNA-damaging UV Radiation**

435 Clouds present some particular challenges also because they dramatically modify
436 the sky radiation field at UV wavelengths as well as visible wavelengths. The
437 effects of clouds on fluence rates are as complex as the great variety of clouds
438 themselves.

439 Considering an isolated, simple single-layer, horizontally extended cloud, 440 three regimes can be identified: (1) above cloud, the fluence rate is generally 441 enhanced by the reflection from the cloud below; (2) below cloud, the fluence 442 rate is typically reduced due to attenuation of sunlight by overhead cloud; and 443 (3) within the cloud, where strong vertical gradients are experienced. This is 444 illustrated in Fig. 7 for DNA-damaging fluences, computed at two latitudes (the 445 polar circle and Equator) for a range of cloud optical depths. Although the 446 absolute values differ by more than an order of magnitude between the two 447 locations, the relative effect of cloud is mostly similar, except near cloud top.

448 Blue skies become white (or grey) when clouds appear, so a shift in the 449 spectral distribution is expected. The optical properties of cloud particles are 450 relatively independent of wavelength¹³³, but the interactions with Rayleigh 451 scattering cause a wavelength dependence to appear: Back-scattering between 452 the top of the cloud and the overlying air molecules gives to some photons 453 multiple opportunities to re-enter the cloud, traverse it, and reach the ground¹³⁴⁻ 454 ¹³⁵. This effect becomes greater at the shorter wavelengths where Rayleigh 455 scattering is stronger. In general, clouds show greater contrast relative to clear 456 skies at visible wavelengths, while at UV wavelengths Rayleigh scattering already 457 contributes substantial haziness¹³⁶.

In practice, clouds can exhibit considerable horizontal and vertical structure,and are still difficult to predict or even describe quantitatively. Measurements of

460 fluence rates (actinic fluxes) in the presence of clouds have been made from 461 balloons and aircraft, but are few and have been limited to UV-A and visible 462 wavelengths^{137,138}. The measurements generally confirm radiative transfer 463 calculations of the vertical profiles (such as those in Fig. 7), but also re-affirm the 464 large uncertainties that arise from incomplete knowledge of clouds, from their 465 microscopic drop or ice particle size distributions that determine optical 466 properties, to larger scale often-complex three-dimensional morphology possibly 467 including multiple layers, etc.

468 Clouds can also complicate the relationship between fluence rate at any 469 altitude, and ground-level irradiances, Eq. 1, which was derived from modeled 470 cloud-free skies. Model calculations with clouds show (e.g. Fig. S4) that above 471 and inside clouds the ratio R can achieve much larger values due to reflections 472 from the cloud, but below it, i.e. between cloud base and ground, it is remarkably 473 similar to the clear-sky value, ca. 2 (since in both cases scattered radiation from 474 all directions is important).

475 Satellites can provide cloud information, such as location and optical depth, 476 needed to estimate fluence rates at various altitudes. Ryu et al.¹³⁹ compared UV-477 A fluence rates measured from aircraft during cloudy conditions, with model 478 calculations that used observations of reflected radiance from the Geostationary 479 Operational Environmental Satellite to infer cloud optical properties, and from 480 these the fluence rates at aircraft locations. The assimilation of satellite-derived 481 clouds led to good agreement with fluence rate observations, and an 482 improvement over using clouds predicted by a weather forecasting model. 483 An additional optical consideration is that the fluence rates inside cloud 484 droplets are themselves enhanced by diffraction¹⁴⁰ which can be understood as a 485 lensing effect in the geometric (large particle) limit. For typical spherical cloud 486 droplets this enhancement factor is 1.6, i.e., the in-drop average fluence rate is 487 60% larger than in the interstitial space.

488

489 5. Conclusions

490

491 Solar radiation is just one of several detrimental factors facing microorganisms

492 aloft. Survival times against UV damage calculated here can therefore be

regarded as maximum estimates, provided the organisms appear as single cell

particles. For the bacteria considered here, e-folding inactivation (37% survival)

493

494

16

495 occurs in a few minutes when DNA damaging fluences are of order 100 J m⁻² 496 day¹. Survival times calculated with the e-folding criterion can be extremely 497 short, but because of the great number of individuals in some microbial 498 populations, survival times of populations are longer. 499 Bacteria are often clumped together with one another or with other material, 500 which can result in increased resistance to UV radiation. Sensitivity varies 501 greatly among organisms, even for the small subset of species for which data 502 exist. Under solar radiation, the UV-B component usually dominates killing, and 503 the effect of visible light is negligible. Bacterial spores are much more resistant 504 than vegetative cells of the same species, but there exist also bacterial species 505 that are very radiation-tolerant in the vegetative stage. To some extent 506 microorganisms may multiply while suspended in the atmosphere. 507 In any particular situation, the UV exposure for airborne spores can in 508 principle be computed using a radiative transfer code in conjunction with 509 atmospheric dynamical modelling by considering the fluence rate received along 510 trajectories of atmospheric winds that carry the organism in question (both in 511 the vertical and horizontal directions). However, allowance for the effects of 512 clouds, which are ubiquitous in most areas, will always lead to large 513 uncertainties in exposure, and therefore in estimated survival times. 514 Measurements of the action spectrum for UV damage for the species in question 515 are also required. 516 Sophisticated numerical models have been developed in recent years to 517 simulate the physical and chemical state of the atmosphere, i.e. to better 518 understand and predict issues important to human society including weather, 519 climate change, and air pollution. But to our knowledge, analogous models for 520 the biological state of the atmosphere have not yet been developed or remain

521 rather crude (compared to the physico-chemical models). Such models could be

522 quite useful for a wide range of problems, for example, in studying specific

523 episodes leading to acute health impacts (e.g. from transport of allergens), or in

524 helping to understand the geographic distribution of species over evolutionary

525 time scales. They may also provide better estimates for biological influences on

526	atmospheric physics, e.g. the nucleation of ice clouds by biological particles ¹¹¹ .
527	The need for an interdisciplinary approach in building such a model is self-
528	evident. In this paper we discussed three issues at the intersection of
529	microbiology and the atmospheric sciences: (i) the selection and applicability of
530	representative biological sensitivity spectra, (ii) the importance of including
531	radiation arriving from all directions of the atmosphere (not just the direct solar
532	beam), and (iii) the spatial and temporal variability of atmospheric radiation,
533	including its dependence on season, latitude, longitude (or time of day), altitude,
534	and atmospheric constituents such as ozone and clouds. We have shown that
535	these problems are complex but tractable, and note increasing opportunities for
536	including photo-biological processes in interdisciplinary atmospheric models.
537	
538	Acknowledgements: The National Center for Atmospheric Research is sponsored
539	by the U.S. National Science Foundation.

541 **REFERENCES**

- 542 1. F. Liechti, W. Witvliet, R. Weber and E. Bächler, First evidence of a 200-day non543 stop flight in a bird, *Nature Comm.*, 2013, 4:2554.
- 544 2. N. C. Rattenborg, Sleeping on the wing, *Interface Focus*, 2017, 7: 20160082.
- 545 3. A. Hedenström, G. Norevik, K. Warfvinge, A. Andersson, J. Bäckman and S.
- 546 Åkesson, Annual 10-month aerial life phase in the common swift *Apus apus*, *Curr*.
 547 *Biol.*, 2016, **26**, 3066-3070.
- 548 4. J. C. van der Leun, Y. Takizawa and J. D. Longstreth, Human Health, in *1989*549 *Environmental Effects Panel Report*, November 1989, UNEP, Nairobi.
- 550 5. G. Zotz, T. Weichgrebe, H. Happatz and H. J. R. Einzmann, Measuring the
- terminal velocity of tiny diaspores, *Seed Sci. Res.*, 2016, **26**, 222-230.
- 552 6. C. J. Murren and A. M. Ellison, Seed dispersal characteristics of *Brassavola*553 *nodosa* (Orchidaceae), *Am. J. Botany*, 1998, **85**, 675-680.
- 7. K. Szczepanek, D. Myszkowska, E. Worobiec, K. Piotrowicz, M. Ziemianin and Z.
 Bielec-Bakowska, The long-range transport of Pinaceae pollen: an example in
 Kraków (southern Poland), *Aerobiologia*, 2017, 33, 109-125.
- 8. L. D. Bunderson and E. Levetin, Hygroscopic weight gain of pollen grains from *Juniperus* species, *Int. J. Biometeorol.*, 2015, **59**, 533-540.
- 559 9. M. Chamecki, S. C. Gleicher, N. S. Dufault, S. A. Isard, Diurnal variation in
- settling velocity of pollen released from maize and consequences for atmospheric
 dispersion and cross-pollination, *Agricult. Forest Meteorol.*, 2011, **151**, 1055-
- 562 1065.
- 10. A. Marceau, S. Saint-Jean, B. Loubet, X. Foueillassar and L. Huber, Biophysical
 characteristics of maize pollen: Variability during emission and consequences on
 cross-pollination risks, *Field Crops Res.*, 2012, **127**, 51-63.
- 566 11. F. Zanatta, J. Patiño, F. Lebeau, M. Massinon, K. Hylander, M. de Haan, P.
- Ballings, J. Degreef and A. Vanderpoorten, Measuring spore settling velocity for
- an improved assessment of dispersal rates in mosses, *Ann. Bot.*, 2016, **118**, 197-
- 569 206.

570 571 572	 T. Hussein, V. Norros, J. Hakala, T. Petäjä, P. P. Aalto, Ü. Rannik, T. Vesala and O. Ovaskainen, Species traits and inertial deposition of fungal spores, <i>J. Aerosol</i> <i>Sci.</i> 2013, 61, 81-98.
573 574	 B. Lighthart, The ecology of bacteria in alfresco atmosphere, <i>FEMS Microbiol.</i> <i>Ecol.</i>, 1997, 23, 263-274.
575 576	 C. Williams, Aerobiology of <i>Pinus taeda</i> pollen clouds, <i>Can. J. Fores. Res.</i>, 2008, 38, 2177-2188.
577 578 579	 S. V. M. Tesson, C. A. Skjøth, T. Šantl-Temkiv and J. Löndahl, Airborne microalgae: Insights, opportunities, and challenges, <i>Appl. Environm. Microbiol.</i>, 2016, 82, 1978-1991.
580 581 582 583	16. A. R. Sherwood., M. N. Dittbern, E. T. Johnston and K. Y. Conklin, A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko'olau mountain range on the island of O'ahu, Hawai'i, <i>J. Phycol.</i> , 2017, 53 , 437-445.
584 585 586	 M. Wanner, M. Elmer, M. Sommer, R. Funk and D. Puppe, Testate amoebae colonizing a newly exposed land surface are of airborne origin, <i>Ecological</i> <i>Indicators</i>, 2015, 48, 55-62.
587 588	18. O. Eriksson and K. Kainulainen, The evolutionary ecology of dust seeds, <i>Perspectives in Plant Ecol. Evol. Systemat.</i> , 2011, 13 , 73-87.
589 590	19. C. A. Kellogg and D. W. Griffin, Aerobiology and the global transport of desert dust, <i>Trends Ecol. Evol.</i> , 2008, 21 , 638-644.
591 592 593	20. A. Barberán, J. Henley, N. Fierer, and E. O. Casamayor, Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities, <i>Sci. Tot. Environ.</i> , 2014, 487 , 187-195.
594 595 596 597	21. T. Weil, C. De Filippo, D. Albanese, C. Donati, M. Pindo, L. Pavarini, F. Carotenuto, M. Pasqui, L. Poto, J. Gabrieli, C. Barbante, B. Sattler, D. Cavalieri and F. Miglietta, Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms, <i>Microbiome</i> , 2017, 5:32 (pp. 11).
598 599	22. X. Wang, G. B. Dean, K. A. Moore, O. S. Rydera, M. D. Stokes, C. M. Beall, D. B. Collins, M. V. Santander, S. M. Burrows, C. M. Sultana and K. A. Prather, The

- role of jet and film drops in controlling the mixing state of submicron sea spray
- aerosol particles, *Proc. Natl Acad. Sci. USA*, 2017, **114**, 6978-6983.
- 602 23. M. Vaïtilingom, E. Attard, N. Gaiani, M. Sancelme, L. Deguillaume, A. I.,
- 603 Flossmann, P. Amato and A.-M. Delort, Long-term features of cloud microbiology
- at the puy de Dôme (France), *Atmosph. Environ.*, 2012, **56**, 88-100.
- 24. A. L. King, The spore discharge mechanism of common ferns, *Proc. Natl Acad. Sci. USA*, 1944, **30**, 155-161.
- 607 25. C. Llorens, M. Argentina, N. Rojas, J. Westbrook, J. Dumais and X. Noblin, The
- fern cavitation catapult: mechanism and design principles, J. R. Soc. Interface,

609 2016, **13**:20150930 (13 pp.).

- 610 26. S. Sundberg, The *Sphagnum* air-gun mechanism resurrected, *New Phytol.*, 2010,
 611 185, 886-888.
- 612 27. D. L. Whitaker and J. Edwards, *Sphagnum* moss disperses spores with vortex
 613 rings, *Science*, 2010, **329**, 406.
- 614 28. J. L. Stolze-Rybczynski, Y. Cui, M. H. H. Stevens, D. J. Davis, M. W. F. Fischer
 615 and N. P. Money, Adaptation of the spore discharge mechanism in the

616 Basidiomycota, *PLoS ONE*, 2009, **4**, e4163 (6 pp.).

- 617 29. Noblin, S. Yang and J. Dumais, Surface tension propulsion of fungal spores, *J. Exp. Biol.*, 2009, 212, 2835-2843.
- 30. M. F. W. Fischer, J. L. Stolze-Rybczynski, Y. Cui and N. P. Money, How far and
 how fast can mushroom spores fly? Physical limits on ballistospore size and
- discharge distance in the Basidiomycota, *Fungal Biol.*, 2010, **114**, 669-675.
- 31. A. Sakes, M. van der Wiel, P. W. J. Henselmans, J. L. van Leeuwen, D. Dodou
 and P. Breedveld, Shooting mechanisms in Nature: A systematic review, *PLoS ONE*, 2016, 11: e0158277.
- 625 32. E. Dressaire, L. Yamada, B. Song and M. Roper, Mushrooms use convectively
 626 created airflows to disperse their spores, *Proc. Natl Acad. Sci. USA*, 2016, 113,
- 627 2833**-**2838.

628 629 630	 33. M. Clauss, Particle size distribution of airborne microorganisms in the environment – a review, <i>Landbauforsch Volkenrode (Appl. Agric. Forestry Res.)</i>, 2015, 65, 77-100.
631 632 633	34. G. W. Paltridge and C. M. R. Platt, Radiative Processes in Meteorology and Climatology, <i>Developments in Atmospheric Sciences, 5,</i> 1976, Elsevier Scientific Publishing, New York, pp.318.
634 635	35. S. A. Mims and F. M. Mims III, Fungal spores are transported long distances in smoke from biomass fires, <i>Atmosph. Environ.</i> , 2004, 38 , 651-655.
636 637 638 639 640	 36. P. Yu, K. H. Rosenlof, S. Liu, H. Tel, T. D. Thornberry, A. W. Rollins, R. W. Portmann, Z. Baid, E. A. Ray, Y. Duane, L. L. Pan, O. B. Toon, J. Biand, and RS. Gao, Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone, <i>Proc. Natl Acad. Sci. USA</i>, 2017, 114, 6972-6977.
641 642 643	 37. D. W. Griffin, Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: Extended incubation periods needed for culture based assays, <i>Aerobiologia</i>, 2008, 24, 1573-3025.
644 645	38. A. A. Imshenetsky, S. V. Lysenko and G. A. Kazakov, Upper boundary of the biosphere, <i>Appl. Environ. Microbiol.</i> , 1978, 35 , 1-5.
646 647 648	 M. Wainwright, N. C. Wickramasinghe, J. V. Narlikar and P. Rajaratnam, Microorganisms cultured from stratospheric air samples obtained at 41km, <i>FEMS Microbiol. Lett.</i>, 2003, 218, 161-165.
649 650	40. D. W. Griffin, Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere, <i>Aerobiologia</i> , 2004, 20 , 135-140.
651 652 653	 41. A. A. Cheremisin, Yu. V. Vassilyev, and H. Horvath, (2005), Gravito-photophoresis and aerosol stratification in the atmosphere, <i>Aerosol Science</i>, 2005, 36, 1277–1299.
654 655 656	42. D. J. Smith, H. J. Timonen, D. A. Jaffe, D. W. Griffin, M. N. Birmele, K. D. Perry, P. D. Ward and M. S. Roberts, Intercontinental dispersal of bacteria and archaea by transpacific winds, <i>Appl. Environ. Microbiol.</i> , 2013, 79 , 1134-1139.
657 658	43. A. G. Peeters and H. Zoller, Long range transport of <i>Castanea sativa</i> pollen, <i>Grana</i> 1988, 27 , 203-207.

- 44. J. Belmonte, M. Alarcón, A. Avila, E. Scialabba and D. Pino, Long-range
- transport of beech (*Fagus sylvatica* L.) pollen to Catalonia (north-eastern Spain),
- 661 *Int. J. Biometeorol.*, 2008, **52**, 675-687.
- 45. R. P. Mohanty, M. A. Buchheim, J. Anderson and E. Levetin, Molecular analysis
 confirms the long-distance transport of *Juniperus ashei* pollen, *PLoS ONE*, 2017,
 12, e0173465.
- 46. J.-E. Wallin, U., Segerström, L. Rosenhall, E. Bergmann and M. Hjelmroos,
 Allergic symptoms caused by long-distance transported birch pollen, *Grana*, 1991,
 30, 265-268.
- 47. G. V. Ingimundardóttir, H. Weibull H and N. Cronberg, Bryophyte colonization
 history of the virgin volcanic island Surtsey, Iceland, *Biogeosci.*, 2014, 11, 44154427.
- 48. K. S. Kim and R. M. Beresford, Use of a spectrum model and satellite cloud data
 in the simulation of wheat stripe rust (*Puccinia striiformis*) dispersal across the
 Tasman Sea in 1980, *Agricult. Forest Meteorol.*, 2008, 148, 1374-1382.
- 49. D. E. Aylor, G. S. Taylor and G. Raynor, Long-range transport of tobacco blue
 mold spores, *Agricult. Meteorol.*, 1982, 27, 217-232.
- 50. M. Joly, P. Amato, M. Sancelme, V., Vinatier, M., Abrantes, L., Deguillaume, L.,
- and A.-M. Delort (2015), Survival of microbial isolates from clouds toward
- 678 simulated atmospheric stress factors, *Atmospheric Environment* 117, 92–98.
- 51. I. Boubriak, M. Dini, P. Berjak and D. J. Osborne, Desiccation and survival in the
 recalcitrant seeds of Avicennia marina: DNA replication, DNA repair and protein
 synthesis, Seed Sci. Res., 2000, 10, 307–315.
- 52. L. Rajeev, U. Nunes da Rocha, N. Klitgord, E. G. Luning, J. Fortney, S. D. Axen,
 P. M. Shih, N. J. Bouskill., B. P. Bowen, C. A. Kerfeld, F. Garcia-Pichel, E. L.
- Brodie, T. R. Northen and A. Mukhopadhyay, Dynamic cyanobacterial response to
- hydration and dehydration in a desert biological soil crust, ISME J., 2013, 7, 2178–
 2191.
- 687 53. D. J. Smith, D. W. Griffin, R. D. McPeters, P. D. Ward, and A. C. Schuerger,
- 688 Microbial survival in the stratosphere and implications for global dispersal.
- 689 *Aerobiologia*, 2011, **27**, 319–332

690 691	54. C. E. Singer and B. N. Ames, Sunlight and bacterial DNA base ratios, <i>Science</i> , 1970, 170 , 822-826.
692 693 694	55. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh and P. Setlow, Resistance of <i>Bacillus</i> endospores to extreme terrestrial and extraterrestrial environments, <i>Microbiol. Mol. Biol. Rev.</i> , 2000, 64 , 548-572.
695 696 697	56. K. Hara, D. Zhang, H. Matsusaki, Y. Sadanaga, K. Ikeda, S. Hanaoka and S. Hatakeyama, UV-tolerant culturable bacteria in an Asian dust plume transported over the East China Sea, <i>Aerosol Air Quality Res.</i> , 2015, 15 , 591-599.
698 699 700	57. A. L. Santos, V. Oliveira, I. Baptista, I. Henriques, N. C. M. Gomes, A. Almeida,A. Correia and A. Cunha, Wavelength dependence of biological damage induced by UV radiation on bacteria, <i>Arch. Microbiol.</i>, 2013, 195, 63-74.
701 702 703	 58. M. Hessling, B. Spellerberg, K. Hoenes, Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths – a review on existing data, <i>FEMS Microbiol. Lett.</i>, 2017, 364, fnw270, 12 pp.
704 705 706	59. H. Feng, L. An, L. Tan, Z. Hou, and X. Wang (2000) Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro, Environm. Exp. Bot. 43, 45–53.
707 708 709	 60. C. Zhang, YP. Yang, and Y. W. Duan (2014) Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants, Scientific Reports 4 : 4520 (4 pp.).
710 711	61. F. L. Gates, A study of the germicidal action of ultra violet light. III. The absorption of ultra violet light by bacteria, <i>J. Gen. Physiol.</i> , 1930, 14 , 31-42.
712 713 714	62. J. G. Peak, M. J. Peak and R. W. Tuveson, Ultraviolet action spectra for aerobic and anaerobic inactivation of <i>Escherichia coli</i> strains specifically sensitive and resistant to near ultraviolet radiations, <i>Photochem. Photobiol.</i> , 1983, 38 , 541-543.
715 716 717	63. M. J. Peak, J. G. Peak, M. P. Moehring and R. B. Webb, Ultraviolet action spectra for DNA dimer induction, lethality, and mutagenesis in <i>Escherichia coli</i> with emphasis on the UVB region, <i>Photochem. Photobiol.</i> , 1984, 40 , 613-620.
718 719 720	64. L. R. Kelland, H. Moss and D. J. G. Davoes, An action spectrum for ultraviolet radiation induced membrane damage in <i>Escherichia coli, Photochem. Photobiol.</i> , 1983, 32, 301-306.

- 721 65. R. B. Webb and M. S. Brown, Action spectra for oxygen-dependent and
- independent inactivation of *Escherichia coli* WP2s from 254 to 460 nm,
- 723 *Photochem. Photobiol.*, 1979, **29**, 407-409.
- 66. R. B. Webb and R. W. Tuveson, Differential sensitivity to inactivation of NUR
- and NUR+ strains of *Escherichia coli* at six selected wavelengths in the UVA,
- UVB and UVC ranges, *Photochem. Photobiol.*, 1982, **36**, 525-530.
- 67. G. Y. Lui, D. Roser, R. Corkish, N. J. Ashbolt and R. Stuetz, Point-of-use water
 disinfection using ultraviolet and visible light-emitting diodes, *Sci. Total Environ.*,
 2016, 553, 626-635.
- 68. D. Mackay, A. Eisenstark, B. Webbs and M. S. Brown, Action spectra for
- lethality in recombinationless strains of *Salmonella typhimurium* and *Escherichia coli, Photochem. Photobiol.*, 1976, 24, 337-343.
- 69. A. I. Silverman and K. L. Nelson, Modeling the endogenous sunlight inactivation
 rates of laboratory and wastewater E. coli and enterococci using biological
 weighting functions, *Environ. Sci. Technol.*, 2016, **50**, 12292-12301,
- doi:10.1021/acs.est.6b03721.
- 737 70. M. Maclean, L. E. Murdoch, S. J. MacGregor and J. G. Anderson, Sporicidal
 738 effects of high-intensity 405 nm visible light on endospore-forming bacteria,
 739 *Photochem. Photobiol.*, 2013, **89**, 120-126.
- 740 71. R. Z. Chen, S. A. Craik and J. R. Bolton, Comparison of the action spectra and
 relative DNA absorbance spectra of microorganisms: Information important for the
- determination of germicidal fluence (UV dose) in an ultraviolet disinfection of
 water, *Water Res.*, 2009, 43, 5087-5096.
- 744 72. B. Kjeldstad and A. Johnsson, An action spectrum for blue and near ultraviolet
 745 inactivation of *Propionibacterium acnes*: with emphasis on a possible porphyrin
 746 photosensitization, *Photochem. Photobiol.*, 1986, 43, 67-70.
- 747 73. A. Cabaj, R. Sommer, W. Pribil, and T. Haider, The spectral UV sensitivity of
 748 microorganisms used in biodosimetry, *Water Sci. Tech. Water Supply*, 2002, 2,
 749 175-181.

750 751 752	74. H. Mamane-Gravetz, K. G. Linden, A. Cabaj and R. Sommer, Spectral sensitivity of <i>Bacillus subtilis</i> spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection, <i>Environ. Sci. Technol.</i> , 2005, 39 (20), 7845-7852.
753 754 755 756	75. D. Wang, T. Oppenländer, M. G. El-Din and J. R. Bolton, Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on <i>Bacillus subtilis</i> spores in aqueous suspensions at 172, 222 and 254 nm, <i>Photochem. Photobiol.</i> , 2010, 86 , 176-181.
757 758 759	76. N. Munakata, M. Saito and K. Hieda, Inactivation action spectra of <i>Bacillus subtilis</i> spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation, <i>Photochem. Photobiol.</i> , 1991, 54 , 761-768.
760 761 762	77. N. Munakata, K. Hieda, N. Usami, A. Yokoya and K. Kobayashi, Inactivation action spectra of <i>Bacillus subtilis</i> spores with monochromatic soft X rays (0.1-0.6 nm) of synchrotron radiation, <i>Radiation Res.</i> , 131 , pp. 72-80.
763 764	78. R. M. Tyrrell, Biological dosimetry and action spectra, J. Photochem. Photobiol, B: Biol., 1995, 31, 35-41.
765 766 767	79. S. E. Beck, H. B. Wright, T. M. Hargy, T. C. Larason and K. G. Linden, Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems, <i>Water Research</i> , 2015, 70 , 27-37.
768 769 770	 F. Zölzer and D. J. Kiefer, Wavelength dependence of inactivation and mutagenesis in haploid yeast cells of different sensitivities, <i>Photochem. Photobiol.</i>, 1983, 37, 39-48.
771 772 773	81. K. G. Linden, G. Shin and M. D. Sobsey, Comparative effectiveness of UV wavelengths for the inactivation of <i>Cryptosporidium parvum</i> oocysts in water. <i>Water Sci. Technol.</i> , 2001, 43 (12), 171e174.
774 775	82. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. <i>P. Natl. Acad. Sci. US.</i> , 1974, 71 , 3363-3366.
776 777	83. S. Madronich, Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds, <i>J. Geophys. Res.</i> , 1987, 92 , 9740-9752.
778 779 780	84. T. Coohill and JL. Sagripanti, Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense, <i>Photochem. Photobiol.</i> , 2008, 84 , 1084-1090.

781 782 783	 T. Coohill and JL. Sagripanti, Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation, <i>Photochem. Photobiol.</i>, 2009, 85, 1043-1052.
784 785 786	86. M. Kotkamp, R. McKenzie, H. Shiona, S. Rhodes, P. Disterhoft and G. Bernhard, Materials-damaging UV radiation in New Zealand: Comparison with other locations. <i>Poster at NIWA UV Workshop</i> , Auckland, New Zealand, 15-17 April
787 788 789	2014. https://www.niwa.co.nz/sites/niwa.co.nz/files/Kotkamp_UV%20Workshop_2014_ Materials_v3.pdf
790 791 792	87. G. Bernhard and R. L. McKenzie, Latitudinal difference of UVB and UVA radiation derived from NDACC measurements, <i>NDACC Newsletter</i>, 2015, 10-11 p.
793 794 795 796 797 798	 88. M. De Mazière, A. M. Thompson, M. J. Kurylo, J. Wild, G. Bernhard, T. Blumenstock, J. Hannigan, JC. Lambert, T. Leblanc, T. J. McGee, G. Nedoluha, I. Petropavlovskikh, G. Seckmeyer, P. C. Simon, W. Steinbrecht, S. Strahan and J. T. Sullivan, The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives, <i>Atoms. Chem. Phys. Discuss.</i>, <u>https://doi.org/10.5194/acp-2017-402</u>.
799 800 801	89. R. L. McKenzie, G. E. Bodeker, G. Scott and J. Slusser, Geographical differences in erythemally-weighted UV measured at mid-latitude USDA sites. <i>Photochemical</i> & <i>Photobiological Sciences</i> , 2006, 5 , 343-352.
802 803 804	 90. A. Ben-David and JL. Sagripanti, A model for inactivation of microbes suspended in the atmosphere by solar ultraviolet radiation, <i>Photochem. Photobiol.</i>, 2010, 86, 895-908.
805 806	91. J. S. Nader and N. White, Volumetric measurement of ultraviolet energy in an urban atmosphere, <i>Environ. Sci. Technol.</i> , 1969, 3 , 848-854.
807 808	92. J. C. H van der Hage, Actinic flux and global radiation, <i>Theor. Appl. Climatol.</i> , 1992, 46 , 173- 177.
809 810 811	93. L. O. Björn, Estimation of fluence rate from irradiance measurements with a cosine-corrected sensor, <i>J. Photochem. Photobiol. B:Biology</i> , 1995, 29 , 179-183.

812	94. S. Madronich, S., Intercomparison of NO ₂ photodissociation and uv
813	radiometer measurements, <i>Atmos. Environ.</i> , 1987, 21 , 569-578.
814 815 816	 95. A. Ruggaber, R. Forkel, and R. Dlugi, Spectral actinic flux and its ratio to spectral irradiance by radiation transfer calculations, <i>J. Geophys. Res.</i>, 1993, 98, 1151-1162.
817 818 819	96. H. Cotte, C. Devaux and P. Carlier, Transformation of irradiance measurements into spectral actinic flux for photolysis rates determination, <i>J. Atmos. Chem.</i> , 1997, 26 , 1-28.
820 821 822 823	97. A. Kylling, A. R. Webb, A. F. Bais, M. Blumthaler, R. Schmitt, S. Thiel, A. Kazantzidis, R. Kift, M. Misslbeck, B. Schallhart, J. Schreder, C. Topaloglou, S. Kazadzis, and J. Rimmer, Actinic flux determination from measurements of irradiance, <i>J. Geophys. Res.</i> , 2003, 108 , 4506, doi:10.1029/2002JD003236.
824 825	98. L. O. Björn and T. C. Vogelmann, Quantifying light and ultraviolet radiation in plant biology, <i>Photochem. Photobiol.</i> , 1996, 64 , 403-406.
826 827 828	99. M. van Weele, J. Vila-Geurau de Arellano, and F. Kuik, Combined measurements of UV-A actinic flux, UV-A irradiance and global radiation in relation to photodissociation rates, <i>Tellus</i> , 1995, 47B , 353-364.
829 830 831	100. A. R. Webb, R. Kift, S. Thiel, M. Blumthaler, An empirical method for the conversion of spectral UV irradiance measurements into actinic flux data, <i>Atmos. Environ.</i> , 2002, 36 , 4397-4404.
832 833 834 835 836	101. R. McKenzie, P. Johnston, A. Hofzumahaus, A. Kraus, S. Madronich, C. Cantrell, J. Calvert, R. Shetter, Relationship between photolysis frequencies derived from spectroscopic measurements of actinic fluxes and irradiances during the IPMMI campaign, <i>J. Geophys. Res.</i> , 2002, 107 , 4042, doi: 10.1029/2001JD000601.
837 838 839 840	102. S. Kazadzis, C. Topaloglou, A. F. Bais, M. Blumthaler, D. Balis, A. Kazantzidis, and B. Schallhart, Actinic flux and O ¹ D photolysis frequencies retrieved from spectral measurements of irradiance at Thessaloniki, Greece, Atmos. Chem. Phys., 2004, 4, 2215-2226.

- 841 103. C. Topaloglou, S. Kazadzis, A. F. Bais, M. Blumthaler, B. Schallhart, and D. 842 Balis, NO₂ and HCHO photolysis frequencies from irradiance measurements in 843 Thessaloniki, Greece, Atmos. Chem. Phys., 2005, 5, 1645-1653. 844 104. J. Lee-Taylor, S. Madronich, C. Fischer, and B. Mayer, A climatology of UV 845 radiation, 1979-2000, 65S-65N, Chapter 1 in: UV Radiation in Global Climate 846 Change: Measurements, Modeling and Effects on Ecosystems, Gao, W., D. 847 Schmoldt, J.R. Slusser (eds.), Springer-Verlag and Tsinghua University Press, 848 2010. 849 105. N. C. S. Mykytczuk, S. J. Foote, C. R. Omelon, G. Southam, G. W. Greer and L. 850 G. Whyte, Bacterial growth at -15°C; molecular insights from the permafrost 851 bacterium Planococcus halocryophilus Or1, The ISME J., 2013, 7, 1211-1226. 852 106. J. Breezee, N. Cady and J. T. Staley, Subfreezing growth of the sea ice 853 bacterium Psychromonas ingrahamii, Microb. Ecol., 2004, 47, 300-304. 854 107. K. A., Hill, P. B. Shepson, E.S. Galbavy, C. Anastasio, P. S. Kourtev, A. 855 Konopka, and B. H. Stirm (2007) Processing of atmospheric nitrogen by clouds 856 above a forest environment, J. Geophys. Res. 112, D11301 (16 pp.). 857 108. A. M. Klein, B. M. J. Bohannan, D. A. Jaffe, D.A. Levinand J. L. Green, (2016) 858 Molecular evidence for metabolically active bacteria in the atmosphere, *Frontiers* 859 Microbiol., 7: Article 772 (11 pp.). 860 109. A. Stevenson, P. G. Hamill, A. Medina, G. Kminek, J. D. Rummel, J. 861 Dijksterhuis, D. J. Timson, N. Magan, S.-L. Leong and J. E. Hallsworth, Glycerol 862 enhances fungal germination at the water-activity limit for life, Environ. 863 Microbiol., 2017, 19, 947-967.
- 110. A. Stevenson, J. Burkhardt, C. S. Cockell, J. A. Cray, J. Dijksterhuis, M. Fox-
- 865 Powell, T. P. Kee, G. Kminek, T. J. McGenity, K. N. Timmis, D. J. Timson, M. A.
- 866 Voytek, F. Westall, M. M. Yakimov and J. E. Hallsworth, Multiplication of
- 867 microbes below 0.690 water activity: implications for terrestrial and extraterrestrial
- 868 life, *Environ. Microbiol.*, 2015, **2**, 257-277.
- 869 111. A.-M. Delort, M. Vaïtilingom, P. Amato, M. Sancelme, M. Parazols, G. Mailhot,
- 870 P. Laj and L. Deguillaume, A short overview of the microbial population in

871 872	clouds: Potential roles in atmospheric chemistry and nucleation processes, <i>Atm. Res.</i> , 2010, 98 , 249-260.
873 874 875	112. D. J. Smith, D. W. Griffin, R. D. McPeters, P. D. Ward and A. C. Schuerger, Microbial survival in the stratosphere and implications for global dispersal, <i>Aerobiologia</i> , 2011, 27, 319-332.
876 877 878	113. N. C. Bryan, M. Stewart, D. Granger, T. G. Guzik and B. C. Christner, A method for sampling microbial aerosols using high altitude balloons, <i>J. Microbiol.</i> <i>Meth.</i> , 2014, 107 , 161-168.
879 880 881 882	 114. M. Vaïtilingom, L. Deguillaume, V. Vinatier, M. Sancelme, P. Amato, N. Chaumerliac and AM. Delort, Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds, <i>Proc. Natl Acad. Sci. USA</i>, 2013, 110, 559-564.
883 884	115. P. Mandroli, G. L. Puppi, L. Bagni and F. Prodi, Distribution of microorganisms in hailstones, <i>Nature</i> , 1973, 246 , 416-417.
885 886 887	116. T. S`antl-Temkiv, K. Finster, T. Dittmar, B. M. Hansen, R. Thyrhaug, N. W. Nielsen and U. G. Karlson, Hailstones: A window into the microbial and chemical inventory of a storm cloud, <i>PLoS ONE</i> , 2013, 8: e53550 (pp. 7).
888 889 890	117. W. Hu, K. Murata, and D. Zhang, Applicability of LIVE/DEAD BacLight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater, <i>J. Environ. Sci.</i> , 2017, 51 , 202-213.
891 892 893	118. A. M. Klein, B. M. J. Bohannan, D. A. Jaffe, D. A. Levin and J. L. Green, Molecular evidence for metabolically active bacteria in the atmosphere, <i>Front.</i> <i>Microbiol.</i> 2016, 7:772, pp. 11.
894 895 896 897	 119. F. Fegatella, J. Lim, S. Kjelleberg and R. Cavicchioli, Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium <i>Sphingomonas sp.</i> Strain RB2256, <i>Appl. Environ. Microbiol.</i>, 1998, 64, 4433-4438.
898 899 900	 120. V. Krumins, G. Mainelis, L. J. Kerkhof and D. E. Fennell, Substrate-dependent rRNA production in an airborne bacterium, <i>Environ. Sci. Technol. Lett.</i>, 2014, 1, 376–381.

- 901 121. T. S. Lankiewicz, M. T. Cottrell and D. L. Kirchman, Growth rates and rRNA
- 902 content of four marine bacteria in pure cultures and in the Delaware estuary. *ISME*
- 903 J., 2016, **10**, 823-832.
- 904 122. L. M. Kundu, U. Linne, M. Marahiel, and T. Carell, RNA Is more UV resistant
- than DNA: The formation of UV-Induced DNA lesions is strongly sequence and
 conformation dependent, *Chem. Eur. J.*, 2004, **10**, 5697 5705.
- 907 123. B. Sattler, H. Puxbaum and R. Psenner, Bacterial growth in supercooled cloud
 908 droplets, *Geophys. Res. Lett.*, 2001, 28, 239-242.
- 909 124. P. Amato, F. Demeer, A. Melaouhi, S. Fontanella, A.-S. Martin-Biesse, M.
- 910 Sancelme, P. Laj and A.-M. Delort A.-M., A fate for organic acids, formaldehyde
- and methanol in cloud water: their biotransformation by micro-organisms, *Atmos*.

912 Chem. Phys., 2007, 7, 4159-4169.

- 913 125. M. Matulová, S. Husárová, P. Capek, M. Sancelme, and A.-M. Delort,
- 914 Biotransformation of various saccharides and production of exopolymeric
- 915 substances by cloud-borne *Bacillus* sp. 3B6, *Environ. Sci. Technol.*, 2014, 48,
- 916 14238-14247.
- 917 126. P. Herckes, K. T. Valsaraj and J. L. Collett Jr, A review of observations of
 918 organic matter in fogs and clouds: Origin, processing and fate, *Atmosph. Res.*,
 919 2013, 132-133, 434-449.
- 920 127. A. M. Klein, *Microbial biodiversity*, PhD thesis, University of Oregon, 2015921 (100 pp.).
- 922 128. A. Hiraishi, Y. Matsuzawa, T. Kanbe and N. Wakao, *Acidisphaera rubrifaciens*923 Gen. Nov., Sp. Nov., an aerobic bacteriochlorophyll-containing bacterium isolated
 924 from acidic environments, *Int. J. System. Evol. Microbiol.*, 2000, **50**, 1539-1546.
- 925 129. P. S. Kourtev, K. A. Hill, P. B. Shepson and A. Konopka, Atmospheric cloud
 926 water contains a diverse bacterial community, *Atmos. Environ.*, 2011, 45, 5399927 5405.
- 928 130. G. N. Itani and C. A. Smith, Dust rains deliver diverse assemblages of
- 929 microorganisms to the Eastern Mediterranean, *Sci. Rep.*, 2016, **6**:22657 (pp. 11).

930 931 932	131. S. M. Burrows, T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl and M. G. Lawrence, Bacteria in the global atmosphere–part 2: modeling of emissions and transport between different ecosystems, <i>Atmos. Chem. Phys.</i> 2009, 9 , 9281-9297.
933 934 935 936	 132. M. Vaïtilingom, L. Deguillaume, V. Vinatier, M. Sancelme, P. Amato, N. Chaumerliac, and AM. Delort, Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds, <i>Proc. Nat. Acad. Sci.</i>, 2013. 110, 559-564.
937 938 939	 133. Y. X. Hu and K. Stamnes, An accurate parameterization of the radiative properties of water clouds suitable for use in climate models, <i>J. Climate</i>, 1993, 6, 728-742.
940 941 942	134. A. Kylling, A. Albold, and G. Seckmeyer, Transmittance of a cloud is wavelength-dependent in the UV-range: Physical interpretation, <i>Geophys. Res. Lett.</i> , 2007, 24, 297-300.
943 944 945	135. A. Lindfors and A. Arola, On the wavelength-dependent attenuation of UV radiation by clouds, <i>Geophys. Res. Lett.</i> , 2008, 35 , L05806, doi:10.1029/2007GL032571.
946 947	136. A. V. Lindfors and L. Ylianttila, Visualizing Rayleigh scattering through UV photography, <i>Bull. Am. Meteorol. Soc.</i> , 2016, 97 , 1561-1564.
948 949 950	137. G. G. Palancar, R. E. Shetter, S. R. Hall, B. M. Toselli and S. Madronich, Ultraviolet actinic flux in clear and cloud atmospheres: model calculations and aircraft-based measurements, <i>Atmos. Chem. Phys.</i> , 2011, 11 , 5457-5469.
951 952 953	138. P. Wang, M. Allaart, W. H. Knap and P. Stammes, Analysis of actinic flux profiles measured from an ozonesonde balloon, <i>Atmos. Chem. Phys.</i> , 2015, 15, 4131-4144.
954 955 956	139. YH. Ryu, H. Hodzic, G. Descombes, S. Hall, P. Minnis, D. Spangenberg, K. Ullmann and S. Madronich, Improved modeling of cloudy-sky actinic flux using satellite cloud retrievals, <i>Geophys. Res. Lett.</i> , 2017, 44, 1592-1600.
957 958	140. B. Mayer and S. Madronich, Actinic flux and photolysis in water droplets: Mie calculations and geometrical optics limit, <i>Atmos. Chem. Phys.</i> , 2004, 4 , 2241-2250.

959	141. S. Madronich, The atmosphere and UV-B radiation at ground level, in
960	Environmental UV Photobiology (L. O. Björn and A. R. Young, eds.), 1993,
961	Plenum Press, New York, pp. 1-39.
962	142. K. Stamnes, SC. Tsay, W. Wiscombe and Kolf Jayaweera, Numberically
963	stable algorithm for discrete-ordinate-methdo radiative transfer in multiple
964	scattering and emitting layered media, <i>Applied Optics</i> , 1988, 27 , 2502-2509.
965	143. P. Koepke, A. Bais, D. Balis, M. Buchwitz,H. De Backer, X. de Cabos, P. Eckert,
966	P. Eriksen, D. Gillotay, A. Heikkila, T. Koskela, B. Lapetala, Z. Litynska, J.
967	Lorente, B. Mayer, A. Renaud, A. Ruggaber, G. Schauberger, G. Seckmeyer, P.
968	Seifert, A. Schmalwieser, H. Schwander, K. Vanicek and M. Weber, Comparison
969	of models used for UV index calculations, Photochem. Photobiol., 1998, 67,
970	657-662.
971	144. Bais, A., S. Madronich, J. Crawford, S. R. Hall, B. Mayer, M. VanWeele, J.
972	Lenoble, J. G. Calvert, C. A. Cantrell, R. E. Shetter, A. Hofzumahaus, P. Koepke, P.
973	S. Monks, G. Frost, R. McKenzie, N. Krotkov, A. Kylling, S. Lloyd, W. H. Swartz,
974	G. Pfister, T. J. Martin, EP. Roeth, E. Griffioen, A. Ruggaber, M. Krol, A. Kraus,
975	G. D. Edwards, M. Mueller, B. L. Lefer, P. Johnston, H. Schwander, D. Flittner, B.
976	G. Gardiner, J. Barrick, R. Schmitt, International Photolysis Frequency
977	Measurement and Model Intercomparison: Spectral Actinic Solar Flux
978	Measurements and Modeling, J. Geophys. Res., 2003, 108 , 8543,
979	doi:1029/2002/JD002891.
980	
981	

Species	V _{term} , cm s ⁻¹	size, µm	Reference
		-	
Urchid seeds	11	410120	
Encyclia alurna	11	410X120	Zotz et al. 2016 [5]
Epidenarum alijorme	10	520X00 1500v150	Zotz et al. 2016 [5]
Brassavola nodosa	9 16	1300X130 540v80	LUIZ Et dl. 2010 [5] Murron & Ellison 1009 [
Brassavola nouosa	10	540x00	Mullen & Einson 1990 [
Pollen ^b			
Abies pectinata	39		Szczepanek et al. 2017 [
Picea abies	8.7		Szczepanek et al. 2017
Pinus sylvestris	2.5-4.0		Szczepanek et al. 2017
<i>Juniperus</i> , various species	0.73-1.29	19-24	Bunderson & Levetin 20
Zea mays	17-31		Chamecki et al. 2011 [9]
Zea mays	23-28	80-105	Marceau et al, 2012 [10]
Moss spores	0.49-8.52	12-53	Zanatta et al. 2016 [11]
Fungal spores	0.002-0.5	1.5-7.2	Hussein et al. 2013 [12]
Bacteria	very low	0.65-1.1	Lighthart 1997 [13]
Virus	very low	0.004-0.1	various sources

Table 2. Survival of bacteria in aqueous suspension after exposure to UV radiation (from Santos et al.⁵⁷). The dominant wavelength for UV-A is 365 nm, for UV-B 302

nm.

Bacterial strain	Surviving fraction		
	UV-A 300 kJ m ⁻²	UV-B 90 kJ m ⁻²	
Acinetobacter (EU545154.1)	0.14	0.045	
Bacillus thuringiensis (JN084031.1)	0.10	0.0041	
Brevibacterium (JF905605.1)	0.0050	0.0068	
Micrococcus (HM352362.1)	0.44	0.18	
Paracoccus (AB681547.1)	0.59	0.0040	
Pseudomonas (JF749828.1)	0.34	0.11	
Psychrobacter piscidermidis (EU127295.1)	0.43	0.012	
Sphingomonas (AM900788.1)	0.48	0.015	
Staphylococcus saprophyticus (HQ407261.1)	0.15	0.078	

1026							
1027	Table 3. Literature describing photoinactivation spectra for various organisms. For						
1028	Escherichia coli many different strains and effect of aerobic and anaerobic conditions						
1029	9 have been investigated. In some cases both exponentially growing bacteria and those						
1030	in stationary phase have been used. There are also many spectra for virus, which are						
1031	not listed in the table.						
	Organism	Wavelength range	Reference				
	Bacteria	nm					
	"B. coli"	254-302	Gates 1930 [61]				
	Escherichia coli	254-434	Peak et al. 1983, 1984 [62,63]				
	Escherichia coli	254-405	Kelland et al. 1983 [64]				
	Escherichia coli *	254-460	Webb & Brown 1979 [65]				
	Escherichia coli	254-365	Webb & Tuveson 1982 [66]				
	Escherichia coli	270-740	Lui et al. 2016 [67]				
	Escherichia coli	240-460	Mackay et al. 1976 [68]				
	Escherichia coli *	300-450	Silverman & Nelson 2016 [69]				
	Enterococcus faecalis	270-660	Lui et al. 2016 [67]				
	Staphylococcus aureus	254-302	Gates 1930 [61]				
	Staphylococcus aureus	400-430	Maclean et al. 2008 [70]				
	Salmonella typhimurium	222-303	Chen et al. 2009 [71]				
	Salmonella typhimurium *	240-550	Mackay et al. 1976 [68]				
	Propionibacterium acnes *	320-440	Kjeldstad & Johnsson 1986 [72]				
	Bacillus subtilis spores	222-303	Chen et al. 2009 [71]				
	Bacillus subtilis spores	200-293	Cabaj et al. 2002 [73]				
	Bacillus subtilis spores	217-294	Mamane-Gravetz et al. 2005 [74]				
	Bacillus subtilis spores	172-254	Wang et al. 2010 [75]				
	Bacillus subtilis spores	0.1-300	Munakata et al. 1991, 1992				
	-		[76,77]				
	Bacillus subtilis spores	254-365	Tyrrell 1995 [78]				
	Bacillus pumilis spores	220-290	Beck et al. 2015 [79]				
	· · · ·						
	Eukaryotes						
	Saccharomyces cerevisiae	254-313	Zölzer & Kiefer 1983 [80]				
	Cryptosporidium parvum	210-290	Beck et al. 2015 [79]				
	Cryptosporidium parvum	216-290	Linden et al. 2001 [81]				

* Indicates those used in Figs. 1-3. 1032

Wavelength, nm

1039 Figure 1. Inactivation spectra for some bacteria compiled from various sources,

1040 expressed on a logarithmic scale as (spectral) inactivation cross section, i.e. the

1041 inverse of number of photons per m² necessary to reduce the amount of living

1042 bacteria by the factor e (left scale). Also shown is the spectrum for in vitro DNA

1043 damage normalized at 254 nm (right scale), from Setlow⁸². E. coli (aerobic) from

Webb and Brown⁶⁵; UV-A tail for lab-grown E. coli (also aerobic) from Silverman 1044

1045 and Nelson⁶⁹; for anaerobic conditions the curves are lower for wavelengths over

1046 320 nm; Propionibacterium acnes from Kjeldstad and Johnsson⁷²; salmonella

1047 typhimurium (stationary phase) from Mackay et al.⁶⁸.

1048

1053 Figure 2. Contribution of different wavelengths to the total inactivation (left scale),

for the spectra shown in Fig. 1. The dashed lines (right scale) give the cumulative
contribution from short to long wavelengths. Calculations were made with the TUV

- 1056 model (see Supp. Mat.)
- 1057

1062 Figure 3: Correlations between DNA damaging fluence with inactivation rates for

1063 several bacteria. TUV model for clear skies, range of latitudes and seasons. The

1064 *correlation exponents (log-log slopes) are given in the legend.*

1071 Hemisphere sites, while dashed curves are used to denote Northern Hemisphere

1072 sites. Note that the x-axis for Southern Hemisphere sites has been shifted by 6

1074

¹⁰⁷³ months to allow direct comparability with Northern Hemisphere sites.

1076

 $\begin{array}{c} 1077\\ 1078 \end{array}$

1079 Figure 5: Geometric factor relating the horizontal irradiance measured at Earth's

surface, to the fluence rate at any altitude, based on the DNA damage action 1080

1081 spectrum, 24 hr averages, calculated with the TUV model for representative

1082 locations and dates, cloud-free conditions. Inset in lower right shows difference

1083 between irradiance on a horizontal surface and fluence rate incident on a spherical

- 1084 or randomly oriented particle.
- 1085
- 1086

Figure 6. DNA-damaging UV fluence at ground-level. Climatology derived using
satellite-observed ozone and clouds 1979-2000 as input to the TUV model¹⁰⁴.

Satellite

1097 1098

1099 Figure 7. The vertical structure of DNA-damaging fluence in the presence of clouds,

1100 at two locations (polar circle and equator) for several cloud optical depths given in

1101 *legend. Dashed curves are for cloud-free conditions. Calculated with the TUV model.*

1102