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Adenosine diphosphate (ADP) is a key product of two essential classes of biological reactions, catalysed by
ATPases and kinases. This makes ADP a highly appealing target for supramolecular detection. However,
doing so selectively is exceedingly difficult due to ADP's lower overall charge and similar structure to
ATP and the need for compatibility with biological media. Overcoming this challenge, here we present
a water-soluble, ADP-selective, luminescent europium(in) probe suitable for use in vitro and in cellular
microscopy. This negatively charged Eu(i) complex binds ADP reversibly and responds by switching on
its luminescence, whilst showing minimal interference from ATP, pyrophosphate and a wide range of
biological anions. The probe is equipped with two m-conjugated quinolyl-phenoxyacetate antennae,
facilitating excitation at 355 nm in fluorescence microscopy. The ancillary carboxylate groups ensure
high water solubility and suppress non-specific binding to albumin protein. Our novel probe
demonstrates a level of sensing selectivity for ADP that is unrivaled, producing a linear emission response
across the physiologically relevant concentration range (10-400 pM), even in the presence of excess
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localises within the mitochondria and lysosomes. The low background emission of the probe combined

DOI: 10.1035/d4sc07188¢ with its excellent ADP selectivity and long-lived luminescence makes it a promising tool for visualising
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Introduction

Adenosine diphosphate (ADP) is produced during two of the
most fundamental classes of biological reactions, which are
catalysed by ATPases and kinases. The hydrolysis of ATP to ADP
by ATPases releases energy that is used for a wide variety of
cellular processes, whereas kinases catalyse the transfer of the
terminal phosphate of ATP onto a protein and small molecule
substrate, and play major roles in cell differentiation, prolifer-
ation, apoptosis and signal transduction. Misregulation of
kinase activity is a major cause of a range of diseases including
cancer. Therefore, a probe capable of selectively detecting ADP
would have broad utility as a tool to measure the activity of any
ATPase or kinase."* This is crucial to understanding biochem-
ical mechanisms in cells that lead to the origin of disease and
would enable better identification of targets for therapeutic
intervention.?
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Despite significant efforts to develop fluorescent tools for the
detection of ADP, the number of ADP-selective probes remains
very limited.*® Designing such probes is very challenging due to
the abundance of structurally similar biological phosphate
species, especially the more highly charged anions ATP and
pyrophosphate (PPi). Indeed, the majority of fluorescent probes
demonstrate a selectivity order of ATP ~ PPi > ADP > AMP, as
electrostatics predominantly govern the binding free energy in
these receptor-anion complexes.”™

Notably, Feng and co-workers reported an anthracene-based
mononuclear zinc(u) probe that showed unexpected selectivity
for ADP, however the limited water solubility and modest (1.3-
fold) fluorescence enhancement precluded its use in cellular
imaging applications.” The same authors developed a water-
soluble anthracene bridged bis-zinc(u)-DPA probe, which
showed a much larger 133-fold fluorescence enhancement upon
binding ADP. However, the probe showed interference from
ATP, resulting in a 56-fold fluorescence enhancement upon ATP
binding.”* Webb and coworkers developed an ADP-selective
biosensor based on bacterial actin homologue (ParM) labelled
with two tetramethylrhodamine groups, which undergoes
a conformational change upon binding ADP inducing a 15-fold
fluorescence enhancement.™ This enabled the kinase-catalysed
production of ADP to be monitored in vitro, however its

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d4sc07188c&domain=pdf&date_stamp=2025-03-22
http://orcid.org/0000-0002-6598-523X
http://orcid.org/0000-0003-3002-3986
http://orcid.org/0009-0002-6465-2000
http://orcid.org/0000-0003-0751-148X
http://orcid.org/0000-0002-0641-4218
http://orcid.org/0000-0001-8109-3330
https://doi.org/10.1039/d4sc07188c
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc07188c
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC016013

Open Access Article. Published on 19 2 2025. Downloaded on 2026-01-31 1:28:17.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

application in living cells has not been demonstrated. Yellen
and coworkers developed a genetically encoded biosensor
‘PercevalHR’ that binds strongly to both ATP and ADP (K4 = 1-3
uM) and can monitor changes in the ATP/ADP ratio in living
cells, producing a maximum 8-fold change in emission signal.*®
However, as with most protein-derived sensors, PercevalHR is
sensitive to changes in pH, requiring additional methods to
correct for changes in biosensor fluorescence caused by pH.*>*®

Luminescent lanthanide probes have emerged as promising
tools for anion sensing and imaging, due to their unique pho-
tophysical properties,"””" including long luminescence life-
times (milliseconds) that permit use of time-resolved and time-
gated techniques to completely remove short-lived auto-
fluorescence,” line-like emission spectra which enable ratio-
metric measurements of target anions, and a fast and sensitive
luminescence response that provides high spatial and temporal
resolution required for biological imaging.>***

We previously developed a macrocyclic europium probe
[Eu.1]" (Fig. 1a) whose luminescence is enhanced 8-fold upon
reversible binding of ADP, whereas ATP induces a smaller 2.5-
fold emission increase and monophosphates (e.g. AMP,
HPO,4>") cause negligible changes in luminescence.?

Key structural elements that ensure selectivity for ADP include
two trans-related quinoline arms orientated from the same face
of the C,-symmetric macrocyclic ligand, forming a sterically
shielded binding site at the metal centre suitable for bidentate
binding of the diphosphate component of ADP.>***” Additionally,
the peripheral quinoline amide groups can engage in hydrogen
bonding with ADP, further stabilising the host-guest complex.
[Eu.1]" can accurately monitor kinase and ATPase catalysed
reactions in real-time by monitoring the increase in ADP in
vitro.”® However, this probe is not suitable for visualising ADP
levels in living cells due to its propensity to bind bicarbonate®
(an abundant biological anion) and interact non-specifically with
albumin protein, leading to high background emission. We
aimed to resolve these issues of off-target interference while
preserving the probe's ADP-selective binding capabilities.

Aside from demonstrating excellent selectivity, a cellular
imaging probe for ADP should permeate living cells while
exhibiting low toxicity and high photostability. Additionally, it
should possess an excitation wavelength above 350 nm to enable
use of standard microscope lasers. Due to the symmetry
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Fig. 1 (left) Structure of previously synthesised probe [Eu.l]* and
(right) the novel probe [Eu.ADPGlow]™ presented in this work.
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forbidden nature of f-f orbital transitions, direct excitation of the
europium ion is not efficient or practical.®* Instead, the euro-
pium excited state is populated via a sensitisation mechanism,
involving initial UV light absorption by the antenna followed by
intramolecular energy transfer to the Eu(ur) ion.**> Changes in
the structure of the antenna impact the excitation wavelength,
extinction coefficient, sensitisation efficiency and overall
brightness B (B = ¢- ¢y Where ¢ is the extinction coefficient and
¢em the quantum yield). In the last decade, highly emissive
europium complexes have been devised for live-cell imaging,
including the EuroTracker dyes based pyridyl-ethynyl-
alkoxyphenyl charge-transfer antennae.**** Maury and co-
workers harnessed the m-conjugated charge-transfer antennae
to develop very bright lanthanide two-photon probes, wherein
the excitation wavelength is doubled in microscopy experiments,
reducing biological photodamage of cells.>*

By combining the ligand design features of the ADP-selective
probe [Eu.1]" with the beneficial properties of m-conjugated
charge-transfer antennae, we have developed a novel euro-
pium(m) probe with unrivalled ADP sensing selectivity and with
improved characteristics for cellular imaging. This new probe,
[EwADPGlow|™ (Fig. 1b), features two m-conjugated quinolyl-
phenoxyacetate pendant arms extending from the macrocycle,
creating a sterically shielded coordination site at the Eu(ui)
centre. The probe includes two ancillary carboxylate groups to
ensure high water solubility and suppress non-specific binding
to albumin protein. The overall negative charge of the complex
results in moderate ADP binding affinity (log K, = 3.59 % 0.01)
and induces a pronounced luminescence ‘switch on’, with
minimal interference from the more highly charged ATP and PPi.
The probe's excellent selectivity towards ADP enables its detec-
tion across a wide concentration range (10-500 uM) even in the
presence of high millimolar ATP concentrations. Preliminary
cellular microscopy experiments demonstrate that the Eu(ui)
probe can permeate mammalian cells and preferentially
distributes within the mitochondria and lysosomes. Combined
with its almost zero background emission in the absence of ADP,
these features make this probe a promising tool for visualising
dynamic changes in cellular ADP levels in living cells.

Results and discussion

Molecular design

The Eu(m) probe [Eu.ADPGlow]~ (Fig. 1b) is based on a cyclen
scaffold containing two trans-oriented m-conjugated quinoline
antennae functionalised in the 6-position with water-
solubilising phenoxyacetate groups. Intra-ligand charge trans-
fer was anticipated from the terminal electron donating -
OCH,COOH moieties to the electron withdrawing chelating
quinoline groups, offering potentially high extinction coeffi-
cients and lower energy two-photon excitation.***” The cyclen
macrocycle is functionalised with two trans-related acetate arms
(DO2A scaffold) that coordinate the central Eu(m) ion together
with the quinoline groups, ensuring high thermodynamic
stability. The Eu(m) metal centre has a vacant coordination site
that is occupied by a water molecule, which efficiently quenches
the Eu(m) excited state through energy transfer to O-H
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Scheme 1 Synthesis of europium(in) and gadolinium(in) complexes.

vibrations, resulting in non-radiative energy dissipation.?*** It
was envisaged that ADP would bind to the metal centre in its
preferred bidentate mode,*® causing reversible de-coordination
of one of the quinoline arms.

We reasoned that by introducing peripheral carboxylate
groups, and removing the hydrogen-bond (amide) donor groups
present in our previously reported ADP probe (Fig. 1a),>® we
would decrease affinity for the more negatively charged ATP and
PPi, whilst suppressing hydrophobic interactions with human
serum albumin.**** Two control complexes were synthesised,
[Eu.6Ph]" and [Eu.6PhOMe]’, containing 6-phenyl and 6-
methoxyphenyl functionalised quinoline groups respectively
(Scheme 1), to determine the impact of these ancillary substit-
uents on the solubility, excitation wavelength, overall bright-
ness and anion binding properties of the europium(ur)
complexes.

Synthesis

The synthesis of the macrocyclic ligands and their corre-
sponding Ln(m) complexes (Ln = Eu and Gd) was undertaken as
shown in Scheme 1. Full details of the experimental procedures
are provided in the ESIL.T Briefly, the synthesis commenced with

5604 | Chem. Sci, 2025, 16, 5602-5612

Eu(OTf)3, KoCO;q
_Fu® s BbBs
CH30H, 50 °C

DO2A-'Bu ester 4b X =OMs R =OMe 93%

4¢c X =OMs R = OCH,COO'Bu 99%

R

[Ln.6Ph]*
[Ln.6PhOMe]*
[Ln.ADPGlow]~

30%
63%
29%

51%
82%
10%

a Suzuki coupling of 6-bromoquinaldine with the correspond-
ing boronic acid functionalised at the para-position with
phenyl, p-methoxyphenyl or p-hydroxyphenyl substituents
respectively, to give the m-conjugated quinoline compounds 1a-
¢ in moderate to high yields. A subsequent O-alkylation of 4-(2-
methyl-4-quinolinyl)-phenol 1c gave the tert-butyl protected
acetate arm 1d. Next, oxidation using selenium dioxide resulted
in formation of aldehydes 2a-c followed by reduction with
sodium borohydride to give the primary alcohols 3a-c¢ in
excellent yields. Subsequent mesylation to give compounds 4a-
c¢ and N-alkylation with DO2A-tert-butyl ester resulted in
formation of the protected macrocycles 5a-c. Finally, the tert-
butyl esters were removed using trifluoroacetic acid followed by
complexation with Ln(OTf); in methanol to afford the target
Ln(m) complexes. The organic soluble complexes [Ln.6Ph]" and
[Ln.6PhOMe]" were purified by column chromatography,
whereas the water soluble complexes [Ln.ADPGlow]| were
purified by reverse-phase HPLC. The analytical RP-HPLC trace
of the purified product revealed a single peak (Fig. S1 and S27).
The "H NMR spectra of [Eu.6Ph]" and [Eu.6PhOMe]|" measured
in CD;0D were very similar, each revealing two sets of proton
resonances consistent with the presence of two diastereomers
in solution (Fig. S31). The "H NMR spectrum of [Eu.ADPGlow]~

© 2025 The Author(s). Published by the Royal Society of Chemistry
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was more complicated, displaying four sets of signals with
increased exchange broadening. This suggests multiple
conformations in solution, possibly involving reversible inter-
molecular association of the peripheral carboxylate group with
the Eu(ur) metal centre at the millimolar concentration used for
NMR analysis.

Photophysical analysis

Photophysical analysis of the water-soluble complex [Eu.ADP-
Glow] , measured in 10 mM HEPES (pH 7.0, 295 K), is pre-
sented in Table 1. For direct comparison with complexes
[Eu.6Ph]" and [Eu.6PhOMe]’, which displayed limited water
solubility, photophysical data were also recorded in methanol
(see Table 1). The UV-vis absorption spectra of all three Eu(u)
complexes show two broad bands (Fig. 2 and S57), with
absorption maxima around 255 nm and 328 nm for [Eu.6Ph]",
and red shifted peaks around 275 nm and 340 nm for complexes
[Eu.6PhOMe]" and [Eu.ADPGlow] ™, due to conjugation of the
electron donating alkoxyphenyl groups with the quinoline
acceptor groups. Notably, the lower energy absorption band of
complex [Eu.ADPGlow] tails out to 380 nm in aqueous buffer
(e = 9200 M ' ecm ™), offering the best match for the optics of
standard fluorescence microscopes used in live-cell imaging
experiments, where the excitation wavelength is 355 or 405 nm.

Upon excitation of the m-conjugated quinoline antennae of
[Eu.ADPGlow]  at 340 nm the complex displays red europium
emission in the range 550-720 nm (®.,, = 2.7), well-separated
from the absorption spectrum (Fig. 2). The emission features
a dominant AJ = 2 band characterised by two distinct peaks in
the 605-630 nm range, which is much more intense than the
purely magnetic dipole AJ = 1 transition, observed between
585-605 nm (Fig. 2). The latter band consists of three distinct
components. The emission intensity of [Eu.ADPGlow]|™ was
significantly weaker in 10 mM HEPES buffer (&, = 0.3) than in
methanol (Fig. S6t). As an anticipated luminescent probe for
ADP, the high-water solubility and almost zero background
emission signal of [Eu.ADPGlow|  are significant advantages.
The emission spectrum of the methoxy substituted complex
[Eu.6PhOMe]" was very similar in shape to that of [Eu.ADP-
Glow]™ in methanol (Fig. S61), whereas [Eu.6Ph]" differed
showing a pronounced AJ = 4 band (685-705 nm) of higher
intensity than the AJ = 2 band (605-630 nm). The unsubstituted
complex [Eu.6Ph]" was approximately 10 times more emissive
than [Eu.6PhOMe]". All three complexes showed some residual
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Fig. 2 Absorption and emission spectra of [Eu.ADPGlow]™ (Aex
337 nm) measured in methanol.

ligand fluorescence at shorter wavelength (Fig. S7T) which was
most prominent for [Eu.6Ph]" indicating different efficiencies of
intramolecular energy transfer from the quinoline antennae to
the europium(m) centre for each complex. The emission life-
times were similar for [Eu.6Ph]" and [Eu.6PhOMe]" in meth-
anol, and approximately double that observed for
[Eu.ADPGlow] . In 10 mM HEPES bulffer, the emission lifetime
of [Eu.ADPGlow| was very short, at 0.021 ms (Table 1), such
that estimation of the number of coordinated waters (g value)
becomes difficult because the emission lifetime begins to
overlap with the water exchange timescale.*” It is nonetheless
significant that the emission lifetime was 1.7 times longer in
deuterated HEPES buffer indicating that the complex is
hydrated in the absence of anions, as expected.”**®

To better understand the intramolecular energy transfer in
these conjugated Eu(m) complexes, the triplet energy of the
antennae was determined at 77 K using the analogous Gd(m)
complexes. Unlike Eu(m), Gd(m) has an excited state that is
inaccessible to ligand triplet energy transfer, enabling direct
measurement of the triplet excited state energy. Phosphores-
cence spectra of the gadolinium(m) complexes were measured
in EPA solvent, comprising ethanol/isopentane/diethyl ether in
the ratio 2/5/5.** The gadolinium(m) complexes showed no
emission at room temperature, but upon cooling to 77 K, all
three complexes displayed phosphorescence with vibrational
structure attributed to emission from the ligand-centred triplet
excited state (Table S11). No evidence of a broad, featureless
internal charge transfer (ICT) state - characteristic of the bright
Eu(m) complex series bearing pyridyl-ethynyl-alkoxyphenyl

Table 1 Photophysical data for Eu(i) complexes measured in methanol to enable comparison. Additionally, [Eu.ADPGlow]~ was measured in

10 mM HEPES at pH 7.0 (top row)

Complex Solvent Amax/M &M tem ! Ty'/ms p%/ms Dern?/%
[Eu.ADPGlOWZr HEPES buffer 337 9200 0.021 £ 0.001 0.036 £ 0.001 0.3
[Eu.ADPGlOW]7 MeOH 340 12 000 0.46 £ 0.01 0.75 £ 0.02 2.7
[Eu.GPhOMe] MeOH 340 8000 0.88 £ 0.09 1.16 £ 0.02 1.0
[Eu.6Ph]" MeOH 328 9000 0.83 + 0.04 1.30 + 0.06 9.6

% 1y refers to non-deuterated solvent, whereas 1y, refers to the deuterated solvent. Emission lifetime measurements were conducted in duplicate
with errors determined through the averages + standard deviation. > Quantum yields were measured using quinine sulfate in 0.05 M H,SO, as

standard (®ey = 60%)."* Errors in quantum yields are £15%.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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antennae — was observed.**™*® From the position of the highest
energy band in the spectrum, the triplet energy of [Gd.ADP-
Glow]™ in EPA (Fig. S81) was determined to be 21100 cm™ ',
which is appropriately positioned for sensitisation of the euro-
pium(m) °D, and D, accepting states (at 17 300 cm ' and 19
000 cm ', respectively). The triplet energy of the methoxy
substituted complex [Gd.6PhOMe]" approximately
1500 cm ™~ lower, at 19 600 cm ™, resulting in a poorer match
with the acceptor states of the Eu(m) ion.”” This is consistent
with the lower quantum yield observed for this Eu(ur) complex
(Table 1). For [Gd.6Ph]", an intermediate triplet energy value of
20100 cm™ " was determined.

was

Stable emission of [Eu.ADPGlow] ™ at physiological pH

The low background emission signal, high water solubility and
longer excitation wavelength of complex [Eu.ADPGlow]| are
positive attributes when considering fluorescence imaging
applications. An ADP-selective probe should also maintain
stable luminescence at a pH around 7 to ensure accurate and
reliable results under physiological conditions. Accordingly, the
PH sensitivity of [Eu.ADPGlow]| ™~ was evaluated by luminescence
spectroscopy. We found that the emission intensity and spectral
shape of the Eu(m) complex remained essentially unchanged
between pH 4 and 7.5 (Fig. S91), indicating that the lumines-
cence should not be affected by pH fluctuations within the
range of normal lysosomal or cytosolic pH, estimated to be 4.4
and 7.3, respectively.*®** As the pH is raised from 8 to 10 the
emission intensity increases, indicating binding of hydroxide to
the Eu(m) metal centre. By fitting the change in emission
intensity as a function of pH a pK, value was estimated to be
8.58 £ 0.03. However, this increase in emission is not a concern,
as pH values above 8 are not typically encountered in healthy
cells. Complexes [Eu.6Ph]" and [Eu.6PhOMe]’, which lack
water-solubilising groups, were not considered further as
potential probes due to their poor solubility in aqueous solu-
tion, leading to time-dependent decreases in emission over a 90
minutes incubation period (Fig. S107).

X-ray crystallography

We investigated the structural characteristics of the complexes
further using single crystal X-ray diffraction. Despite multiple
attempts to grow single crystals of the water soluble complex
[Eu.ADPGlow]| ™ and the corresponding ADP adduct, these could
not be obtained. However, crystals of the structurally related
Gd(m) complex [Gd.6PhOMe]" were obtained after slow evapo-
ration from methanol and water. The Gd(m) complex crystal-
lised in the monoclinic space group P2,/c, with the asymmetric
unit consisting of the complex, a non-coordinating triflate
anion, and eleven water molecules, one of which is bound to the
Gd(m) ion. The ligand coordinates to the Gd(m) as expected
(Fig. 3), through the four nitrogen atoms of the cyclen ring
(Gd-N 2.603(15)-2.699(15) A) and the four pendant arms,
including two acetate oxygen atoms (Gd-O 2.338(5) A and
2.351(6) A) and the two nitrogen atoms of the quinoline rings
(Gd-N 2.853(6) A and 2.889(6) A). The conjugated quinoline
arms are oriented on the same face of the macrocycle (which is
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Fig. 3 Single crystal X-ray structure of [Gd.6PhOMe]* viewed
perpendicular to the a axis, showing the ADP binding site in which
a water molecule sits. Atom colours: Gd pink, C grey, N blue, O red, H
white.

disordered over two sites, with the largest occupancy being
70%) but in opposite directions, creating a central binding site
in which a water molecule sits (Gd-O 2.369(6) A). This coordi-
nation leads to a twisted square antiprismatic (TSAP) geometry
of the major macrocyclic component, with a twisting angle of
approximately 26° between the square defined by the cyclen
ring nitrogen atoms and the square coordinating the oxygen
atoms of the two carboxylate arms and the two coordinated
nitrogen atoms of the quinoline rings (Fig. S117). The methoxy-
phenyl rings display twists co-planar to the quinoline rings
(33.3(2)° and 33.6(2)°); with one ring involved in weak inter-
molecular -7 stacking interactions with the quinoline ring of
a neighbouring complex (Fig. S12+).

Anion binding studies at physiological pH

The anion binding selectivity of complex [Eu.ADPGlow|  was
examined by measuring the emission spectra in the presence of
different biologically relevant anions in 10 mM HEPES at pH
7.0. Addition of 1 mM ADP to [Eu.ADPGlow]| caused
a pronounced luminescence ‘switch on’, with a 33-fold emission
enhancement (Fig. 4a). This is accompanied by changes in
spectral shape (Fig. 4b and S137), involving a large increase in
the hypersensitive AJ = 2 band centred around 615 nm indi-
cating binding of ADP and displacement of the quenching water
molecule. In contrast, very small (<2-fold) increases in emission
were seen upon addition of ATP, PPi, AMP, and citrate, and
virtually no response was detected for phosphate, bicarbonate,
chloride, sulphate, lactate, acetate and nitrate. Given the scar-
city of chemical or biological probes that recognise ADP over
ATP (or PPi) in the literature, this result was unprecedented. The
remarkable 33-fold enhancement observed for ADP with
[Eu.ADPGlow] ", compared with the minimal 2-fold increase for
ATP, demonstrates a level of sensing selectivity that, to the best
of our knowledge, is unrivalled.***'*'® Furthermore, the weak
interaction of bicarbonate and phosphate is a particular
advantage, as these abundant biological anions are well known
to increase the emission of many reported lanthanide-based
probes.>**°

© 2025 The Author(s). Published by the Royal Society of Chemistry
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emission spectra of [Eu.ADPGlow]™ alone and in the presence of selected anions adenosine triphosphate (ATP), adenosine diphosphate (ADP),
adenosine monophosphate (AMP), pyrophosphate (PPi), and citrate (1 mM each); (c) variation in emission spectra of [Eu.ADPGlow]  upon
incremental addition of ADP; (d) plot of fraction bound (determined from AJ = 2/AJ = 1 intensity ratio) versus ADP concentration, showing the fit
to a 1:1 binding isotherm. Measured in 10 mM HEPES at pH 7.0 and 295 K, Aex = 337 nm.

The Eu(m) probe demonstrates a notable ability to distin-
guish between nucleobases, with the purine diphosphates ADP
and GDP showing significantly stronger (2-3 times larger)
emission enhancements compared with the pyrimidines CDP
and UDP (Fig. S147). None of the nucleotide triphosphates (ATP,
GTP, CTP, and UTP) produced more than an 8-fold enhance-
ment, and negligible changes in emission were observed for all
four nucleotide monophosphates—AMP, GMP, CMP, and UMP.
The ability of [Eu.ADPGlow|™ to selectively recognise purine
diphosphates suggests that secondary interactions within the
host-guest structure are occurring, potentially involving m—m
stacking between the purine base and one of the conjugated
pendant arms. This is further supported by the minimal 4-fold
increase in emission caused by pyrophosphate, which lacks
a nucleobase (Fig. 4).

The ADP-induced emission enhancement of [Eu.ADPGlow]~
is accompanied by changes in fine structure of the A/ = 1 band
that, reveals information about the local symmetry around the
europium ion (Fig. S151).*' In this case ADP binding induces
a change in crystal field around the Eu(m) centre, involving
a change in sign and magnitude of the parameter, B,>. This
could be due to a change in conformation of the predominant
species in solution, potentially from a twisted square anti-
prismatic geometry (TSAP) for the unbound complex to a square

© 2025 The Author(s). Published by the Royal Society of Chemistry

antiprismatic (SAP) structure when ADP is bound. However,
unambiguous interpretation of these spectroscopic features
remains challenging.’»*® Emission lifetimes recorded in the
presence of ADP revealed that g = 0 (Table 2), consistent with
displacement of a coordinated water molecule. In the presence
of ATP and AMP, q values of 0.3 and 0.5 were found respectively,
indicating partial hydration consistent with much smaller
increases in emission intensity observed for these anions. In the
presence of PPi and citrate, g = 1 indicating only weak inter-
actions with these anions in water.

Apparent binding constants between [Eu.ADPGlow|™ and
those anions that induced an observable emission change were
determined by plotting the change in the intensity ratio of the
AJ = 2/A] = 1 emission bands (605-630/580-600 nm) as
a function of guest concentration, followed by curve fitting
based on a 1:1 binding model (Table 2 and Fig. S16-20+t). The
Eu(m) complex showed the strongest binding to ADP (log K, =
3.59 + 0.01), approximately 5 times stronger than ATP and 7
times stronger than pyrophosphate. AMP and citrate exhibited
weak binding, while phosphate induced only a 10% change in
emission, even at high anion concentrations up to 20 mM
(Fig. S21%), preventing reliable determination of a binding
constant. Thus, the binding selectivity of [Eu.ADPGlow]~
follows the order ADP > ATP > PPi ~ AMP, which is distinctly
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Table 2 Apparent binding constants for [Eu.ADPGlow] ™ and selected anions and lifetime values for [Eu.ADPGlow] ~ alone and in the presence of

selected anions (1 mM) measured in 10 mM HEPES at pH 7.0¢

Complex Anion log K, TH,0/MS Tp,0/ms q
[Eu.ADPGlow]~ None — 0.021 + 0.001 0.036 + 0.001 —
AMP 2.85 4+ 0.05 0.33 £ 0.07 0.45 £+ 0.15 0.6 + 0.1
ADP 3.59 £ 0.01 0.94 £+ 0.04 1.35 +£ 0.04 0.1 + 0.0
ATP 3.05 £+ 0.03 0.64 £+ 0.04 0.95 £+ 0.02 0.3 + 0.1
PPi 2.91 + 0.07 0.41 + 0.01 0.69 £+ 0.12 0.8 £ 0.4
Citrate 2.55 +0.14 0.41 £+ 0.02 0.70 £ 0.01 0.9 + 0.2

¢ Experiments were completed in duplicate and error values determined through the averages + standard deviation.

different to that observed for most nucleoside phosphate
receptors*>® where binding is driven predominantly by elec-
trostatic interactions and thus favours ATP and PPi over ADP
and AMP.

The affinity of [Eu.ADPGlow| for ADP was an order of
magnitude lower than that of our previously studied cationic
complex [Eu.1]" under identical conditions (log K, for ADP = 4.6
+ 0.1). Assuming a similar bidentate binding interaction with
the diphosphate group of ADP,>***’ the reduced affinity of
[Eu.ADPGlow] ™ can be ascribed to its overall negative charge
and the absence of stabilising hydrogen bond donors in the
ADP binding site. These structural differences are important, as
they not only diminish the binding strength but also lead to
a significant decrease in emission response toward ATP and PPi
(Fig. S227%), thus enhancing discrimination for ADP. This is
largely ascribed to increased electrostatic repulsion between
ATP and [Eu.ADPGlow]| , combined with a greater degree of
luminescence quenching from water molecules in the second
coordination sphere of the ATP-receptor complex. Ultimately,
these structural features of [Eu.ADPGlow]| ™ afford it far greater
sensing selectivity for ADP over ATP, PPi, AMP, and citrate,
representing a major improvement in discrimination compared
with the previous lead compound, [Eu.1]" (Fig. S227).

To gain further insight into the binding mode of ADP to
[Ew.ADPGlow] ", we turned to "H and *"P NMR spectroscopy. As
discussed earlier, the "H NMR spectrum of [Eu.ADPGlow] ™ at
room temperature was complicated by the presence of multiple
conformations, evident from four sets of signals with significant
exchange broadening (Fig. S3ct). Upon addition of ADP (in1:1
D,0/CD;0D, pD 7.0, Fig. S24%), the original signals dis-
appeared, coinciding with the emergence of a new set of reso-
nances corresponding to the ADP-bound species. These new
resonances displayed more pronounced line broadening,
attributed to either increased conformational flexibility in the
host-guest complex or the presence of more than one host-
guest species in solution.

In the *'P NMR spectrum, four signals were observed for
[Eu.ADPGlow] ™ in the presence of ADP (Fig. S257). The two *'P
signals at —79 and —125 ppm, corresponding to bound ADP,
were significantly broader than the free ADP signals at —4.8 and
—9.1 ppm, further suggesting exchange between different
binding modes for ADP. This observation is consistent with
previous NMR analysis of the structurally related [Eu.1]", as well
as recent EXAFS and EPR studies, which established that ADP

5608 | Chem. Sci,, 2025, 16, 5602-5612

binds via both bidentate and monodentate modes, with a pref-
erence for the former. Further interpretation of the NMR data
for [Eu.ADPGlow]™ is not straightforward, prompting us to seek
additional insight through DFT calculations of the host-guest
species.

DFT computations of host-guest binding

The crystal structure of the Gd(ur) complex (Fig. 3) was used as
a starting point to model the interactions of [Eu.ADPGlow]~
with ADP and ATP. Computations were performed at the
r?SCAN-3c level of theory, along with the SMD solvation model
for water, to model anion binding geometries and interaction
energies.***® We substitute a Y(m) ion for Eu(m) to avoid
complications arising from the f-electrons, noting that Y(u)
complexes have been shown previously as suitable models for
their Eu(ur) analogues, based on the ionic radii varying by only
0.05 A.5%® Fig. 5 presents the structures for ADP and ATP
binding with [Eu.ADPGlow] ; further details are presented in
Fig. S26.1 In line with previous studies on anion adducts of the
structurally related complex [Eu.1]", we use bidentate binding
modes wherein ADP binds predominantly via its o and B phos-
phates, while ATP binds via its a and y phosphates.>**” Binding
of ADP (Fig. 5a) causes one of the quinoline arms to become
detached from the europium(ui) ion, whereas the remaining
ligand binding sites (macrocyclic nitrogens, second quinoline
nitrogen and carboxylate oxygen atoms) remain intact. Viewing
the dissociated quinoline arm, we notice pronounced -7

(a) [Eu.ADPGlow] +ADP
AG = -41.2 kJimol

(b) [Eu.ADPGlow]-+ATP
AG = -31.6 kJ/mol

Fig. 5 DFT optimised structures and binding free energies (AG) of
[Eu.ADPGlow] ™ bound to (a) ADP and (b) ATP. In part (a) dashed bonds
indicate -7t stacking (3.45-3.92 A) between the adenine base of ADP
and the conjugated phenyl group of [Eu.ADPGlow] . In part (b)
a dashed bond represents a hydrogen bond (1.97 A) between the
peripheral carboxylate of [Eu.ADPGlow] ™~ and the adenine base of ATP.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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stacking interactions between the adenine base of ADP, high-
lighted via yellow dashed lines. Crucially, stacking occurs
through the terminal phenyl group of the dissociated arm,
rather than the quinoline unit. This interaction is not possible
with our previously reported complexes, such as [Eu.1]’, which
lack the conjugated phenyl group. Consequently, it is reason-
able to associate the enhanced ADP-sensing performance of
[Eu.ADPGlow] to the presence and influence of this conjugated
phenyl group.

The binding mode observed for ATP (Fig. 5b) is distinctly
different to that of ADP. Binding of [Eu.ADPGlow]~ to ATP not
only dissociates one of the quinoline arms but also weakens
binding to the macrocyclic nitrogens (Fig. S267), highlighting
the increased steric demands imposed by the three phosphate
groups on the binding site of [Eu.ADPGlow]| . Due to this
different binding geometry, we do not find stacking interactions
between adenine and the quinoline arm, with their interactions
instead stabilised by a hydrogen bond.

The computed binding free energies for PPi, ADP and ATP
are 28.9, 41.2 and 31.6 k] mol ", respectively (see Table S27),
clearly highlighting the increased affinity for ADP. Experimental
binding free energies for these three species determined from
the apparent binding constants (Table 2) are 26.6, 30.4 and
27.4 k] mol ™', respectively, showing that the models provide
reasonable estimates, though the computed binding energies
are somewhat overestimated. This may arise from factors such
as ionic strength, speciation of the anion, explicit hydration
effects not covered by the continuum model, and thermo-
statistical corrections to the binding free energies. Efforts to
develop more accurate methods to account for these factors are
currently underway and will be reported in due course.

Time-resolved detection of ADP in simulated physiological
media

Our ultimate goal is to utilise [Eu.ADPGlow] in the analysis of
real biological samples, which present far greater complexity
than the buffered aqueous solutions explored thus far. Towards
this goal, we conducted competitive titration experiments to
assess the performance of [Eu.ADPGlow| in more biologically
relevant conditions. First, we confirmed the ability of
[Eu.ADPGlow|~ to reliably recognise ADP in the presence of
physiological concentrations of human serum albumin (HSA,
0.4 mM) and bicarbonate (27 mM). At this point, we utilised the
long-lived emission of [Eu.ADPGlow] ™ to record time-resolved
luminescence measurements (integration time = 60-400 ps),
gating out short-lived fluorescence from biological fluorophores
(e.g. tryptophan and tyrosine residues). Addition of 0.4 mM HSA
to [Eu.ADPGlow]|~ caused a minor (12-fold) increase in time-
resolved Eu(m) emission intensity and no change in spectral
form, whereas 27 mM bicarbonate caused a negligible increase
in emission (Fig. S271). Crucially, neither HSA protein nor
bicarbonate significantly affected the probe's selective emission
response towards ADP (Fig. S27%), underscoring its potential
use in more complex biological environments.

Encouraged by these results, we wished to establish whether
the probe could detect ADP against a background of high ATP

© 2025 The Author(s). Published by the Royal Society of Chemistry
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concentration. A competitive titration experiment involving
incremental addition of ADP over a physiologically relevant
range (0-1.2 mM) caused a 5-fold increase in time-resolved
emission within the AJ = 2 band (Fig. S28%), confirming that
millimolar levels of ATP have little to no impact on the probe's
ability to detect ADP.

Next, we examined the performance of [Eu.ADPGlow]| in an
aqueous medium designed to simulate the complex ionic
environment within cells. The media is based on a modified
Krebs saline solution routinely used for cell culture experi-
ments, containing ATP (1 mM), NaCl (145 mM), KCIl (5 mM),
CaCl, (2.5 mM), MgCl, (1.5 mM), NaHCO; (27 mM), Na,SO, (0.5
mM), sodium lactate (1.0 mM), sodium citrate (0.15 mM),
glucose (5.5 mM) and HSA (0.4 mM), buffered in 10 mM HEPES
at pH 7.0. Remarkably, titration of ADP to [Eu.ADPGlow]| ™ under
these conditions induced a reproducible 5-fold increase in time-
resolved emission within the AJ = 2 band (Fig. 6). Importantly,
the emission increase was approximately linear over the phys-
iologically relevant ADP concentration range of 10-400 pM
(Fig. 6b).” These promising results highlight the potential of
[Eu.ADPGlow]™ as a sensitive probe for detecting cellular ADP
levels, prompting us to undertake cellular imaging experiments
using fluorescence microscopy.

Detection in Simulated Cellular Media

(a) 200000
150000 -

100000 A

Intensity / a.u.

50000

(b)

1200000 it

800000 - o

605 - 630 nm)/ a.u

400000 A

Intensity (AJ

00 01 02 03 04
[ADP] / mM

Fig. 6 Selective detection of ADP in a simulated cellular media based
on a Krebs saline solution, containing ATP (1 mM), KCL (145 mM), NaCl
(5 mM), CaCl, (2.5 mM), MgCl, (1.5 mM), NaHCOs3 (27 mM), NaSO4
(0.5 mM), sodium lactate (1.0 mM), sodium citrate (0.15 mM), glucose
(5.5 mM) and HSA (0.4 mM) in 10 mM HEPES buffer (pH 7.0). (a) Change
in emission spectra of [Eu.ADPGlow] ™ (10 uM) upon addition of ADP in
simulated cellular media; (b) plot of the emission intensity of the AJ =2
region (605-630 nm) showing a 5-fold linear increase in emission
upon adding 10-400 pM ADP. A¢x = 337 nm, 295 K.
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Fig.7 NIH-3T3 cellularimages of [Eu.ADPGlow] ™ (10 uM, 2 hours incubation) with LysoTracker Green™ (LTG). (A) [Eu.ADPGlow]™ (A¢x = 355 nm,
Aem = 600-735 nm); (B) LTG highlighting predominantly lysosomal localisation (Aex = 488 nm, A = 500-600 nm); (C) [Eu.ADPGlow] ~ and NIH-
3T3 autofluorescence (Aex = 355 M, A = 500-735 nm); (D) corresponding transmission image. Scale bars = 20 um.

Cellular uptake and localisation studies

The cellular uptake behaviour of [Eu.ADPGlow| was investi-
gated in NIH-3T3 cells using epifluorescence and laser scanning
confocal microscopy.*® Following incubation of [Eu.ADPGlow]|~
(10 uM) in NIH-3T3 cells for 2 hours, microscopy images
revealed uptake of the Eu(m) complex with localization
predominantly within the lysosomes (Aex 355 nm, Aey, 605-720
nm), verified by co-localization studies using LysoTracker™
Green (Aex 488 N, Ay 500-600 nm, 5 minutes loading) but with
mitochondrial staining also evident (Pearson's correlation
coefficient for lysosomal co-staining, P = 0.58) (Fig. 7). We were
able to incubate the cells with the Eu(m) compound for
extended time periods (up to 24 hours); the brightness of the
observed images did not vary significantly between the 2 hours
and the 24 hours incubation and the cells appeared to be non-
toxic at the tested 10 uM loading concentration. See the ESIf for
a detailed analysis of probe brightness within cells. Analysis of
ICP-MS data revealed that for 9 x 10° NIH-3T3 cells incubated
with [Eu.ADPGlow]~ (10 puM) for 2 hours, a given cell contained
2.25 pM (£5%) of Eu(m) ion, which indicates minimal accu-
mulation of [Eu.ADPGlow|~ within the cells during the incu-
bation period, contributing to the low overall europium(im)
emission observed within the cells. The low emission of
[Eu.ADPGlow]|  in the absence of ADP, combined with its
excellent selectivity for ADP, indicates that [Eu.ADPGlow]|”
could effectively visualise ADP changes in living cells in
response to physiological perturbations. We plan to improve
these features further by modification of the antenna of the
[Eu.ADPGlow] ™ to increase its brightness, cellular uptake and
localisation profile.**

Conclusions

In summary, we have developed a novel water-soluble euro-
pium(m) probe, [Eu.ADPGlow] , which exhibits very high
selectivity and sensitivity for ADP, making it a valuable tool for
monitoring dynamic biological processes involving this anion.
The probe incorporates m-conjugated quinolyl-phenoxyacetate
antennae, ensuring efficient excitation at 355 nm, high water
solubility, and resistance to non-specific binding to albumin
protein. The probe's affinity for ADP (logK, = 3.59 £+ 0.01)

5610 | Chem. Sci, 2025, 16, 5602-5612

results in a pronounced luminescence ‘switch on’ with negli-
gible interference from ATP, pyrophosphate, phosphate, bicar-
bonate, and many other biological anions. This selective
recognition allows for time-resolved detection of ADP across the
physiologically relevant concentration range (10-400 M), even
in the presence of millimolar levels of ATP.

Photophysical studies revealed that the probe's emission
intensity is stable across physiological pH ranges and its emission
lifetime is significantly enhanced upon ADP binding, indicating
effective displacement of coordinated water. The probe stands
out as one of rare examples demonstrating selectivity for ADP
over ATP and pyrophosphate, a critical feature for accurate
detection in complex biological environments.

The Eu(m) probe can permeate mammalian cells, showing
a broad distribution within mitochondria and lysosomes. This,
coupled with its low background emission (i.e., minimal emis-
sion signal without ADP) makes [Eu.ADPGlow]™ a promising
candidate for real-time visualization of dynamic cellular ADP
levels. Our findings underscore the potential of [Eu.ADPGlow] ™
to enhance the understanding of the role of ADP in various
biochemical and cellular processes, whilst offering a convenient
luminescence tool for monitoring kinase and ATPase activities
in real-time. Future work will focus on further optimizing the
probe for cellular applications, including introduction of
peripheral substituents to promote cellular uptake and subcel-
lular localisation.®® Overall, we anticipate that the broad appli-
cability and excellent selectivity of [Eu. ADPGlow]~ will make it
an exceptionally popular tool.
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