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In this work, density functional theory (DFT) calculations were conducted to investigate a series of metal
node-modified Ti-MOF catalysts using transition metals (Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd,
Hf, Ta, W, Os, Ir, and Au) introduced into Ti-ATA (ATA = 2-aminoterephthalic acid) for the photocatalytic
reduction of CO, to C, products. CO, can be sufficiently activated on Ti(M)-ATA but the adsorption
configuration depends on the nature of M. Over Ti(Nb)-ATA, Ti(Ta)-ATA, Ti(Zr)-ATA and Ti(Hf)-ATA, the
two *CHO species undergo C-C coupling to form *CHOCHO, an important C, intermediate. Ti(Nb)-
ATA and Ti(Ta)-ATA tend to generate ethanol, while Ti(Zr)-ATA and Ti(Hf)-ATA are more selective to
ethylene. Among the Ti(M)-ATA candidates studied, Ti(Nb)-ATA was identified as the most active catalyst
for CO, reduction to ethanol due to its smallest limiting free energy change (1.12 eV), over which the

. 4 30th Aoril 2025 *CH,CH,O reduction to *CH,CH,OH was found to be the rate-determining step. The correlation curve
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Accepted 22nd July 2025 analysis illustrates that the reduction activity of Ti(M)-ATA catalysts is highly dependent on the binding

strength of CO, and key reaction intermediates such as *OCHOH. The analysis of electronic and optical
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1 Introduction

The utilization of fossil fuels for the production of various
industrial products emits large amounts of carbon dioxide
(CO,) into the atmosphere, leading to serious environmental
problems."? Coping with these challenges, catalytic conversions
of CO, into valuable chemicals via sustainable strategies offer
promising approaches.>* Photocatalytic reduction driven by
renewable solar energy can convert CO, into liquid fuels and
value-added chemicals such as ethanol, olefins, and carboxylic
acids, which is widely recognized as a sustainable and green
approach for CO, conversion.>” Photocatalytic reduction of CO,
to C, chemicals is economically more valuable and the process
involves multi-electron transfer and multi-proton activation
processes. However, the insufficient interactions of CO, mole-
cules with the active sites of catalysts, the difficulty of CO,
activation, and retarded C-C coupling kinetics lead to the
limited formation of C, products with lower selectivity and
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bimetallic nodes of Ti(Nb)-ATA account for its excellent catalytic activity for CO, reduction to ethanol.

yields.® Therefore, the rational design of highly efficient and
selective photocatalysts with multi-functional active sites to
exert synergistic effects is urgently desired to tune the catalytic
activity and selectivity to C, products.

Over the past few years, a new class of semiconductor-like
crystalline porous materials known as metal-organic frame-
works (MOFs) has attracted increasing attention in the fields of
heterogeneous catalysis, gas storage, and separation.”'® MOFs
are composed of inorganic metal ions and organic ligands,
featuring well-defined structures, high porosity, larger surface
area, component diversity, and tailorability.** Therefore, MOF-
based materials possess rich physicochemical properties and
unique structural advantages among porous catalytic materials.
In particular, the large surface areas and specially designed
active sites of MOFs could enrich CO, efficiently with superior
CO, adsorption capacity and stabilize the reaction intermedi-
ates, making them promising platforms for the photocatalytic
reduction of CO, to chemicals and fuels.*>*?

However, only a limited number of MOF-based photo-
catalytic systems have been developed for CO, reduction and
their efficiency to C, products is still far from satisfactory.
Enhancing the photocatalytic efficiency of MOFs for C, forma-
tion mainly depends on their ability to generate and maintain
photogenerated electrons as well as their ability to activate CO,
and accelerate C-C coupling.'* Over the past decade,
researchers have designed strategies to improve the photo-
catalytic performance of MOFs, as summarized below:

This journal is © The Royal Society of Chemistry 2025
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(1) By constructing efficient active sites and using the
chelating effect of ligands to immobilize atomically dispersed
single/dual metals, the photocatalytic reaction can be
promoted.**"” For example, our group successfully synthesized
a novel Ti-based MOF photocatalyst denoted as Fe/Ti-BPDC
(BPDC = 2,2'-bipyridine-5,5'-dicarboxylic acid) with atomically
dispersed Fe sites, which exhibited high activity and selectivity
for CO, reduction to HCOOH, with a yield of 703.9 umolg ' h™"
and a selectivity greater than 99.7%.*® Inspired by the experi-
mental work, we proposed a new strategy for designing metal
single-atom-modified and dual-atom-modified Ti-BPDC photo-
catalysts through structural and electronic modulation for CO,
reduction to C; and C, products using density functional theory
(DFT) calculations.'®?* The computational results of structure-
activity volcano curves show that metal single-atom modified
Fe/Ti-BPDC (AG;, = 0.40 eV) and Pd/Ti-BPDC (AG;, = 1.17 eV) are
optimal catalysts for the photoreduction of CO, to HCOOH and
CH,;O0H, respectively,” due to their relatively small limiting free
energy changes compared to those reported in the literature.**
Furthermore, metal dual-atom-modified Ti-BPDCs such as Cu-
Sn/Ti-BPDC (AGy, = 0.20 eV) and Cu-Os/Ti-BPDC (AG;, = 0.70
eV) show enhanced activity toward the generation of HCOOH
and CH3;O0H products from CO, photoreduction compared to
metal single-atom modified Fe/Ti-BPDC and Pd/Ti-BPDC. In
particular, the dual-metal atom-modified Cu-In/Ti-BPDC (AG;,
= 1.37 eV) exhibits improved activity and selectivity towards the
generation of C, products (mainly C,H,).*

(2) Light absorption efficiency can be improved by choosing
the right ligands. For example, in order to improve the optical
properties of MIL-125 (Ti) MOFs, researchers successfully shifted
MIL-125 (Ti) to the visible range by introducing the 2-amino-
terephthalic acid (ATA) ligand with a broad spectral response,
enhancing the visible light absorption of the MOF materials.*?
Sun et al reported that MIL-125-NH,(Ti) with {110}/{111}-
heterojunction yields 10 and 18 times more CO and CH, prod-
ucts, respectively, from CO, photoreduction compared with the
single {001} facet; DFT calculations identified energetically
favorable pathways and rate-limiting steps for CO, reduction on
different low-index surfaces of MIL-125-NH,(Ti) in their studies.>®

(3) In addition, metal substitution/doping has been
demonstrated to be an effective method to improve the
performance of MOF-based photocatalysts. One of the effective
strategies is to construct bimetallic assemblies by partially
replacing a node metal in MOFs with another metal. The
bimetallic assemblies can harvest visible light and the doped
metal cations can act as electronic mediators to promote charge
transfer, facilitating the photocatalytic processes.** In partic-
ular, partial substitution of metal cations in MOFs can lead to
the formation of oxygen-bridged heterometallic structures
within the framework, which could exhibit enhanced photo-
catalytic performance due to the structural flexibility and
tunability of the designed MOFs.*® For example, Ti-substituted
NH,-UiO-66 (Zr/Ti) was prepared by Li et al. by using the post-
synthesis exchange (PSE) method which exhibits good cata-
lytic performance for the photoreduction of CO, to formic acid
under visible light, with a yield of 5.8 mmol mol ™" for 10 h; DFT
calculations and electron spin resonance (ESR) results indicate
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that the introduction of Ti substituents as a mediator promotes
electron transfer, which improves the photocatalytic perfor-
mance.* In addition, Truhlar et al. used UiO-66 as the basic
skeleton and replaced partial Zr atoms in the nodes with metals
such as Hf, Th, Ti, U, Ce, etc.; DFT calculations show that UiO-
66(Ce) effectively promotes electron-hole separation due to the
fact that Ce*" in the material has a low-energy 4f vacancy orbital,
which can receive photogenerated electrons, thus more effec-
tively driving the photocatalytic reaction.>®

Based on the literature survey and prior studies in our group,
the structures and properties of ligands in MOF materials have
important impacts on the photocatalytic performance of CO,
reduction. On the one hand, metal single-atom and dual-atom
assemblies can be stably anchored with N-containing ligands
within the MOF framework to improve the efficiency of CO,
activation and conversion.”®?*?” On the other hand, metal-
modified nodes can effectively regulate light absorption and
electron-hole separation efficiency, and provide special active
sites to further tune the activity and selectivity of MOF-based
catalysts for CO, photoreduction.?®***®* However, the direc-
tional control of CO, reduction products remains challenging,
especially for the generation of C, products. Due to the complex
mechanisms of adsorption/activation of CO, and cleavage/
reconstruction of C=0 double bonds over the active sites of
catalysts, the principles governing the formation and trans-
formation of key intermediates and electron-proton transfer in
the reaction processes are still not clear, which make it difficult
to regulate the conversion paths and target products.

The limited efficiency of MOF-based photocatalysts in the
reduction of CO, to C, products (e.g., ethanol and ethylene) stems
from several intrinsic challenges, among which insufficient
activation of CO,, slow kinetics of C-C coupling, and generation
of key intermediates required for C-C coupling are the major
bottlenecks. On the one hand, many MOFs lack robust
adsorption sites (e.g., metal active sites or Lewis base sites) to
activate the linear structure of CO,, which prevents the reduction
of CO, to the critical *HCOO or *COOH intermediate. On the
other hand, C, product generation requires multiple electrons,
but MOFs usually lack efficient charge transport channels to
deliver electrons quickly. In addition, the lack of bimetallic site
nodes in some MOF materials leads to low stability of C-C
coupling intermediates. To summarize, the synergistic optimi-
zation of CO, adsorption/activation, electron transfer, interme-
diate stability, and C-C coupling kinetics inside MOF materials is
a crucial factor in overcoming the inefficiency of MOF-based
photocatalysts for the production of C, products.

Inspired by our previous experimental studies on Ti-based
MOFs and the potential application of 2-aminoterephthalic
acid (ATA) ligands in MOFs for photocatalysis,**** the present
work systematically investigates the adsorption/activation and
reduction of CO, to C, products (mainly ethanol and ethylene)
on a series of metal node-modified Ti(M)-ATA MOFs (ATA = 2-
aminoterephthalic acid, M = Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo,
Ru, Rh, Pd, Hf, Ta, W, Os, Ir, Au) by means of DFT calculations.
By screening these heterometallic node structures via structure—
activity correlation, Ti(Nb)-ATA is identified as the most active
photocatalyst for CO, reduction to ethanol (C,Hs;OH), with
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a limiting free energy change of 1.12 eV associated with the
*CH,CH,0 — *CH,CH,OH step. Electronic property analysis
further demonstrates that the computationally designed Ti(Nb)-
ATA MOF catalyst via node modification is more favorable for
the photocatalytic reduction of CO, to C, compared to
unmodified Ti-ATA and other Ti-based MOFs such as Ti/BPDC
and MIL-125-NH,(Ti). In addition, we also find that node-
modified metals from different groups of the periodic table
lead to different C, products. For example, Ti(Ta)-ATA and
Ti(Nb)-ATA tend to generate ethanol, while Ti(Zr)-ATA and
Ti(Hf)-ATA are more selective to ethylene.

2 Computational models and
methods

The present work builds on recent experimental studies by He
et al. in our group, where characterization by X-ray diffraction
(XRD) showed that the synthesized Ti-BPDC (BPDC = 2,2’
bipyridine-5,5'-dicarboxylic acid) has high crystallinity; the Ti and
O atoms are periodically aligned to form Ti-O layers, and the Ti-
O layers connected to the organic ligand are parallel to each
other.”®* To construct the computational models in this work,
we chose 2-aminoterephthalic acid (ATA) as the linker instead of
BPDC and the aforementioned Ti-MOF as the basic framework.
Within the constructed Ti-MOF catalyst, the Ti and O atoms in
the nodes of the MOF exhibit periodically arranged Ti-O layers,
with each Ti atom connected to six O atoms to form Ti-O clusters,
in which two of the O atoms belong to the ATA linker and four of
the O atoms are from the Ti-O layers, as shown in Fig. 1(a) and
(c). A periodic cell of Ti-ATA-based MOFs with a lattice constant of
6.44 A x 21.75 A x 7.40 A was built for modelling (Fig. 1(a)).
Then, representative metals including Mn, Fe, Co, Ni, Cu, Zn, Zr,
Nb, Mo, Ru, Rh, Pd, Hf, Ta, W, Os, Ir, and Au were selected as
doping metals for node modification (denoted as Ti(M)-ATA)
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Fig. 1 (a) The optimized structure of the Ti-ATA (ATA = 2-amino-
terephthalic acid) framework. (b) Representative 3d (Mn, Fe, Co, Ni, Cu,
and Zn), 4d (Zr, Nb, Mo, Ru, Rh, and Pd), and 5d (Hf, Ta, W, Os, Ir, and
Au) metals selected as doping metals for node modification in Ti(M)-
ATA catalysts. (c) Structure of the 2-aminoterephthalic acid (ATA)
linker. (d) Two possible node configurations formed in Ti(M)-ATA
catalysts.
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(Fig. 1(b)). According to the literature, bimetallic assemblies
with Ti-O-M oxygen-bridged structures are formed in typical Ti-
ATA MOF materials through metal substitution in the modifica-
tion processes.” Here, upon introducing the second metal atoms
into Ti-ATA, two possible configurations were considered, i.e. one
is the formation of a Ti-Ti diagonal structure in one parallelo-
gram at the node center which separates the second metal atoms
into different parallelograms, and the other is the formation of
an M-M diagonal structure in one parallelogram at the node
center within the MOF, separating the Ti atoms into different
parallelograms, as illustrated in Fig. 1(d).

An all-electronic approach implemented in the Vienna Ab initio
Simulation Package (VASP) program was used to perform spin-
polarized DFT calculations.**** The projector-augmented wave
(PAW) pseudopotentials were used to describe the electron-ion
interactions. The Perdew-Burke-Ernzerhof (PBE) functional in the
generalized gradient approximation (GGA) was used to calculate
the exchange-correlation energies of electrons.* The Coulomb
and exchange interactions were corrected by setting the Uy
parameter (Uee = Coulomb U — exchange J) for each transition
metal.***® The U parameter for titanium atom was set to 3.0 eV,
and those for remaining metals are given in Table S1 in the ESLt
To include van der Waals (vdW) interactions, the PBE + D3 method
was used.’”*® The valence electrons were described using a plane
wave basis set with a cutoff energy of 450 eV. The convergence
criteria for all calculated electronic energies and atomic forces
were set to 10~* eV and 0.03 eV A™", respectively. Both Ti-ATA and
Ti(M)-ATA structures were optimized using a 4 x 1 X 4 k-point
mesh for sampling the Brillouin zone in the VASP calculations.

The adsorption energy (E.qs) of an adsorbate onto the cata-
lyst was calculated using the equation Ea.qs = Eiotal — Ecatalyst ~
Eadsorbates where Etotal Ecata]yst) and Eadsorbate represent the total
energy of the system containing the adsorbate and catalyst, the
energy of the bare catalyst, and the energy of the adsorbate in
the gas phase, respectively. In order to evaluate the catalytic
activity of CO, photoreduction over these Ti(M)-ATA catalysts,
the free energy change (AG) was calculated for each elementary
step involved in the CO, reduction process using the formula
AG = AE + AEzgp — TAS,***® where AE is the total electronic
energy change obtained through DFT calculations, AE,gp is the
zero-point energy contribution, T is the temperature at 298. 15
K, and AS is the entropy change. The zero-point energy and
entropy were obtained from vibrational frequency calculations
using DFT. The zero-point energies of all adsorbed species are
provided in Table S2.1 In this work, we investigated the reaction
pathways for the formation of different C, products (mainly
C,H, and C,Hs;OH) over Ti-ATA and Ti(M)-ATA catalysts, in
which protons and photogenerated electrons are added to the
reaction intermediates progressively in the presence of a cata-
lyst, ultimately resulting in the formation of C, products.

3 Results and discussion

3.1 Structural stability of Ti(M)-ATA catalysts and the
adsorption of CO,

For clarity, we grouped the introduced second metals (M) into
three categories based on their d electrons as 3d (Mn, Fe, Co, Ni,

This journal is © The Royal Society of Chemistry 2025
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Cu, and Zn), 4d (Zr, Nb, Mo, Ru, Rh, and Pd), and 5d (Hf, Ta, W,
Os, Ir, and Au). Before exploring the adsorption of CO, mole-
cules on the designed Ti(M)-ATA catalysts, we first investigated
the structural stabilities of the two types of metal-modified
nodes of MOFs (Fig. 1(d)). The calculated DFT energies are
presented in Fig. S1,} and the results show that Ti(M)-ATA
candidates, except Ti(Zn)-ATA, exhibit a periodic enhance-
ment of DFT energies from left to right according to the periodic
table of elements. Notably, the absolute energy values of these
two different node configurations are not very different.
Therefore, we further calculated the substitution energies of
bimetallic assemblies in Ti(M)-ATA as shown in Fig. S2,1 and
the specific values are given in Table S3.1 The results show that
considerable negative substitution energies are obtained for
Ti(M)-ATA (M = Zr, Nb, Hf, Ta), which range from —0.93 eV to
—3.70 eV. However, all other candidate catalysts have positive
substitution energy values, indicating that Zr, Nb, Hf, and Ta
atoms can bind strongly to the node Ti atom in the MOFs, thus
ensuring their high structural stability.

It is worth noting that DFT energy and substitution energy
alone are not sufficient to determine the optimal doping model
for metal modification. Therefore, we further explored all
possible adsorption configurations of CO, on the two different
node models, considering four different initial adsorption
configurations, including *COO, *OCO, O*CO, and O*OC (*
indicates adsorption at the doped metal active site). With model
structure 1, as shown in Fig. 1(d), after comprehensive struc-
tural screening and optimization, it was found that CO, is

View Article Online
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adequately activated on Ti(M)-ATA (M = Nb, Zr, Ta, Hf), with
one O atom of CO, bonded to the doped metal site in the node
and the C atom of CO, bonded with the N atom in the ATA
ligand, forming a stable *O(M)-C(N)-O angular adsorption
structure, as shown in Fig. 2(a). However, on the catalyst models
of Ti(M)-ATA (M = Mn, Fe, Co, Ni, Cu, Zn, Mo, Ru, Rh, Pd, W,
Os, Ir, Au), CO, shows a linear adsorption configuration and is
not bonded to other atoms in the MOF catalysts, as illustrated in
Fig. S3.1 With model structure 2 as shown in Fig. 1(d), CO,
exhibits the *O(Zr)-C(N)-O adsorption mode merely on Ti(Zr)-
ATA whereas it shows a linear adsorption pattern on the rest
of the candidate catalysts, as shown in Fig. S4. The adsorption
energies of CO, on pristine Ti-ATA and metal-modified Ti(M)-
ATA (model structure 1 and model structure 2) were calcu-
lated, as shown in Fig. 2(b-d) and S5,T while the specific values
of adsorption energies are provided in Table S4. The calcula-
tion results show that the adsorption energy values of CO, on
Ti(M)-ATA (M = Nb, Zr, Ta, Hf) are 0.15, 0.31, —0.10, and
0.26 eV, respectively, which are significantly lower than that
obtained over the pristine Ti-ATA catalyst (1.45 eV) and those
obtained over other metal-modified Ti(M)-ATA candidate cata-
lysts. Therefore, the Ti(M)-ATA (M = Nb, Zr, Ta, Hf) candidates
were chosen for subsequent exploration of the reaction path-
ways and reactivities for CO, photoreduction to C, products. It
is worth noting that the adsorption energies of CO, on model
structure 1 are generally lower than those on model structure 2,
as shown in Fig. S5.7 Based on the calculated CO, adsorption
configurations and adsorption energies, the metal-modified
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Fig. 2

(a) The optimized stable adsorption configurations of CO, molecules on metal-modified model structure 1 of Ti(M)-ATA (M = Nb, Zr, Ta,

Hf); (b) the adsorption energies of CO, on pristine Ti-ATA and metal-modified model structure 1 of Ti(M)-ATA (M = Mn, Fe, Co, Ni, Cu, Zn); (c) the
adsorption energies of CO, on pristine Ti-ATA and metal-modified model structure 1 of Ti(M)-ATA (M = Zr, Nb, Mo, Ru, Rh, Pd); (d) the adsorption
energies of CO, on pristine Ti-ATA and metal-modified model structure 1of Ti(M)-ATA (M = Hf, Ta, W, Os, Ir, Au).
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model structure 1 exhibits good structural stability, sufficient
interactions with CO,, and better ability to activate CO,; there-
fore it was chosen as the representative node-modification
model for subsequent studies.

3.2 CO, reduction mechanisms and catalytic performance of
Ti-ATA and Ti(M)-ATA (M = Zr, Nb, Hf, Ta)

Since CO, can be sufficiently activated on Ti(M)-ATA (M = Zr,
Nb, Hf, Ta), we proceeded to investigate the reaction properties
of CO, reduction over these candidate catalysts. The reduction
of CO, to C, products can be divided into hydrogenation
processes and C-C coupling reaction. In particular, the forma-
tion of stable C-C coupling intermediates on the catalyst is
a crucial step in the reduction of CO, to C, products; thus we
first examined all possible hydrogenation pathways for CO,
reduction before C-C coupling on pristine Ti-ATA and metal-
modified Ti(M)-ATA (M = Zr, Nb, Hf, Ta) candidates, and
mapped out the Gibbs free energy diagrams as shown in Fig. 3.
The first proton may attack the O or C atom of *OCO, forming
the *OCOH or *OCHO intermediate, respectively. For the IVB
metals in the periodic table, including single metal Ti, bi-metal
Ti(Zr) and Ti(Hf), the *OCOH intermediate cannot be stabilized
even after structural optimization and spontaneously trans-
forms into the *OCHO intermediate. Moreover, it is found that
the first hydrogenation step of *OCO — *OCHO is thermody-
namically quite unfavorable on Ti (Zr) and Ti (Hf), with AG
values of 0.91 and 1.18 eV, respectively, as shown in Fig. 3(b)
and (c). Although the hydrogenation of *OCO to the *OCHO
intermediate is slightly uphill (AG of 0.17 eV) over pristine Ti-
ATA, the CO, adsorption/activation process is largely endo-
thermic (AG of 1.45 eV) on this catalyst, as illustrated in
Fig. 3(a). In the next scenario, the continued hydrogenation of
*OCHO to form the *OCHOH species is significantly
exothermic, releasing energies of 2.92, 2.77, and 2.81 eV,
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respectively on Ti-ATA, Ti(Zr)-ATA, and Ti(Hf)-ATA. Then, the
formed *OCHOH species needs to overcome large uphill energy
barriers (AG = 1.48, 2.04, and 2.10 eV on Ti-ATA, Ti(Zr)-ATA, and
Ti(Hf)-ATA) to dissociate into the key *CHO intermediate
species, releasing a H,O molecule simultaneously. Overall, the
formation of the key *CHO intermediate on Ti-ATA, Ti(Zr)-ATA,
and Ti(Hf)-ATA is quite energy consuming and thus energeti-
cally unfavorable. By contrast, for the VB metals including
Ti(Nb) and Ti(Ta), both intermediates can be formed from the
first hydrogenation step of *OCO. Clearly, the *OCHO inter-
mediate is much more stable than the *OCOH intermediate, as
illustrated in Fig. 3(d) and (e); thus the pathway for further
conversion of the *OCOH intermediate is not considered here.
Subsequently, the hydrogenation of the *OCHO intermediate
on Ti(Nb)-ATA and Ti(Ta)-ATA requires overcoming moderate
uphill energies of 0.68 and 0.72 eV, respectively, leading to the
formation of the *OCHOH intermediate. In the next step, the
continued reduction of *OCHOH on Ti(Nb)-ATA to form the key
intermediate *CHO is thermodynamically favorable, releasing
an energy of 0.71 eV, whereas the formation of *CHO species on
Ti(Ta)-ATA still requires overcoming an energy barrier of
0.35 eV. The above calculation results reveal that the formation
of the key *CHO intermediate is thermodynamically more
preferred on the Ti(Nb)-ATA catalyst, which plays an important
role in subsequent C-C coupling and further reduction to
generate C, products.

Starting with the formed *CHO species, all possible path-
ways and intermediates for the reduction of CO, to C,H, or
C,HsO0H products on pristine Ti-ATA and metal-modified Ti(M)-
ATA (M = Zr, Hf, Nb, Ta) were considered, as illustrated in
Fig. 4. By comparing the reaction Gibbs free energies, the
optimal pathway for CO, reduction to C,H, or C,HsOH over
each of the examined catalyst was identified, as shown in
Fig. 5(a) and (b), and the optimized structures of relevant
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intermediates are given in Fig. 5(c) and (d). Other pathways
considered and investigated are provided in Fig. S6.1 In this
scenario, we focus on discussing the reaction mechanisms
starting from the C-C coupling step, as detailed below:

(1) According to the free energy diagram shown in Fig. 5(a),
over pristine Ti-ATA, metal-modified Ti(Zr)-ATA and Ti(Hf)-ATA,
the two *CHO species undergo C-C coupling to form the
important C, intermediate *CHOCHO (Fig. 5(b)), releasing the
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energies of 0.98, 1.91, and 1.99 eV, respectively on the three
catalysts. The subsequent conversion of *CHOCHO species
leads to the formation of four possible intermediates, namely
*CHOCHOH, *CHOCH,O, *CHOHCHO, or *CH,OCHO. The
calculated Gibbs free energies in Fig. S6(a-c)f show that the
formation of these four intermediates is thermodynamically
unfavorable due to the uphill free energy changes, with the
*CHOCHOH species formation involving a relatively smaller
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energy increase compared to the other three species (AG = 0.31
(Ti-ATA), 1.17 (Ti(Zr-ATA)), and 1.20 eV (Ti(Hf)-ATA)). The
formed *CHOCHOH intermediate is then reduced by proton-
coupled electron transfer to form *CHOHCHOH, *CHOCH +
H,0, *CHOCH,OH, or *CH,OCHOH species. Notably, the AG
values for the formation of *CHOCH + *H,O on Ti-ATA, Ti(Zr)-
ATA, and Ti(Hf)-ATA are —0.78, —1.00, and —1.07 eV, respec-
tively, which are lower than those for the formation of the other
three intermediates (Fig. S6(a—c)7), suggesting that *CHOCH +
*H,O is the preferred intermediate from *CHOCHOH reduc-
tion. In the next step, further reduction of *CHOCH leads to the
formation of *CH,OCH, *CHOCH,, or *CHOHCH. As demon-
strated in Fig. 5(a) and S6(a—c),t the formation of *CH,OCH,
*CHOCH,, and *CHOHCH species is thermodynamically
unfavorable due to uphill free energy changes, but *CHOCH, is
relatively more stable than the other two species, with AG values
of 0.67 (Ti-ATA), 0.53 (Ti(Zr)-ATA), and 0.63 eV (Ti(Hf)-ATA),
respectively. Subsequently, the *CHOCH, intermediate
undergoes further reduction to either *CH,OCH, or
*CHOHCH, species, with the formation of *CHOHCH, species
being thermodynamically more favorable, as shown in
Fig. S6(a—c).T In contrast, the reduction of *CHOCH, to *CH,-
OCH, species is thermodynamically unfavorable, with AG
values of —0.26 (Ti-ATA), —0.47 (Ti(Zr)-ATA), and —0.48 eV
(Ti(Hf)-ATA), as shown in Fig. 5(a). For the generated
*CHOHCH, intermediate, two possible hydrogenation path-
ways lead to different C, intermediates: either the formation of
*CHCH, species by releasing a H,O molecule (AG = 0.21 (Ti-
ATA), 0.37 (Ti(Zr)-ATA), and 0.38 eV (Ti(Hf)-ATA)), which is
then reduced to *CH,CH, (AG = —0.44 (Ti-ATA), —0.54 (Ti(Zr)-
ATA), and —0.61 eV (Ti(Hf)-ATA)), or the generated *CHOHCH,
intermediate continues to be hydrogenated to form *CH,-
OHCH, species which is further reduced to *CH,OHCHj,.
Finally, the formed *CH,OHCH; (*C,HsOH) or *CH,CH,
(*C,H,) desorbs from the catalysts. Apparently, the reduction of
CO, to *C,H, over Ti-ATA, Ti(Zr)-ATA, and Ti(Hf)-ATA catalysts
is more selective (energetically favorable) than to *C,HsOH
according to the calculation results given in Fig. S6(a-c).t
However, the desorption of formed *CH,CH, from the catalyst
proceeds slowly due to the substantial free energy changes on
the three catalysts examined, as shown in Fig. 5(a). Based on the
above results, the optimal pathway for the photocatalytic
reduction of CO, to the preferred C,H, product on pristine Ti-
ATA, metal-modified Ti(Zr)-ATA and Ti(Hf)-ATA catalysts can
be summarized as *CO, — *OCHO — *OCHOH — *CHO —
*CHOCHO — *CHOCHOH — *CHOCH + H,0 — *CHOCH,
— *CHOHCH, — *CHCH, — *CH,CH, — *+C,H,. According
to the free energy diagram in Fig. 5(a), the reduction step
*OCHOH — *CHO (AG = 1.48 (Ti-ATA), 2.04 (Ti(Zr)-ATA), and
2.10 eV (Ti(Hf)-ATA)) has the largest free energy change and is
considered to be the rate-determining step for the overall
reaction. On these three catalysts, C-C coupling is not difficult
to achieve with a substantially downhill free energy change;
however the hydrogenation reactions before C-C coupling
proceed slowly, especially the generation of the key *CHO
intermediate.
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(2) In contrast, the mechanisms of CO, reduction to C,
products on Ti(Nb)-ATA and Ti(Ta)-ATA catalysts are different.
According to the free energy diagrams given in Fig. 5(c), for
Ti(Nb)-ATA and Ti(Ta)-ATA, the two *CHO species undergo C-C
coupling to form *CHOCHO (Fig. 5(d)), an important C, inter-
mediate, releasing the energies of 1.02 and 1.45 eV, respectively
on the two catalysts. Further reduction of *CHOCHO species
proceeds via different pathways. As illustrated in Fig. S6(d) and
(e),t among the four possible intermediates produced from
*CHOCHO reduction, the formation of *CHOCH,O is thermo-
dynamically the most favorable, with AG values of 0.45 and
0.46 eV, on Ti(Nb)-ATA and Ti(Ta)-ATA, respectively. The formed
*CHOCH,O species can be further reduced to *CH,OCH,O,
*CHOHCH,O0 or *CHOCH,OH. From Fig. S6(d) and (e),} it can
be seen that *CHOHCH,O formation has a lower Gibbs free
energy change compared to *CH,OCH,0 and *CHOCH,OH. In
the next step, the formed *CHOHCH,O species can be further
reduced to three possible intermediates including *CH,-
OHCH,0, *CHCH,O + H,0 or *CHOHCH,OH. Based on the
Gibbs free energy diagrams given in Fig. 5(c) and S6(d), (e),T it
can be observed that the formation of the *CH,OHCH,O
intermediate is thermodynamically much more favorable (AG =
—0.60 (Ti(NDb)-ATA) and —0.42 eV (Ti(Ta)-ATA)), whereas the
formation of *CHCH,O + H,O and *CHOHCH,OH intermedi-
ates is associated with large free energy barriers. Subsequently,
the resulting *CH,OHCH,O species can either be reduced to
*CH,OHCH,OH species which is thermodynamically unfavor-
able, or to *CH,CH,O and a H,O molecule which is thermo-
dynamically favorable. The AG values for *CH,OHCH,O
reduction to *CH,CH,O + *H,O on Ti(Nb)-ATA and Ti(Ta)-ATA
are calculated to be 0.40 and 0.74 eV, respectively. After the
release of H,O molecule, the remaining *CH,CH,O species can
be further reduced by proton coupled electron transfer to
produce the *CH,CH,OH species. As shown in Fig. 5(b),
remarkably, the Gibbs free energy change for this hydrogena-
tion process increases by 1.12 and 1.62 eV for Ti(Nb)-ATA and
Ti(Ta)-ATA, respectively. In the last step, further reduction of
*CH,CH,OH generates either *CH,CH, + H,O or *CH;CH,OH.
Unlike Ti-ATA, Ti(Zr)-ATA, and Ti(Hf)-ATA, it is clear that the
generation of *CH3;CH,OH (*C,HsOH) on Ti(Nb)-ATA and
Ti(Ta)-ATA is energetically more favorable than the formation of
*CH,CH, (*C,H,), as shown in Fig. S6(d) and (e),t and the
corresponding AG values for *C,H;OH formation on these two
catalysts are —0.78 and —0.54 eV, respectively. It is worth noting
that there is a small uphill energy change involved in the
desorption of *CH3;CH,OH species on Ti(Nb)-ATA; however, the
*CH;3;CH,OH desorption is not a highly energy-consuming step
compared to the preceding step of *CH,CH,O reduction to
*CH,CH,OH with a large positive AG value, as illustrated in
Fig. 5(c). To sum up, for the reduction of CO, to the preferred
C,H5;0H product on Ti(Nb)-ATA and Ti(Ta)-ATA catalysts, the
optimal pathway is identified as *CO, — *OCHO — *OCHOH
— *CHO — *CHOCHO — *CHOCH,O — *CHOHCH,O —
*CH,OHCH,0 — *CH,CH,0 + H,0 — *CH,CH,OH —
*CH;3;CH,OH — *+C,HsOH, in which the rate-determining step
is found to be the reduction of *CH,CH,O — *CH,CH,OH as it
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involves the highest free energy change (AG = 1.12 (Ti(Nb)-ATA)
and 1.62 eV (Ti(Ta)-ATA)) among all of the elementary steps.

Moreover, we also calculated the kinetic barrier of the rate-
determining step in the optimal energy pathway for CO,
reduction to ethanol on Ti(Nb)-ATA and Ti(Zr)-ATA, as shown in
Fig. S7.7 In addition to considering the energy barrier of the
rate-determining step, the corresponding reaction rate constant
was also calculated and is provided in Table S5.1 The results
show that the CO, reduction has an obvious kinetic advantage
on Ti(Nb)-ATA compared to Ti(Zr)-ATA based on both the Gibbs
free energy barrier and reaction rate constant calculations,
further consolidate the above screening results.

Since the adsorption and activation of CO, is an extremely
important initial step in CO, reduction, as demonstrated in the
previous studies,'>***! here we correlated the adsorption energy
of CO, with the limiting free energy change for the generation of
C, products (C,H,; and C,HsOH) on the four metal-modified
Ti(M)-ATA (M = Zr, Hf, Nb, Ta) catalysts, and plotted the cor-
responding volcano type curve as displayed in Fig. 6(a). The
calculation results show that the Ti(Nb)-ATA catalyst has the
lowest limiting free energy change and a moderate CO,
adsorption intensity, positioning it at the top of the volcano-
type curve. In addition, we note that the stability of the
*OCHOH intermediate affects the next step of dehydration to
form the key C-C coupling intermediate of *CHO, and thus we
plotted the volcano type curve of Gxocxon and the limiting free
energy change on the four metal-modified Ti(M)-ATA (M = Zr,
Hf, Nb, Ta) catalysts, as displayed in Fig. 6(b). The results show
that the Ti(Nb)-ATA catalyst remains at the top of the volcano
curve, further indicating that the moderate stability of the
*OCHOH intermediate over Ti(Nb)-ATA is quite favorable for
the subsequent generation of the *CHO intermediate. There-
fore, the Ti(Nb)-ATA catalyst would be the best candidate for C,
production among the four candidates studied. These results
further clarify that the adsorption strength of the CO, reactant
and key reaction intermediates (e.g.*OCHOH) directly affects
the CO, reduction activity, and the relatively mild bonding of
*CO, and *OCHOH over Ti(Nb)-ATA is responsible for the
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highest activity of Ti(Nb)-ATA among the screened candidate
catalysts. This finding is consistent with our previous studies on
CO, photoreduction over Ti-MOF-based catalytic
materials.**?°

In addition, we note that CO, molecules can be adequately
activated when the doped nodal metals belong to the IVB and
VB groups and could provide favorable active sites for CO,
adsorption and activation. For IVB group metal-modified Ti-
ATA catalysts, such as Ti(Zr)-ATA and Ti(Hf)-ATA, CO, photo-
catalytic reduction tends to generate the C,H, product and
follows similar reaction pathways. In contrast, for VB group
metal-modified Ti-ATA catalysts, such as Ti(Nb)-ATA and Ti(Ta)-
ATA, CO, photoreduction to the C,HsOH product is energeti-
cally more preferred. The calculated limiting free energy change
(AGy, = 1.12 eV) over Ti(Nb)-ATA for C,H;OH generation is even
smaller than that (AG;, = 1.37 eV) over the dual metal-atom-
modified Cu-In/Ti-BPDC catalyst which was identified to be
a good catalyst for C, (C,H,) generation in our previous DFT

other

work.?® Therefore, Ti(Nb)-ATA can be proposed as a promising
candidate catalyst for the photocatalytic reduction of CO, to C,
products, especially C,HsOH. Overall, the calculation results
indicate that the ATA ligand with a Ti-O-Nb dual-metal-node
structure as well as with a broad absorption spectrum effec-
tively improves the photocatalytic efficiency for CO, reduction
to C, products, which are also essential for regulating the
catalytic activity and product selectivity of Ti-MOF-based
photocatalysts.

The CO, photoreduction was typically carried out in aqueous
solution. Under the same conditions, *H species could be
adsorbed on the active site and reduced by the proton-electron
pair (H" + ™), which would affect the photocatalytic efficiency of
CO, reduction. Here, we calculated the Gibbs free energy
diagram for the hydrogen evolution reaction (HER) on the
Ti(Nb)-ATA catalyst, as shown in Fig. S8(a),T which shows that
the *H species is preferentially adsorbed on the Nb atom in the
node of Ti(Nb)-ATA. It is worth noting that the limiting free
energy change for the HER on Ti(Nb)-ATA is calculated to be
1.29 eV, which is higher than that (1.12 eV) for CO, reduction;
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Ti(M)-ATA (M = Zr, Hf, Nb, Ta) catalysts.
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thus the competitive effect of HER is minor. In addition, we also
calculated the Gibbs free energy diagrams for CO and HCOOH
production from CO, reduction on Ti(Nb)-ATA, as shown in
Fig. S8(b),t and the results show that the stability of the *CHO
intermediate is higher than that of CO and HCOOH products;
thus the ethanol formation pathway through the CHO* inter-
mediate is mainly considered in this work.

3.3 Electronic structure and optical property analysis of Ti-
ATA and Ti(M)-ATA (M = Zr, Nb, Hf, Ta)

In order to gain fundamental insights into the optical proper-
ties of the node-modified Ti-ATA catalysts, we further analyzed
the electronic structures of pristine Ti-ATA and the best active
catalyst identified, Ti(Nb)-ATA, by calculating the total and
projected density of states (TDOS and PDOS) and band struc-
tures, as shown in Fig. 7(a) and (b). The results for other cata-
lysts (Ti(M)-ATA (M = Zr, Hf, Ta)) are provided in Fig. S9(a) and
(b).T The indirect band gap of unmodified Ti-ATA is 1.54 eV.
Compared to the unmodified Ti-ATA catalyst, the band gap of
metal-modified Ti(Nb)-ATA (1.25 eV) and Ti(Ta)-ATA (1.31 eV)
(VB metals in the periodic table) becomes significantly narrower
and several new energy bands appear near the Fermi energy
level. By contrast, the band gaps of Ti(Zr)-ATA (1.77 eV) and
Ti(Hf)-ATA (1.79 eV) (IVB metals in the periodic table) are wider
and there are no new energy bands near the Fermi energy level.
Importantly, a new energy band consisting of transition metal
d orbitals emerges near the Fermi energy level of Ti(Nb)-ATA.
This energy band has an important contribution near the
Fermi energy level and can be used as a doping energy level to
promote the separation of photoelectrons and holes by trapping

View Article Online
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electrons, thus increasing the stability of reaction intermediates
and lowering the barriers in the reduction of CO, to C,HsOH via
photocatalysis. Charge separation is a key step in photocatalysis
to convert light energy into chemical energy, and it directly
impacts the performance of the catalyst. In order to further
improve the activity and selectivity of CO, photoreduction to
ethanol, we constructed bimetallic active sites by introducing
a second metal component into the metal node of Ti-ATA,
effectively regulated the energy band structure of the MOF
material, and optimized the separation efficiency of photo-
generated electrons. To further analyze the electron transfer
behavior during the photocatalytic process, we further calcu-
lated the valence band maxima (VBM) and conduction band
minima (CBM) of Ti-ATA and Ti(M)-ATA (M = Zr, Hf, Nb, Ta), as
shown in Fig. 7(c) and S9(c). For the unmodified Ti-ATA cata-
lyst, the VBM is mainly located on the m-bond orbitals of the
ligand, whereas the CBM is mainly located on the Ti-oxo cluster.
For Ti(Nb)-ATA, electrons are transferred from the excited ATA
ligand to the Nb centers, and subsequently, the Nb ions transfer
electrons to Ti, forming photocatalytically active Nb ions. The
calculation results suggest that the modified Ti nodes may act
as electronic mediators to facilitate the transfer of electrons
from the ATA ligand to the Nb site. The emergence of new
energy levels in Ti(Nb)-ATA effectively inhibits the rapid elec-
tron-hole complexation and provides a more stable platform for
photogenerated electrons with superior photocatalytic perfor-
mance for CO, reduction to C, products. In addition, according
to Bader charge analysis (Fig. S107), the doped metal atoms
transfer electrons to bridging oxygen atoms between the Ti
atom and doped metal atoms, which leads to the accumulation
of negative charges around the doped metal center. This result
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Fig. 7 The calculated (a) total and projected density of states (TDOS and PDOS), with the Fermi energy level set to zero. (b) Energy band
structures of pristine Ti-ATA and metal-modified Ti(Nb)-ATA. (c) The calculated valence-band maximum (VBM) (left side) and conduction-band
minimum (CBM) (right side) of pristine Ti-ATA and metal-modified Ti(Nb)-ATA.
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indicates that there is a significant charge transfer in the Ti-O-
M (M = Zr, Hf, Nb, Ta) structure, with the Nb dopant exhibiting
the greatest charge transfer, as evidenced in Fig. S10.7 Thus,
doping another metal into the Ti-MOF can result in a significant
charge redistribution at the nodes of MOF materials. Overall,
the electronic structure characteristics of pristine Ti-ATA and
metal-modified Ti(M)-ATA (M = Zr, Hf, Nb, Ta) are generally
consistent with the predicted activity of these candidate
catalysts.

Finally, we calculated the optical absorption spectrum of Ti-
ATA and Ti(Nb)-ATA, as shown in Fig. 8(a) and (b). The optical
absorption of Ti-ATA and Ti(Nb)-ATA is mainly located in the
ultraviolet region. However, the light absorption activity of the
modified nodes was slightly improved. Due to the narrow band
gap, the response of Ti(Nb)-ATA in visible and infrared bands is
slightly stronger than that of Ti-ATA. The absorption spectra of
other Ti(M)-ATA catalysts (M = Zr, Hf, Ta) were also calculated,
as shown in Fig. S11.7 In addition, the work function () is an
important parameter to measure the electron gain/loss ability of
materials, which is defined as the minimum energy required for
electrons to escape from the interior of materials to the
surface.””** In DFT calculations, the work function is obtained
from the electrostatic potential distribution, which is calculated
using the equation @ = Ey - Ef, where E, and E; are the poten-
tials of the vacuum energy level and the Fermi energy level,

This journal is © The Royal Society of Chemistry 2025

respectively. As shown in Fig. 8(c) and (d), the work function of
Ti-ATA is calculated to be 4.23 eV (Fig. 8(c)). After the intro-
duction of Nb atoms into the Ti node, the work function is
reduced to 2.91 eV (Fig. 8(d)). The work function of other Ti(M)-
ATA catalysts is also lower than that of pristine Ti-ATA
(Fig. S127). The values of the work function, vacuum energy
level and Fermi energy level for Ti-ATA and Ti(M)-ATA are
provided in Table S6.1 Further analysis reveals that the decrease
in work function is caused by an up shift in the Fermi level. As
mentioned above, the electrons from the Nb atom transfer to
the O atom at the node, and the Fermi level of Ti(M)-ATA is
enhanced due to Nb-O bonding. The reduced work function is
conducive to the transfer of electrons from Ti(M)-ATA to the
surface-adsorbed species in the photocatalytic reaction, thereby
improving photocatalytic activity.

4 Conclusions

In summary, by means of DFT calculations, we systematically
investigated the structure and stability of a series of metal node-
modified Ti(M)-ATA (Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh,
Pd, Hf, Ta, W, Os, Ir, Au) MOF catalysts and their applications in
the photocatalytic reduction of CO, to C, chemicals. Our results
show that Ti(M)-ATA (M = Zr, Hf, Nb, Ta) can sufficiently acti-
vate CO,, and the energetically optimal pathway for the
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reduction of CO, to C, products has been determined by reac-
tion route screening. Over Ti(Nb)-ATA, Ti(Ta)-ATA, Ti(Zr)-ATA
and Ti(Hf)-ATA, the two *CHO species undergo C-C coupling
to form *CHOCHO, an important C, intermediate. Ti(Nb)-ATA
and Ti(Ta)-ATA tend to generate ethanol, while Ti(Zr)-ATA and
Ti(Hf)-ATA are more selective to ethylene.

Remarkably, Ti(Nb)-ATA is the best photocatalyst for
C,H;O0H production among all the candidates studied, and the
corresponding optimal reduction pathway is identified as: *CO,
— *OCHO — *OCHOH — *CHO — *CHOCHO —
*CHOCH,0O — *CHOHCH,0 — *CH,0OHCH,0 — *CH,CH,0O
+H,0 — *CH,CH,0H — *CH,CH,OH — *+C,H.OH, in which
the hydrogenation of *CH,CH,O species is the rate-determining
step for the overall reaction with a limiting free energy change of
1.12 eV. By analyzing the correlation, it is found that the cata-
lytic activity of these metal node-modified catalysts is highly
dependent on their binding strength to the CO, reactant and
key reaction intermediates (e.g. *OCHOH).

In addition, the analysis of electronic and optical properties
indicates that the altered energy band structure and charge
transfer characteristics at the bimetallic node of Ti(Nb)-ATA are
responsible for its superior catalytic activity towards CO,
reduction to C,HsOH compared to pristine Ti-ATA and other
metal-modified Ti(M)-ATA candidates. The facile substitution
or doping of metals in Ti-MOFs and their structural flexibility
and diversity enable us to design a variety of Ti-based MOF
photocatalysts with desirable properties. Our findings will
stimulate further in-depth experimental studies of Ti-based
MOF materials and open up new avenues for developing Ti-
MOF-based catalysts for CO, photoreduction, especially for
the synthesis of C, chemicals.
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