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We introduce a scalable method to quantify electronic correlations
in insulin using mutual information (MI), characterizing interatomic
and inter-residue interactions. A cut-wise strategy, based on the
locality and decay of electronic correlations, combines localized
density functional theory (DFT) calculations on 51 overlapping
spherical cuts to reconstruct global Ml matrices. The approach
accurately reproduces key biochemical features and aligns with
full-protein DFT results, enabling efficient quantum correlation
analysis for large biomolecules. This framework supports future
applications in protein—ligand modeling, pharmacophore design,
and quantum-enhanced drug discovery.

Understanding electronic interactions in biomolecular systems is
essential for explaining protein folding and enzymatic activity.'
These interactions determine structural stability and functional
specificity, influencing numerous cellular processes.”” However,
the quantum mechanical nature of electron correlation poses
challenges for computational modeling, particularly for large
systems like proteins.”

Classical force fields and semi-empirical methods offer
scalable modeling solutions but often neglect critical quantum
effects, limiting their accuracy in describing subtle intra- and
intermolecular interactions.’ This limitation is especially rele-
vant in drug design and protein modeling, where precise
interaction profiles can determine the success of lead
optimization.®™® 4b initio quantum chemistry methods, in con-
trast, provide high-accuracy, first-principles solutions, but their
exponential scaling restricts applications to small molecules or
fragments.”'°

Quantum information theory has emerged as a tool to
quantify electronic correlations between orbitals and molecular
fragments."” It has been applied in molecular orbital theory
and tensor network approaches like the density matrix
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renormalization group (DMRG), revealing entanglement pat-
terns that govern reactivity and bonding."*** Building on this,
atomic mutual information (AMI) quantifies shared electronic
information between atoms without assuming specific
chemical interactions, offering high-resolution insight into
connectivity and interaction strength.’> A key observation in
these previous studies is that mutual information is primarily
local, opening up opportunities to quantify electron correlation
in extensive systems within localized fragments, rather than
necessitating ab initio computations at the full molecular level.

In this study, we apply AMI to insulin, a 51-residue peptide
hormone critical for blood glucose regulation.’”*® Its size and
structural complexity make it an ideal benchmark for testing a
divide-and-conquer approach, where overlapping fragments are
analyzed using Density Functional Theory (DFT) and assembled
to reconstruct a global AMI-based correlation map,'*® which
can still be benchmarked with a full-molecular DFT
computation.

Our work demonstrates the feasibility of applying AMI to
realistic protein systems and highlights its potential as a
quantum-informed tool for analyzing protein structure, inter-
action networks, and chemical environments. These insights
provide a foundation for future applications in protein-ligand
analysis and rational drug design, bridging the gap between
high-accuracy quantum modeling and scalable computational
approaches.

Our method extends prior work on quantum entanglement
and electronic correlations in small biomolecules to the full
insulin protein. Starting from von Neumann entanglement
entropy measures, we estimate the atomic mutual information
(AMI) 1,5 between two atoms A and B from the quantum mutual
information of the respective orbitals i and j on both atoms

Lis=>_ > I (1)
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For computational economics, the orbital-wise quantum
information indices I;; are typically computed at the Hartree-
Fock mean-field or Kohn-Sham DFT level. It is conceptually
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Fig. 1 (a) Ribbon representation of insulin. Two structural fragments (cuts)
with radius 5.0 A are highlighted as blue and red spheres. The magnified
inset depicts Cut 1, centered on the a-carbon of the first residue in Chain A
(glycine) with neighboring residues. The structure was visualized using
ChimeraX.® (b) Primary amino acid sequences of Chain A (top, 21 residues)
and Chain B (bottom, 30 residues).

straightforward to extend the concept AMI towards full frag-
ment mutual information (FMI) between two molecular frag-
ments X and Y following a similar coarse-graining approach

Ivy = Y ) Lis. @)
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The AMI and FMI provide course-grained estimates of the
classical and quantum correlations between atoms or frag-
ments at biologically relevant scales, providing insights into
electronic interactions from covalent bonds to long-range pro-
tein interactions. We refer to the Supplemental Information for
more details on the mathematical framework.

The three-dimensional structure of insulin, along with the
defined structural cuts, provides the foundation for the cut-
wise quantum mechanical analysis of electron correlation.
Fig. 1 shows a ribbon representation of the insulin structure,
highlighting its two-chain (A and B) and overall tertiary fold.
The figure illustrates how the protein was segmented into 51
overlapping spherical fragments centered on a-carbon atoms,
with two representative cuts marked. Each cut encapsulates a
chemically meaningful region while maintaining sufficient
overlap to reconstruct global electronic correlations. As each
individual sphere is defined by a radial cutoff from its central o-
carbon, individual fragments may include residues that are not
directly connected through peptide bonds in that individual
cut. For instance, AlaB30 is not directly bonded to the Chain A
residues in Cut 1 in Fig. 1. Although counterintuitive, including
spatially proximal but non-covalently connected residues helps
stabilize the overlapping contributions. The corresponding
sequence in Fig. 1(b) maps Chain A (21 residues) and Chain
B (30 residues), providing a direct reference for fragment
positioning.
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To quantify electronic correlations in insulin, we first com-
puted the AMI of the full insulin and the cuts at the ®B97M-V/6-
31G(d) level of theory (see SI). Subsequently, we reconstructed a
full AMI matrix for the full protein by stitching together the
results from all overlapping spherical cuts, which consisted of
averaging the AMI values over all contributing cuts for each
atom pair, computed as

4 Mliﬁlstitched) _ b Z A Mlék)y 3)
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where %; denotes the set of fragments containing both atoms ¢
and j, and N; = |%;|. The AMI values from the stitched matrix of
radius 5.0 A were compared to full-protein DFT results in
(Fig. 4). Each scatter point represents a pairwise atomic AMI,
with data clustering near the identity line, showing that the
stitched matrix accurately reproduces full-system correlations.
Gray points indicate interactions missing from the stitched
matrix, all below 0.1 nat, suggesting only insignificant correla-
tions are omitted. These clusters confirm that the divide-and-
correlate approach preserves both absolute AMI values and
their chemical hierarchy into non-bonded interactions <sin-
gle-bond to H. A visual representation of the AMI of insulin for
both the reconstructed and full DFT can be found in the SPatial
Atom Wise Network (SPAWN) plots, presented in the SI.

To extend the atomic-level insights to a more interpretable
analysis of interactions between amino acid residues, we used a
coarse-grained view of electronic correlations in insulin using
FML. Fig. 2 compares SPAWN plots generated from the stitched
AMI matrix obtained through fragment-wise DFT calculations
(5.0 A fragment radius) with the one derived from the full-
protein DFT calculation (a complementary projection is given
in Supplemental Information). These plots reveal strong corre-
lations between cysteine pairs forming disulfide bonds
(Cys6-Cys11, Cys7A-Cys7B, Cys20A-Cys19B). While the cut-
wise plot captures key local interactions, the reference shows
additional long-range correlations absent due to fragment over-
lap limits, as the same fragments never co-occur in a single cut.
This illustrates the inherent trade-off between locality and
completeness in fragment-based reconstructions.

To evaluate the accuracy and completeness of the fragment-
based FMI reconstruction, we compared heat maps derived
from stitched and full-protein DFT calculations (Fig. 3).
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Fig. 2 FMI visualization in insulin FMI. (a) Insulin protein structure with
highlighted disulfide bonds. (b) and (c) SPAWN plots reconstructed from (b)
51 overlapping structural fragments using 5.0 A cut-off, and (c) fullsystem
DFT calculation. Edge thickness represents FMI strength.
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Fig. 3 Heat maps of FMI across the insulin protein for different fragment radii. Panels (a), (b), and (c) show stitched FMI matrices reconstructed from
spherical fragments of radius 4.0, 5.0, and 6.0 A, respectively, while panel (d) presents the full-protein DFT reference. Blue and green frames delineate
Chains A and B, respectively, and purple frames indicate a-helical regions. The presence or absence of the Glul7(A)-Arg22(B) salt bridge is highlighted

with a cyan circle.

Panel (a)-(c) show FMI matrices reconstructed from overlap-
ping spherical fragments using radii of 4.0, 5.0, and 6.0 A,
respectively, while panel (d) displays the reference matrix
computed from a full-system wavefunction. Along the first
off-diagonal, both matrices display strong FMI values corres-
ponding to peptide bonds within the primary sequence. More
off-diagonal elements encode tertiary structure contacts.
Among these, disulfide bridges between cysteine residues
emerge as distinct violet patches, validating FMI’s capacity to
detect chemically significant covalent interactions.

The heat maps also resolve secondary structure segments.
a-Helical regions are evident from periodic off-diagonal bands,
reflecting canonical i — i + 4 hydrogen bonding of «-helices.
These features, highlighted with purple frames, appear as
regularly spaced darkening patterns along the diagonal. Their
locations correspond closely with the hydrogen bonds listed in
Table S1 in SI, which were identified using ChimeraX."® While
classical tools like ChimeraX reliably detect standard hydrogen
bonds, the FMI framework captures a broader range of electro-
nic interactions—including subtle, non-classical, or transient
correlations—that may not meet geometric criteria alone. As a
result, the heat maps reveal additional interaction patterns not
present in the table, underscoring the enhanced sensitivity and
resolution of MI-based analysis. These patterns agree with
Table S1 (SI), which lists 31 hydrogen bonds with donor-
acceptor distances of 2.7-3.3 A.

Despite the overall similarity between stitched and full DFT
matrices, the recovery of certain long-range interactions
depends on fragment size. To assess this sensitivity, we
repeated the cut-wise procedure using cutoff radii of 4.0 and
6.0 A in addition to the 5.0 A case. The 4.0 A fragments fail to
capture the Glul7(A)-Arg22(B) salt bridge, whereas both the
5.0 A and 6.0 A fragment sets recover this interaction (circle in
Fig. 3), producing stitched FMI matrices that closely match the
full-protein DFT reference. This behavior reflects the increased
probability that these residues are simultaneously included
within a single cut. Minor variations in the color gradients
between the matrices arise from the energy minimization
applied during fragment preparation, further details are pro-
vided in the SI. Expanding the fragment radius from 5.0 A to
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Fig. 4 Atom-pairwize AMI values from the 5.0 A stitched matrix cut-off
versus full-protein results for insulin. Gray points are missing interactions
from the stitched matrix, purple non-bonded, blue single bonds to H,
green single bonds between heavy atoms, and red double bonds.

6.0 A increases the average fragment size and computational
cost, highlighting the expected trade-off between computa-
tional efficiency and the completeness of long-range correlation
recovery.

Regarding computational gains, DFT scales polynomially in
the number of basis orbitals ¢ = «L®, with ¢ the computational
wall time to complete a DFT computation, L the total number of
atomic orbitals in the computation, and « and f method-
dependent constants. The relevant variable in each computa-
tion is the number of residues N, as the total number of
orbitals L in each fragment is proportional to the number of
residues L = N/ with / the average number of orbitals per
residue. With these parameters in place, we can define a
speedup factor as

ot _ a(NOP  NFFU 1
" Nigg  Na(NOF NP NP

(4)

in which N denotes the total number of residues (N = 51 for
insulin), and f; = N;/N denotes the relative fraction of residues
for fragments of size r (see Table 1 for the case of insulin).

This journal is © The Royal Society of Chemistry 2026


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04161a

Open Access Article. Published on 20 1 2026. Downloaded on 2026-02-14 4:57:43.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

Tablel Computation timings and scalings for the full insulin protein (right
column) and cut-wize approach with r = 4.0-6.0 A computed at the
wB97M-V/6-31G(d) level of theory using ORCA (more details in the SI)

4.0 A 5.0 A 6.0 A Full protein
(Average) N 5.3 8.1 10.1 51
(Average) f. 10% 16% 19% 100%
(Average) L 712 1068 1335 6424
(Average) ¢ [s] 977 2091 3011 41794
Full ¢ [s] 493830 106 632 153556 41794

The parameter f reflects the polynomial scaling of DFT,
ranging from the theoretical f = 4, to f = 3*" or even lower*>
towards f — 1. We will observe speedups whenever f > 1 and
the radius of the spheres is sufficiently small. In the SI, we
report details on the r = 4.0-6.0 A computations at the ®B97M-
V/6-31G(d) level of theory using ORCA,*® leading to a quasi
quadratic f# = 1.9. As can be inferred from Table 1, our bench-
mark insulin protein is too small to observe a speedup, mostly
due to the effective low f and relatively large residue fraction f;.
Extrapolating from this analysis, it can be anticipated that the
locality of quantum correlations will become useful for proteins
in the ~100 kDa range, where a speedup of x10-20 can be
expected depending on the radius of the fragment. Further-
more, whenever only a small and finite number v « N
of spheres need to be computed, the speedup increases to
Nt = 1/(fP).

We have shown that AMI and FMI provide an effective
framework for quantifying electronic correlations in proteins
at multiple spatial scales. Using a divide-and-conquer
approach grounded in quantum locality, we mapped intera-
tomic and inter-residue correlations in insulin with accuracy
comparable to full-system DFT. FMI captures covalent bonds,
disulfide bridges, hydrogen bonds, and secondary structure
elements like ao-helices, revealing both classical and subtle
non-classical correlations. The agreement between FMI and
fragment overlap maps highlights the nearsightedness of
electronic interactions in proteins and supports the role of
spatial locality in governing correlation strength. Extending
AMI to realistic biomolecules enables quantum-informed
exploration of protein-ligand interactions, pharmacophore
modeling, and drug discovery.
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