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Accelerating the prediction of inorganic surfaces
with machine learning interatomic potentials

Kyle Noordhoek and Christopher J. Bartel *

The surface properties of solid-state materials often dictate their functionality, especially for applications

where nanoscale effects become important. The relevant surface(s) and their properties are determined,

in large part, by the material’s synthesis or operating conditions. These conditions dictate thermodynamic

driving forces and kinetic rates responsible for yielding the observed surface structure and morphology.

Computational surface science methods have long been applied to connect thermochemical conditions

to surface phase stability, particularly in the heterogeneous catalysis and thin film growth communities.

This review provides a brief introduction to first-principles approaches to compute surface phase dia-

grams before introducing emerging data-driven approaches. The remainder of the review focuses on the

application of machine learning, predominantly in the form of learned interatomic potentials, to study

complex surfaces. As machine learning algorithms and large datasets on which to train them become

more commonplace in materials science, computational methods are poised to become even more pre-

dictive and powerful for modeling the complexities of inorganic surfaces at the nanoscale.

Introduction

Surface science and nanoscale synthesis are key driving factors
in many current technological applications including catalysis1

and microelectronics.2 For catalysis applications, surface reac-
tivity is dictated by the structure of exposed surfaces on nano-
particles or thin films. Understanding the phase stability of
relevant surfaces is therefore paramount for catalyst design. In

thin-film devices, interfacial interactions between substrates
and vapor-deposited materials dictate phase stability and,
again, the observed properties are highly dependent upon the
surface or interfacial structure. Hence, accurately capturing
which surfaces are likely to be observed under relevant con-
ditions plays an important role in the design of nano-
structured solid-state materials.

This review focuses on modeling inorganic surfaces with
periodic boundary conditions (i.e., using slab models), but it
should be noted that surface effects can also be captured with
finite systems (e.g., using isolated nanoparticles).3,4 Using peri-
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odic boundary conditions, a typical inorganic surface is
modeled as a slab – an infinite 2D sheet of material formed by
slicing a bulk (3D) crystal using a particular 2D plane. The
cleavage of the conventional unit cell through a designated
Miller plane produces a single facet. Surface facets are nomin-
ally referred to using Miller index notation to indicate the
plane used to perform the slice with respect to the convention-
al unit cell. A facet (Miller index) alone does not define a slab
as the position along the vector normal to the plane defined
by the Miller indices where the cut is made can lead to
different “terminations” of the slab (i.e., different atomic
species at the surface). It is typical for multiple possible ter-
minations per facet to be generated when computing surface
properties. For a more detailed description of how surface
slabs with varying terminations can be systematically gener-
ated as a starting point for first-principles calculations, see the
thorough explanation given by Sun and Ceder.5 After the gene-
ration of a facet with a particular termination, the “dangling
bonds” formed by slicing the bulk material can induce a
rearrangement of atomic positions at/near the surface. Surface
rearrangements nominally fall under two categories: (1) relax-
ations, which result from subtle changes in atomic positions
that do not drastically alter the surface structure, and (2)
reconstructions, which result from significant changes produ-
cing a notably different structure than that which formed from
the original cleavage of the bulk material. Reconstructions are
often denoted using Wood’s notation,6 which describes modi-
fications of the surface unit cell compared with the bulk (e.g.,
the well-known 7 × 7 reconstruction of Si).7,8 Understanding
the surface structure is critical for countless applications, and
the relative energies of these various reconstructions, facets,
and terminations determine which surface structures are likely
to appear for a material at a given set of conditions (Fig. 1).
This review focuses primarily on recent efforts to use machine
learning to address the challenging problem of calculating the
thermodynamics of solid-state, inorganic surfaces using first-
principles methods.

Computational thermodynamics of
surfaces

The surface (internal) energy, γ, of a slab in vacuum can be
computed as the difference between the total internal energy
of the slab, Eslab, and the total internal energy of the bulk,
Ebulk, given the same number of atoms, N, as the slab. For the
case where the upper and lower slab surfaces are identical, the
surface free energy is calculated as:

γ ¼ 1
2A

� ðEslab � NEbulkÞ ð1Þ

where A is the area of the surface and 2A arises from the two
identical surfaces exposed to vacuum on either side of the
slab. Density functional theory (DFT) is the preeminent tool
for computing the energies (including surface energies) of in-
organic solids. Typical DFT calculations can be used to opti-
mize a surface structure and produce a corresponding internal
energy at 0 K in vacuum. It is often considered best practice
for these internal energies (Eslab, Ebulk) to include zero-point
energy corrections. For selected systems, it has been shown
that (zero-point) vibrational contributions are on the same
order of magnitude as other present sources of error (e.g., sys-
tematic errors resulting from DFT) and can be ignored.9

However, this may not generally hold, especially when comput-
ing surface properties such as absorption energies, where it
has been shown that the effects of zero-point energy contri-
butions can be significant.10 Even so, the resulting low-energy
surface structures have shown good alignment with experi-
mental measurements (e.g., using low-energy electron diffrac-
tion, LEED) of carefully prepared materials in near-vacuum
conditions.11–13

For real systems and applications, the temperature and
environment (e.g., gas composition) play significant roles in
dictating the structure and energetics of inorganic surfaces.
This motivates the application of different thermodynamic

Fig. 1 Illustrating how a 3D crystal can be cleaved by 2D planes to yield various slabs, which are used as the starting point for surface science calcu-
lations. As an illustrative example, we consider a (001) facet (blue) and two terminations of the (011) facet (purple, green). Once the surface energies
are known, they can be used as inputs to the Wulff construction to yield an equilibrium nanoparticle geometry (top right) or thermodynamic models
to understand how the stability of each facet depends on the chemical potentials of the involved elements (bottom right for a monometallic metal
oxide).
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potentials for computing the energies. Traditionally, mapping
the DFT-calculated total internal energy (E) to the enthalpy at a
given temperature, T, requires consideration of the zero-point
energy correction as well as the integrated heat capacity (from
0 K to T ). However, it has been shown that the DFT-calculated
total internal energy alone is a reasonable approximation for
the enthalpy of a solid at room temperature (because the
pressure-volume contribution is small).14 Mapping these
enthalpies to Gibbs energies with first-principles calculations
is much more computationally intensive because this requires
computing the vibrational (phonon) and configurational con-
tributions to the free energies of all involved solids (including
the slabs).15–19 A common approximation in computational
surface science is that the entropic contribution of the
involved gaseous species (e.g., O2 in air) is much larger than
the entropic contribution from the involved solids.9 Thus, a
typical approach is to compute grand canonical surface ener-
gies for slabs allowed to exchange species with their environ-
ment as:

γ ¼ 1
2A

� Eslab � NEbulk �
X
i

ΔNiμi

 !
ð2Þ

where eqn (1) is amended to account for the excess (ΔN > 0) or
deficiency (ΔN < 0) of some species, i, in the slab compared
with the bulk at chemical potential, μi. In Fig. 2, we illustrate
that when species i is gaseous (e.g., O2), the effect of both
temperature, T, and gas concentration, pi, is captured using
μi = μi(T, pi).

9

This approach can also be generalized to more complex
thermodynamic environments (e.g., aqueous electrochemical
environments using the Pourbaix potential).20–23 An important
consideration for the purposes of computational surface

science is that these open systems introduce additional com-
plexities as the surface composition (termination) can vary
substantially depending on the temperature and environment.

While the aforementioned challenges are true for any par-
ticular facet (various terminations, restructuring), a further
complication is that it is often critical to know the relative
energies of many possible facets. Consider the Wulff construc-
tion, a prevalent method used to determine the equilibrium
shape of a crystal of fixed volume, which is calculated by mini-
mizing the total Gibbs free energy of the proposed system.24,25

The minimization is performed with respect to the weighted
product of facet surface energies and facet surface areas. As
such, changes in the relative energies of the facets (i.e. due to
changes in temperature or environment) can manifest as
modifications to the equilibrium crystal shape. In Fig. 3, we
show how the computed equilibrium morphology of RuO2

nanoparticles changes due to the dependence of relative
surface energies on the change in oxygen chemical potential,
ΔμO.26 It is important to note that Wulff constructions
produce size-independent particle morphologies while nano-
particles can exhibit dynamic surface structures under certain
conditions.27 Even so, observed deviations from the computed
equilibrium particle morphologies have been shown to be
small outside of cases where particles experience large strains
or edge/corner atoms are miscounted during morphology
predictions.28,29

In an effort to cull the number of required calculations,
many efforts have focused on a single facet9,35–40 or a (sub)set
of low-Miller index facets (e.g., up to (111)).41–43 For some
systems, this has led to good agreement with experimental
measurements. For example, Reuter and Scheffler investigated
the stability of the O-terminated, Ru-terminated, and stochio-
metric RuO2(110) facets as a function of ΔμO, ranging from
−2.0 eV to 0.5 eV.9 They computed that a transition from the
RuO2(110)-O

cus termination to the RuO2(110)-O
bridge termin-

ation, where cus and bridge refer to specific locations of oxygen
on the surface, occurs at T = 450 ± 50 K and pO2

= 10−12±2 atm.
This agrees with temperature desorption spectroscopy (TDS)
measurements that found an excess of Ocus atoms on the
RuO2(0001) surface at temperatures between 300–550 K under
ultra-high vacuum (p < 10−12 atm) conditions.44 RuO2(0001)
has been found to form RuO2(110) domains under oxidizing
conditions.11,45 The study of the RuO2 system was extended by
Wang et al. to include all possible (1 × 1) terminations of the
(100), (001), (110), (101) and (111) facets over the same range
of ΔμO.42 These surface energies were used to compute equili-
brium particle morphologies as a function of ΔμO. The particle
morphologies were qualitatively compared to scanning elec-
tron microscopy (SEM) images of experimentally grown RuO2

nanoparticles,30,31,34 where the major features (overall shape,
facet coverage) of the computed morphologies were found to
agree with experiment. For other systems, the inclusion of only
low-Miller index facets can be a substantial approximation,
and many facets that are relevant to the application of a
material can be missed by only looking at this subset. In the
case of Pd and Rh, Mittendorfer et al. computed equilibrium

Fig. 2 Surface free energies, γ(T, pO2), for three possible RuO2(110) ter-
minations calculated over the allowed range of oxygen chemical poten-
tial, μO(T, pO2), as indicated by the vertical dashed lines. The sloped
dashed line depicts the surface free energy of a RuO2(110)-O

cus termin-
ation with only every second Ocus site occupied. This figure has been
reproduced from ref. 9 with permission from the American Physical
Society, copyright 2001.

Nanoscale Minireview

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 6365–6382 | 6367

Pu
bl

is
he

d 
on

 0
6 

3 
20

24
. D

ow
nl

oa
de

d 
on

 2
02

4-
09

-1
8 

 1
0:

07
:4

7.
 

View Article Online

https://doi.org/10.1039/d3nr06468a


particle morphologies with the inclusion of the (100), (110),
(111), (211), (311), and (331) facets.46 They discovered that
under UHV conditions a significant fraction of the nano-
particle surface is comprised of the high-Miller index surfaces
(211), (311), and (331).

So far, we have discussed that surface structures of interest
can be generated as inputs to DFT calculations, which perform
a local relaxation of the structure and yield accurate estimates
for the internal energies. Using the thermodynamic relations
discussed previously, these internal energies can be mapped
to more useful thermodynamic potentials. However, an intrin-
sic limitation of this approach is that the only surface struc-
tures that can appear in the resulting surface phase diagrams
are those that were specified as inputs by the user.
Enumerating all possible surfaces (facets, terminations, recon-
structions) and computing their energies with DFT is intract-
able. This motivates the development of sampling approaches
to rationally explore the landscape of plausible surface struc-
tures. These approaches make use of concepts from
crystal structure prediction,47,48 optimization,49 statistical
mechanics,16,17,19,50 and molecular dynamics simulations51

(among other techniques). A detailed description of these
methods is outside the scope of this review, but the appli-
cation of machine learning (ML) in the context of these
methods will be discussed. The remainder of this review will
focus on the role of ML methods in facilitating accurate predic-
tions of inorganic surface structures and energies under ther-
mochemically relevant conditions.

Machine learning interatomic
potentials

The computational cost of energy evaluations with DFT scales
approximately with the cube of the number of electrons in the
system. This scaling means DFT calculations are often

restricted to small numbers of structures, structures with less
atoms, and very short timescales for molecular dynamics
(MD). Interatomic potentials (IPs) are often used as surrogates
for DFT and can scale approximately linearly with the number
of atoms in the system. Historically, empirical IPs assume a
particular functional form and fit parameters using higher
fidelity data (e.g., from DFT) for some structures of interest.
ML has recently emerged as a powerful tool for learning the
relationship between crystal structures and DFT-calculated
energies (and forces) that result. So-called machine learning
interatomic potentials (MLIPs) have achieved remarkable per-
formance as surrogates for DFT.52–54 For bulk crystals, there
have been demonstrations of “universal” MLIPs that are
trained to perform well on materials spanning the periodic
table.55–58 Similarly, the Open Catalyst Project,59,60 a massive
open data challenge, has shown that MLIPs trained on
millions of structures relevant to heterogeneous catalysis can
be effective surrogates for predicting the structures and ener-
gies of surfaces with adsorbates.61–67 Predicting the thermo-
chemical stability of solid-state surfaces presents a different
challenge, and MLIPs have not yet been shown to be effective
“universal” surrogate models for solid-state surfaces. There
have, however, been several examples of MLIPs dramatically
accelerating the determination of surface phase diagrams
within targeted materials spaces of interest.

A thorough review of MLIPs is outside the scope of this
work, so we will briefly introduce two classes of MLIPs that
have been applied extensively for surface science. The first
approach relies upon Gaussian Process Regression (GPR) to
develop so-called Gaussian Approximation Potentials
(GAPs).68–71 A typical procedure for fitting a GAP is shown in
Fig. 4. Briefly, the method begins by collecting ground-truth
energies and forces (usually from DFT) for structures of inter-
est to populate a database of reference data. For efficient train-
ing, these crystal structures must be “represented” in a
manner that maximizes the retention of information subject

Fig. 3 Equilibrium Wulff nanoparticle shapes computed from RuO2 surface energies of all low-index (up to (111)) facets and the (410) vicinal, using
locally optimized structures (top) and global geometry optimized structures (bottom). The indicated changes in oxygen chemical potential, ΔμO,
correspond to calcination pretreatment conditions used by Rosenthal et al.,30,31 Jirkovský et al.,32 Lee et al.,33 and Narkhede et al.,34 from left to
right. Standard conditions (300 K, 1 bar, −0.28 eV) are also displayed. This figure has been reproduced from ref. 26 with permission from the
American Chemical Society, copyright 2023.
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to common invariances and equivariances that should be
exhibited by periodic crystals.72 GPR is then used to fit a prob-
abilistic relationship between the target properties (energies,
forces) in the reference data and the descriptors that result
from the chosen representation.69 Once the model is trained,
any new configuration (structure) of interest can be rep-
resented in the same manner and passed through the model
to infer the energies and forces associated with that structure.
It should be noted that any systematic inaccuracies present in
the data used to populate the reference database will be
learned by (and therefore translated to) the fitted model. In
the context of populating a reference database with DFT-com-
puted properties, it is therefore important to understand
potential errors that may arise for a given system of interest
and how, if at all, these errors can be corrected (e.g., through
the use of a +U correction for systems with strongly localized
electron states).73 GAPs can also be used as the “force field” to
drive MD simulations. Because the underlying model (GPR) is
probabilistic, the resulting uncertainties can be used to itera-
tively improve the model using active learning.74

Alternative MLIP fitting approaches and architectures make
use of many of the same concepts (reference data, representing
crystal structures, model training, active learning), but may
vary the underlying model and associated structural represen-
tation. As one example, the GPR model can be replaced with a
deep learning model in the form of neural network (NN)
potentials. As one class of NN potentials, graph neural net-
works (GNNs) leverage a graph representation for each crystal
structure, where each node is an atom in the structure and
neighboring atoms (within some radial cutoff distance) are
connected via edges.55–57,63 Aside from graphs, other well-
known neural network potentials represent the crystal struc-
ture through equivariant descriptors, such as radial functions
that are applied to and summed over distances from a central
atom.75–79 There are many flavors of NN potentials and the
interested reader is encouraged to see more thorough reviews
of MLIPs.52,80–85 In the following sections, we review recent

efforts to use MLIPs at various steps in the computational
surface science pipeline.

Direct predictions of surface energy

MLIPs are capable of rapidly and directly predicting the
surface energy of a given slab, provided they have been appro-
priately trained for the material system of interest. This
approach enables the accelerated exploration of a selected
materials system with the potential to more comprehensively
understand the energetics that may be missed using only DFT.
With the goal of more robustly exploring possible IrO2 surface
structures, Timmermann and Reuter trained a GAP using 136
DFT-calculated structures.51 The training data included 78 low-
index facets, 34 bulk structures, and 20 nonequilibrium
surface structures taken from high temperature MD simu-
lations of various nanoparticle sizes and shapes. The GAP pre-
dicts that reordered (101) and (111) (1 × 1) structures are most
stable under simulated annealing conditions (ramping to T =
1000 K over 20 ps followed by slow cooling at 3 K per ps for
250 ps). This was further confirmed by DFT calculations as
well as LEED and scanning-tunneling microscopy (STM) of
annealed IrO2 crystals. These results show how data-driven
approaches can be leveraged to identify important surface
structures that may have been missed using typical low-
throughput approaches.

After previously identifying missed stable IrO2 structures,
Timmermann et al. employed active learning in a two-stage
framework for training GAPs to predict low-index surface struc-
tures of IrO2 and RuO2.

86 An initial GAP model was trained on
DFT-calculated energies of O2 dimers with varying O–O bond
lengths, bulk unit cells of MO2 (M = Ir, Ru) at varying com-
pressed, expanded, and optimized lattice parameters, and 21
low-Miller index (1 × 1) surfaces with M-, O-, stochiometric-, or
peroxo-terminations. Sixteen of the low-Miller index surfaces,
excluding the peroxo-terminations, were used as starting con-

Fig. 4 Three main components required for GAPs: (1) a robust reference database of quantum-mechanical data (usually generated with DFT), (2) a
representation of the atomic environments associated with each reference point, and (3) the GPR model fit. This figure has been reproduced from
ref. 69 with permission from the American Chemical Society, copyright 2021.
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figurations for simulated annealing to generate 80 additional
stable IrO2 structures and 63 RuO2 structures. The generated
candidates were relaxed using DFT to assess differences in the
GAP-predicted structures, which were measured as a function
of the minimal similarity between two atoms within a struc-
ture, given by the Smooth Overlap of Atomic Positions (SOAP)
kernel.79 For those GAP-predicted structures where there were
significant differences, the DFT-relaxed structure was com-
puted and used for training in place of the GAP-predicted
structure. The authors ultimately identified 8 IrO2 and 7 RuO2

terminations that are more stable than terminations formed
by cleaving the bulk oxides for −2.0 eV < ΔμO < 0 eV. In Fig. 5,
we show 8 of these novel terminations compared to their con-
ventional bulk cleaved counterparts.

Similar objectives have also been pursued using NN-based
MLIPs rather than GAPs. Phuthi et al. used data from 4548
structures (bulk, bulk with defects, pristine surfaces, and sur-
faces with adsorbates) generated through the DPGen active
learning framework87 to train NequIP88 and Deep Potential77

models for elemental Li.89 Surface energy and nanoparticle
morphology predictions were compared directly to DFT calcu-
lations, as well as predictions from a popular modified
embedded atom (MEAM) empirical potential90 and spectral
neighbor analysis potential (SNAP).76 The authors show that
both their NequIP and Deep Potential models achieve accu-
racies within 1 meV Å−2 of the surface energy computed by
DFT for higher-Miller index facets (up to (332)) despite their
models only explicitly using the (100), (110), and (111) facets
as starting structures for the active learning framework.

Similarly, Gao and Kitchin constructed a NN potential for
Pd using the Atomistic Machine-learning package (Amp).91,92

The NN architecture consisted of 2 hidden layers with 18
nodes each and was trained on ∼2700 DFT-calculated energies
of bulk, slab, and defect structures. For the fcc(111) surface,
the average surface energy was computed for supercells of size
(2 × 2), (2 × 3), (3 × 3), (3 × 4), and (4 × 4). The average surface
energy predicted by the model was in close agreement with

DFT-computed average surface energies, with a mean absolute
error (MAE) of <2 meV Å−2. Additionally, the surface vacancy
energy was computed with DFT and the NN, where the authors
found the NN to underestimate the DFT value by as much as
222 meV per atom, suggesting further tuning for defective sur-
faces would be needed. It is worth noting that the authors also
compared the single point run time between DFT and their
NN and found that the NN scaled linearly with the number of
atoms and, on average, was four orders of magnitude faster
than DFT.

From surface energies to nanoparticle
morphologies

We have so far discussed the speed and accuracy with which
GAPs and NN potentials are capable of directly evaluating
surface energies. If the relative surface energies among various
facets and terminations can be predicted accurately, this
enables the efficient prediction of equilibrium nanoparticle
morphologies. Lee et al. revisited the RuO2 system to explore
feasible surface reconstructions and compare DFT-calculated
Wulff constructions with those of an updated GAP model.26

Their updated model is an extension of the one previously
trained by Timmermann et al.86 for the RuO2 (1 × 1) surface
structures and now includes RuO2 c(2 × 2). The training for the
new GAP potential added surface compositions with 25% and
75% additional oxygen coverage to the list of training data
used for the initial (1 × 1) surface model. The inclusion of only
18 new surfaces with these new compositions enabled the
model to predict critical reconstructions involving tetrahedral
Ru4f motifs. The authors further utilized the GAP model to
predict surface energies over the range −1.5 eV < ΔμO < 0 eV
and computed the resulting equilibrium nanoparticle shapes.
They noted that their particle morphologies resulting from
GAP-predicted surface energies are qualitatively consistent
with those reported by Wang et al., who calculated equilibrium

Fig. 5 IrO2 (1 × 1) surface structures identified with DFT (conventional) or during GAP training and surface exploration (novel). The top row depicts
a side view of the conventional terminations resulting from bulk truncation and DFT geometry optimization. The bottom row depicts a side view of
the GAP identified most stable structure, with the relative difference in surface free energy stated explicitly. Ir atoms are drawn as larger blue spheres
and O atoms are drawn as smaller red spheres. This figure was reproduced from ref. 86 with permission from AIP publishing, copyright 2021.
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shapes from surface energies computed strictly using DFT.42

However, Lee’s computed morphologies, shown in Fig. 3,
display a non-trivial percentage of the equilibrium particle
morphology that is covered by the high-Miller index (410)
facet, which was not shown by the previous low-Miller index
studies.

Returning to NN potentials, Shrestha et al. computed equili-
brium particle morphologies as well as particle-size dependent
phase diagrams for molybdenum and tungsten carbides.93

Similar to Gao and Kitchin,92 the authors utilized Amp91 to
develop separate NN potentials for each carbide system. The
training was performed using DFT-computed energies for a
total of 5918 Mo–C and 5941 W–C structures. The 5918 Mo–C
structures included 154 Mo metal, 49 bulk (MoxCy), and 5715
slabs with facets up to (111) and 49 high-Miller index facets
for which the authors could find literature references. The
5941 W–C structures included 167 W metal, 46 bulk (WxCy),
and 5728 slabs with facets up to (111) and 38 high-Miller index
facets for which the authors could find literature references.
Using these models, the authors predicted the surface energies
of 1509 MoxCy and 1080 WxCy surfaces up to Miller index 5
before generating Wulff constructions for −0.5 eV < ΔμC <
0 eV. For facets found in the equilibrium nanoparticles at
various points in the ΔμC range, the surface energy was com-
puted using DFT. These DFT-computed surface energies of the
NN-identified facets were then used to re-compute equilibrium
particle morphologies. The resulting nanoparticle mor-
phologies compared qualitatively well to transmission electron

microscopy (TEM) and X-ray diffraction (XRD) measurements
and are shown in Fig. 6 for the molybdenum carbide nano-
particles.94 The authors also determined particle-size depen-
dent phase diagrams by utilized an alternative thermodynamic
potential, following the work of Sun et al.,20 to compute grand
potential energies for each equilibrium particle morphology as
a function of the particle’s diameter, d. The potential energies
were computed for d > 2 nm and across the previously men-
tioned range of −0.5 eV < ΔμC < 0 eV. For both the Mo–C and
W–C phase diagrams, the authors found good agreement
between the computed and experimentally observed mor-
phologies, with the only major exception being γ-MoC, which
was computed to be stable only at d ≫ 10 nm but has been
experimentally observed for 3 nm < d < 6 nm.95,96

Leveraging direct predictions of surface energies is not the
only method of predicting equilibrium nanoparticle mor-
phologies. Palizhati et al. utilized a crystal graph convolution
neural network (CGCNN) to predict cleavage energies, or the
energy required to break bonds along a specific plane, of bi-
metallic surfaces from which they compute Wulff construc-
tions.97 The cleavage energies are equal to the surface energies
provided that the terminations of the resulting slabs are identi-
cal. The CGCNN was trained on cleavage energies of 3033
intermetallic surfaces spanning 36 different elements. The
training cleavage energies were computed using a linear extra-
polation method, where the total DFT-computed slab energy
was plotted as a function of slab thickness, and the cleavage
energy is given by the y-intercept. The authors assessed their

Fig. 6 DFT-computed Wulff constructions of the equilibrium particle morphologies of different molybdenum carbide phases at ΔμC = −0.15 eV
using NN-identified facets. This figure has been reprinted from ref. 93 with permission from the American Chemical Society, copyright 2021.
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model’s accuracy by comparing the DFT-calculated Wulff con-
structions with the CGCNN-predicted Wulff constructions for
NiGa, CuAl, and CuAu. They show that their model’s predic-
tions of equilibrium particle morphologies capture the
majority of high area facets, with the highest area fraction
MAE for CuAu (MAE = 0.096).

Energy inputs to Monte Carlo
simulations

Surface reconstruction can lead to complex equilibrium geo-
metries under changing temperatures or environmental con-
ditions, which drastically affect final surface properties. When
a single facet is of particular interest, more extensive sampling
of the feasible surface structures can lead to an improved
understanding of the relative surface energies. Such extensive
sampling leads to more realistic predictions of the final
observed structure but comes with the drawback of signifi-
cantly higher computational cost and is typically intractable
when very many facets are relevant (e.g., in Wulff
constructions).

Sampling strategies are often based on Monte Carlo
methods that can be used to explore the plausible reconstruc-
tions of a given surface under varying conditions. The rapid
exploration of feasible reconstruction events is dependent on
the speed and accuracy of the underlying surface energy calcu-
lator. Recently, Du et al. developed a high-throughput active
learning framework, Automatic Surface Reconstruction
(AutoSurfRecon), for end-to-end prediction of surface ener-
getics and exploration of surface reconstructions.98 Their
framework introduced a Virtual Surface Site Relaxation-Monte
Carlo (VSSR-MC) method in the canonical and semi-grand
canonical ensembles, which the authors showed can repro-
duce well known surface reconstructions of GaN(0001) (see
Fig. 7a) and Si(111). Following the demonstration of VSSR-MC,

the authors mapped a phase diagram for SrTiO3(100), shown
in Fig. 7b. For the calculation of the SrTiO3(100) surface ener-
gies, the authors trained a neural network force field using the
PaiNN67 architecture. The predicted surface energies over the
range −10 eV < ΔμSr < 0 eV yielded a double layer TiO2 termin-
ation at low (more negative) ΔμSr and single layer TiO2 to
single layer SrO terminations at increasing ΔμSr, all of which
have been experimentally reported.99–105 The authors com-
puted the phase diagram of SrTiO3(100) by also predicting the
surface energies over the range −10 eV < ΔμO < 0 eV and note
that their predicted phase diagram is qualitatively similar to
that which was computed through DFT by Heifets et al.106

The previous investigation of surface reconstructions chose
to avoid the computationally more expensive grand canonical
Monte Carlo (GCMC), though in situations such as the study
of oxidation processes, it may be necessary to use GCMC as it
does not limit the interactions between the surface lattice and
adsorbates. Therefore, Xu et al. developed a general framework
for training NN potentials to be used with GCMC for exploring
surface oxidation.107 They tested the framework by exploring
the PtOx system. 52 448 DFT-computed energies were used to
train an Embedded Atom Neural Network Potential
(EANNP)108,109 to predict the surface and oxygen adsorption
energies of the (111), (211), and (322) facets. Monte Carlo
simulations were carried out using the EANNP and resulted in
the discovery of formation mechanisms for the raised PtO4,
minimal stripe Pt2O6, and edge PtO6 units, which were verified
through replication by DFT calculations.

Boes and Kitchin took a slightly different approach for pre-
dicting oxygen absorption on Pd surfaces. They utilize the
Amp package91 to train a Behler-Parrinello (BP) NN111 for the
Pd(111) surface.112 Their training data consisted of DFT calcu-
lations for 107 unique energy configurations of a 3 × 3 × 4 Pd
slab. For each configuration, oxygen was placed at either the
fcc, hcp, bridge, or top sites prior to relaxation. The authors
used each step of the DFT-relaxation trajectories to provide

Fig. 7 (a) A typical VSSR-MC run profile is depicted for high-temperature annealing of GaN(0001). (b) The NN-computed phase diagram of
SrTiO3(100) showing the stable surface terminations at varying µSr and µO along with estimated positions of three experimental SrTiO3(001) surfaces,
Erdman et al.,101 Castell,100 and Hirata et al.99 Four vertical axes are illustrated on the right. The smaller axes provide an abbreviated view of the
larger axes. This figure has been reproduced/adapted from ref. 110 with permission from arXiv, copyright 2023.
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11 925 training data points to the model. GCMC was then per-
formed with the BPNN as an energy calculator, where the
authors predicted the relative potential energy barriers associ-
ated with oxygen migration across the Pd slab surface. Their
results found good agreement with DFT and experimental
energies, within 0.15 eV at any given site or nearest neighbor
distance.113–115 Boes and Kitchin note that the BPNN could be
expanded for use in ternary systems of interest, leading to
Yang et al. training individual BPNNs for Pd, Au, and Cu.116

Training was performed on 5100 DFT-computed surface ener-
gies of fcc(111) slabs with random compositions of the three
elements. The individual BPNNs were then combined to
predict surface properties of the ternary Cu–Pd–Au fcc(111)
alloy. MC simulations were performed across 24 bulk compo-
sitions to explore metal segregation at the fcc(111) surface. The
framework was able to qualitatively depict trends in the AuPd,
and CuAu portions of the ternary space though it falls short in
predicting the CuPd portions when compared to cluster expan-
sion results.117 The authors attribute this limitation to the use
of ideal fcc(111) surfaces in generating their training data, as
when fcc(110) surface data was incorporated the model was
able to more consistently reproduce the CuPd behavior.

Alternative ML-based sampling
strategies

So far, we have discussed the implementation of MLIPs to
enable accurate equilibrium particle morphology estimation
and efficient probabilistic simulation. The training of the
described MLIPs has largely focused on structures generated
through domain knowledge, literature surveys, or automated
active learning approaches. The following section is set to
introduce recent works in sampling more robust training sets
through less conventional search approaches. The focus is
again on those that leverage ML, though other sampling strat-
egies (e.g., nested sampling16,118,119) have also been used.

Zhu et al. returned to the well-studied RuO2 system to
explore the structure of Ru/RuO2 interfaces.120 They used sto-
chastic surface walking (SSW)121 to generate more than 107

(cluster, layered, and bulk) Ru–C–H–O structures. SSW is a
Metropolis Monte Carlo122 based search method that smoothly
manipulates a given structure to generate new configurations.
DFT-computed internal energies for 46 731 select structures
were used for training a NN potential. The authors used a
modified version of the phenomenological theory of martensi-
tic crystallography123 to generate plausible Ru/RuO2 interfaces
before optimizing the atomic coordinates and predicting the
interfacial energies with their NN. The five most stable inter-
faces are shown in Fig. 8. Three of the five most stable inter-
faces were matched with previous experimental results:
RuO2(101) on Ru(1010), RuO2(101) on Ru(0001), and
RuO2(100) on Ru(1010).12,124 The SSW-NN framework facili-
tated Chen et al. to develop an automated search for optimal
surface phases (ASOP) in the grand canonical ensemble.125

The SSW-NN method was used to generate 50 131 (cluster,
layered, and bulk) Ag–C–H–O structures and train a NN for
exploring the surface oxide phases of Ag(111) and Ag(100). The
authors reproduced the experimentally observed Ag(111) c(4 ×
8),126 Ag(111) p(4 × 4),127–129 and Ag(100) (2√2 × √2)
R45°130–132 surface structures together with unreported, but
predicted-low-energy, Ag(111) (2 × 1) and Ag(100) (2√2 × 2√2)
R45° surfaces.

Evolutionary strategies have also been utilized to generate
candidate training structures. To explore possible TiOx overlay
structures on SrTiO3, Wanzenböck et al. combined the covari-
ance matrix adaptation evolution strategy (CMA-ES),133 which
iteratively generates new overlay structures by perturbing exist-
ing surface atoms based on a normal distribution, and a NN
potential.134 The NN was trained on 3000 DFT-computed
surface energies for overlayer structures generated by CMA-ES
with SrTiO3(110) (4 × 1) as the starting structure. The authors
then performed a set of 50 CMA-ES runs using each of
SrTiO3(110) (3 × 1), (4 × 1), and (5 × 1) as initial structures and
the trained NN potential as the energy calculator. This

Fig. 8 Atomic structures of the five most stable Ru-RuO2 interfaces with different orientation relationships (OR) in order of increasing interfacial
energy from (a) to (e). Ru atoms are depicted by the green balls and O atoms by the red balls. The crystallographic direction in RuO2 bulk is indicated
below each interface. This figure has been reprinted from ref. 120 with permission from the American Chemical Society, copyright 2021.
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approach generated stable SrTiO3(110) (3 × 1) overlay structures
where TiO4 tetrahedron create six- and eight-membered rings,
shown in Fig. 9, that were found to be consistent with STM
images.135 Additionally, the SrTiO3(110) (4 × 1) seeded runs
predicted six- and ten-membered rings of corner-sharing TiO4

tetrahedron, also observed by STM images.135–137 Finally, the
SrTiO3(110) (5 × 1) seeded runs predicted an STM-observed six-
and twelve-membered ring structure135 and a previously unob-
served higher-energy eight- and ten-membered ring structure.

In pursuit of further advancing evolutionary search
approaches, Bisbo and Hammer developed the global optimiz-
ation with first-principles energy expressions (GOFEE) strategy,
which generates new candidate structures by perturbing atoms
in a subset of structures from an initial population.138 The
new candidate structures are relaxed using a GPR model,
initially trained on a user-selected set of relevant structures.
An acquisition function is used to assess which of the gener-
ated structures to select for DFT single-point energy evalu-
ation. After evaluation, the structure is added to the initial
training dataset and the process is repeated. In this way, the
GPR model is improved while simultaneously exploring the
energy landscape. The authors tested their method by reprodu-
cing a well-known SnO2(110) (4 × 1) surface reconstruction,
observed both experimentally139 with LEED and computation-
ally140 using evolutionary algorithms. Bisbo and Hammer also
explored the intercalation of oxygen between graphene grown
on Ir(111), an experimentally well-studied process.141–143 The
authors find that an oxidized graphene edge lifts slightly from
the Ir(111) surface, which may allow for intercalation. In
pursuit of further improving the efficiency of GOFEE, Merte
et al. modified the strategy to update the training set with
subsets of the generated structures instead of a single struc-
ture.144 This improved strategy was used to explore the surface

structure of Pt3Sn(111) with a (4 × 4) oxygen overlay. In con-
junction with STM, LEED, X-ray photoelectron spectroscopy
(XPS) and low-energy ion scattering (LEIS) data,145,146 the
authors were able to propose and validate a surface compo-
sition of Sn11O12 and surface structure with Sn in 3-fold
coordination with oxygen.

With the expansion of efficient search algorithms, a
compact and flexible framework for training set generation
and model production could further accelerate the develop-
ment of accurate MLIPs. Here, Christiansen et al. developed
the atomistic global optimization X (AGOX) package,147 which
allows users to build their own dataset-generation pipelines
based on flexible modules for performing random-structure
search, basin-hopping, evolutionary-structure generation, and
GOFEE.138,144 The AGOX package was built to train GPR
models as energy calculators. The versatility of the package
has been demonstrated by Rønne et al. who trained an Ag GPR
model based on the SOAP79 representation by implementing
parallel basin-hopping, which generates new structures using
a stochastic perturbation of atoms in an initial structure.148

Twelve concurrent basin-hopping searches were performed
from starting overlay structures with compositions AgxOy (x =
4, 5, or 6 and y = 2, 3, 4, or 5) on Ag(111). The concurrent
searches generated structures that were subsequently fed into
a shared database and used to train a single GPR. The model
reproduced the stable Ag(111) c(4 × 8) structure.125

Aside from evolutionary and stochastic searches, alternative
attempts applied learning strategies from fields such as com-
puter vision for improving surface structure searches.
Jørgensen et al. developed an atomistic structure learning
algorithm (ASLA) that leverages convolutional neural networks
(CNN) and reinforcement learning to construct 2D and planar
structures atom-by-atom.149 Within reinforcement learning, a

Fig. 9 SrTiO3(110) (3 × 1) reconstruction overlayers (left) identified by performing sets of NN-backed CMA-ES runs and further refined by two sub-
sequent optimizations. Structures show corner-sharing TiO4 tetrahedra in six- or eight-membered rings. The calculated energy minimum (a) is set
to zero and the relative energies of the other arrangements, (b) and (c), are shown. The energy trajectories of the 50 CMA-ES runs (right) on the
SrTiO3(110) (3 × 1) surface, with the calculated energy minimum set to zero. The labels (a), (b), (c) correspond to the overlayers shown on the left.
This figure has been reproduced and adapted from ref. 134 with permission from the Royal Society of Chemistry, copyright 2022.
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model is required to make decisions based on an expected
“reward”, such as maximizing a chosen function. The ASLA is
split between three stages: building, evaluation, and training.
The building stage involves the placement of atoms by the
model one-by-one on a real space grid to generate a structural
candidate. The placement is restricted by a minimum distance
between atoms and dictated by the CNN, which predicts the
expected “reward” received by each atom placement. Within
the ASLA framework, the reward is the minimization of the
internal energy of a candidate structure, where the true energy
is computed by DFT during the evaluation stage. The CNN is
then updated based on the root mean square error between
the expected energy of the generated structure and the DFT-
computed energy. Through this iterative approach, the model
learns to “build” structures of minimal energy without prior
knowledge of the system of interest, at the potential cost of
preforming many DFT calculations. The underlying grid that
the structure is built upon can be empty or populated by
atoms (e.g., for building overlay structures on a specific facet).
The authors demonstrated the capabilities of this approach by
building the p(4 × 4) oxygen overlay structure on an underlying
Ag(111) surface, which was reproduced from experimental
observation by the ASOP framework as discussed previously in
this review.125 Meldgaard et al. expanded the ASLA framework
to 3D predictions of surface reconstructions by increasing the
dimensionality of the CNN.168 The method was verified by
reproducing the minimum energy anatase TiO2(001) (1 × 4)
reconstruction, as observed by STM imaging.150 Meldgaard
then demonstrated the ability to apply transfer learning within
the ASLA approach by reproducing the LEED-observed and
DFT-predicted SnO2(110) (4 × 1) reconstruction,139 starting
from the generation of stable SnO2(110) (1 × 1)
reconstructions.

Conclusions and Perspective

Throughout the previous sections, we have reviewed the appli-
cation of MLIPs for modeling inorganic surfaces. In several
places, high-throughput or automated structure generation,
model training, and analysis workflows were pivotal (e.g.,
DP-GEN,87 Amp,91 AutoSurfRecon,98 ASOP,125 AGOX147).
Automated and publicly available frameworks have been a key
aspect of accelerating the understanding of equilibrium par-
ticle morphologies and surface reconstruction mechanisms
under different environments. Systematic workflow develop-
ment has continued to be a focus of the community with
examples including a recent semi-autonomous workflow,
WhereWulff,151 which takes as input a stable bulk structure
and performs the necessary bulk truncation, first-principles
calculations, and surface optimization to compute Wulff con-
structions, generate Pourbaix diagrams, and preform reactivity
analysis. Other examples exist for producing physics-based
potentials152 performing model finetuning,153,154 and further
exploring surface reconstructions155 bringing improved func-
tionality to the fingertips of those working on surface science.

In addition to lowering the barrier of entry for newcomers to
this field, these (semi-)autonomous frameworks also enable
the magnitude of systematic data generation required for
efficient model training. These large, systematic datasets make
open data repositories paramount for managing and compil-
ing the generated data in a common format to foster more
rapid model training and development and avoid duplication
of efforts. Several projects including OCP,59,60

Crystalium,156–158 Colabfit,159 and NOMAD160 have begun to
fill such roles for subsections of the surface science commu-
nity. Even with open access to the data required to train
MLIPs, exhaustive sampling (particularly in large-scale
systems) becomes intractable due to computational costs.54

This motivates a push to further accelerate energy evaluations
(e.g., lower the inference time of MLIPs).161 Beyond directly
predicting the phase stabilities of inorganic surfaces, MLIPs
open up new possibilities to explore complex problems such as
materials synthesis prediction (where nanoscale effects may be
important),20,162–164 catalyst degradation (which may involve a
complex traversal of many surfaces),165 and heterogeneous
surface interactions (which involve the direct simulation of in-
organic surfaces with gas/liquid environments that are often
relevant to catalysis and other applications).166,167 Overall, the
continued improvement of MLIPs with more data, better
model architectures, improved sampling strategies, and
reduced inference times promises to open new possibilities for
the computational modeling of inorganic surfaces.
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