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High-efficiency electrosynthesis of ammonia
with selective reduction of nitrite over an Ag
nanoparticle-decorated TiO, nanoribbon array+
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Electrochemical nitrite (NO,™) reduction can yield value-added ammonia (NHs) while removing NO,™ as
an environmental pollutant in wastewater; however, it involves a six-electron transfer process and requires
highly efficient and selective electrocatalysts. In this study, we report high-efficiency electrosynthesis of
NH3z via NO,™ reduction enabled by an Ag nanoparticle-decorated TiO, nanoribbon array on a titanium
plate (Ag@TiO,/TP). When tested in 0.1 M NaOH containing 0.1 M NO,™, such Ag@TiO,/TP shows a large
NHs yield of 514.3 pmol h™* cm™ and a high faradaic efficiency of 96.4% at —0.5 V vs. a reversible hydro-
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Ammonia (NH3) is widely applied to manufacture nitrogen fertili-
zers, explosives, chemical products, etc., and it is also considered
as an attractive hydrogen carrier and zero-carbon fuel.'”
Although the Haber-Bosch method realizes industrial NH; syn-
thesis from hydrogen and nitrogen under high temperature and
high pressure, this process is highly energy-intensive and emits a
mass of greenhouse gases.* Electrochemical nitrogen reduction
is thus deemed as a potential alternative to the Haber-Bosch
process for ambient NH; synthesis, although the competitive
hydrogen evolution reaction and unsatisfactory adsorption and
cleavage effects of N, severely hinder the selectivity and activity of
the electrochemical nitrogen reduction reaction.>**

NH; synthesis via electrochemical nitrite (NO, ™) reduction,
in contrast, needs lower energy to cleave the N—O bond with
faster reaction kinetics and achieves higher reaction substrate
concentrations, leading to a larger NH; yield and higher fara-
daic efficiency (FE)."'>'® In addition, excess NO,~ accumu-
lated in groundwater could destroy the ecological balance and
harm human health."” Electrochemical conversion of waste
NO,™ can produce value-added NH; under ambient conditions
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gen electrode. Significantly, it also demonstrates excellent durability for 12 h electrolysis.

and simultaneously remove NO,~, which provides a solution
for restoring the imbalance in the global nitrogen cycle.
However, the electrochemical NO,~ reduction reaction
(NO,"RR) involves a complex six-electron pathway with various
possible by-products (N,H,, N,, and H,), thus requiring highly
active catalysts for selective NO, -to-NH; conversion.'®%’

Noble metal (Au,”® Pd,*®*° Ru,* Ir,*" Pt’*)-based catalysts
are active for the NO, RR, but their scarcity hinders large-scale
applications. Compared with the above noble metals, Ag is
relatively low in price and high in abundance, and it also per-
forms efficiently in NO,~ reduction electrocatalysis.>® As an
Earth-abundant transition metal oxide with high chemical and
structural stability, TiO, is widely used as a support to load
noble metal nanoparticles for catalysis applications.**° Our
recent studies also suggest that it is active for the NO,"RR and
its activity can be enhanced by introducing oxygen vacancies*’
and P doping."’ We believe that TiO, could be an ideal
support for Ag nanoparticles for an enhanced NO, -to-NH;
conversion performance with much less usage of noble
metals, which, however, has not been reported to date.

In this study, we constructed an Ag nanoparticle-decorated
TiO, nanoribbon array on a titanium plate (Ag@TiO,/TP) as a
highly selective NO, RR catalyst for NH; synthesis. When
tested in NO, -containing solution, Ag@TiO,/TP is capable of
delivering a large NH; yield of 514.3 pmol h™" ecm™ with a
high FE of 96.4% at —0.5 V vs. a reversible hydrogen electrode
(RHE). Furthermore, Ag@TiO,/TP exhibits robust stability for
long-term electrolysis.

As shown in Fig. 1a, Ag@TiO,/TP was synthesized through
a hydrothermal method in an alkaline solution, Ag" exchange,
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Fig. 1 (a) Schematic illustration of the fabrication process of Ag@TiO,/
TP. (b) XRD pattern and (c) and (d) SEM images of Ag@TiO,/TP. (e) SEM
and corresponding elemental mapping images of Ag@TiO,/TP. (f) TEM
and (g) HRTEM images of Ag@TiO,.

and an annealing process under an Ar/H, atmosphere (see the
ESIt for details). Fig. 1b depicts the X-ray diffraction (XRD)
pattern of Ag@TiO,/TP. The diffraction peaks at 38.15°, 44.30°,
64.43°, and 77.50° correspond to the (111), (200), (220), and
(311) lattice planes of Ag, respectively (JCPDS No. 04-0783),*
while the other diffraction peaks can be assigned to metallic
Ti (JCPDS No. 44-1294) and TiO, (JCPDS No. 21-1272), and
these are in accordance with those for TiO,/TP (Fig. S17). As
depicted in Fig. S2 and S3,T the scanning electron microscopy
(SEM) images show that the TiO, nanoribbon array was grown
on TP. With regard to Ag@TiO,/TP, plenty of nanoparticles are
decorated on the surface of the TiO, nanoribbon (Fig. 1c and
d). Additionally, the SEM image and corresponding energy-dis-
persive X-ray (EDX) elemental mapping images of Ag@TiO,/TP
confirm the existence of Ag, Ti, and O elements with a homo-
geneous distribution (Fig. 1e). Furthermore, the result of the
EDX spectrum confirms that the Ag content in Ag@TiO,/TP is
approximately 13.63% (Fig. S47). The transmission electron
microscopy (TEM) image also provides evidence of the for-
mation of a large number of nanoparticles without agglomera-
tion on the nanoribbon, as shown in Fig. 1f. A high-resolution
TEM (HRTEM) image taken from one such nanoparticle dis-
plays a lattice spacing of 0.236 nm indexed to the (111) plane
of Ag (Fig. 1g). All these observations confirm the successful
fabrication of an Ag nanoparticle-decorated TiO, nanoribbon
array.

The X-ray photoelectron spectroscopy (XPS) survey spectrum
(Fig. 2a) also shows the presence of Ag, O, and Ti elements.
The Ag 3d region spectrum (Fig. 2b) is divided into two peaks
at 368.28 and 374.28 eV, which are ascribed to Ag 3ds/, and Ag
3ds),, respectively.*>*® In the Ti 2p spectrum, two fitting peaks
at 459.38 and 465.08 eV are assigned to Ti 2pz, and Ti 2py,,
respectively (Fig. 2¢).**> In addition, two fitting peaks in the
O 1s spectrum are attributed to metal-oxygen bonds (M-O,
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Fig. 2 (a) XPS survey spectrum, and high resolution XPS spectra in the
(b) Ag 3d, (c) Ti 2p, and (d) O 1s regions of Ag@TiO,.

530.78 eV) and adsorbed surface hydroxyl groups (M-OH,
533.18 eV) (Fig. 2d).*>*

The electrochemical experiments of Ag@TiO,/TP, Ag/TP, and
TiO,/TP toward the NO, RR were implemented in Ar-saturated
NO, -free and NO, -containing 0.1 M NaOH electrolytes. UV-
vis spectra and related calibration curves are depicted in Fig. S5
and S6.1 Linear scanning voltammetry (LSV) of Ag@TiO,/TP
was firstly conducted. Obviously, a markedly enhanced current
density (j) emerges upon the addition of NO,~ (Fig. 3a), verify-
ing that Ag@TiO,/TP enables efficient NO,~ reduction. In com-
parison, Ag/TP and TiO,/TP display lower j with NO, -contain-
ing electrolytes (Fig. S71), confirming that the electrocatalytic
NO, RR activity of Ag@TiO,/TP is superior to those of Ag/TP
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Fig. 3 (a) LSV curves of Ag@TiO,/TP in 0.1 M NaOH with/without 0.1 M
NO,™. (b) UV-vis spectra of Ag@TiO,/TP at various potentials. (c) NH3
yields and FEs of Ag@TiO,/TP at various potentials. (d) Comparison of
NH; yields and FEs of Ag@TiO,/TP, TiO,/TP, and Ag/TP at —0.5 V.
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and TiO,/TP. Chronoamperometry (CA) measurements at given
potentials (from —0.2 V to —0.7 V) were then executed to study
the NH;-generation ability of Ag@TiO,/TP (Fig. S8%), where the
peak intensity of the relevant UV-vis spectra strengthens with
an increase in the given potential (Fig. 3b), manifesting that a
more negative potential results in more NH;. Furthermore, we
evaluated NH; FEs and yields of Ag@TiO,/TP in test windows
(Fig. 3c). Noticeably, as the cathode potential negatively shifts,
the NH; yields of Ag@TiO,/TP progressively increase, and even-
tually the largest value of 846.3 pmol h™" em™ (14 387.1 pg h™"
em™2) at —0.7 V is obtained. Furthermore, the maximum FE of
NH; production is 96.4% at —0.5 V with an NH; yield of
514.3 pmol h™" em™> (8743.1 pg h™" em™?), confirming an excel-
lent NO, RR electrocatalyst. The NH; yields and FEs of
Ag@TiO,/TP exceed those of most reported NO, RR electrocata-
lysts (Table S17). As shown in Fig. 3d, Ag@TiO,/TP exhibits a
much better performance than Ag/TP (77.38%, 228.5 pmol h™"
cm?) and TiO,/TP (70.8%, 190.9 pmol h™ cm™2).

The NO,™ reduction process of Ag@TiO,/TP was further
assessed by quantifying various by-products (N,H,, H,, and
N,). As exhibited in Fig. S9,1 no N,H, signals were monitored
as was proved by identical UV-vis absorption spectral peaks at
different potentials. Meanwhile, traces of H, and N, were
detected (Fig. 4a) with the maximal H, and N, yields being
2.82 pmol h™" em™? and 1.85 pmol h™' em™2, with FEs of 4.9%
and 1.42%, respectively, much lower than that of NH; at every
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Fig. 4 (a) Yields and FEs of N, and H, of Ag@TiO,/TP at different
potentials. (b) jpariae Of NHz, Ny, and H, of Ag@TiO,/TP at different
potentials. (c) NH3 yields and FEs of Ag@TiO,/TP during the alternating
cycling tests. (d) Time-dependent current density curve during 12 h
electrolysis of Ag@TiO,/TP at —0.5 V. (e) Recycling tests of Ag@TiO,/TP
at -0.5V.
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potential, verifying the superb selectivity of such Ag@TiO,/TP
electrocatalysts for NH; synthesis. Furthermore, the partial
current densities (jpartai) Of Ag@TiO,/TP for NH; reach
-122.1 mA em™? at —0.7 V, clearly higher than that of H,
(-4.1 mA cm™®) and N, (-1.04 mA cm™?) (Fig. 4b), again
proving great NO, RR selectivity towards NH; electrosynthesis.
Control experiments were then performed to determine
whether the synthesized NH; just comes from the NO, RR on
Ag@TiO,/TP. 1t is clearly seen that the amounts of NH; gener-
ated after 1 h of electrolysis in a blank solution (0.29 pg) and
open circuit potential (OCP, 0.66 pg) are extremely small
(Fig. S10t), which excludes possible interference factors from
the electrolytic solution and device.

Six alternative-cycle measurements were then carried out in
NO, -free/NO, -containing electrolytes at —0.5 V, and NH;
only is generated in NO, -containing electrolytes (Fig. 4c),
demonstrating that NH; just originates from NO,” via the
NO, RR on Ag@TiO,/TP. Additionally, stability is an extremely
important parameter of the NO, RR process for NH; synthesis.
We thus implemented a 12 h electrolysis test, as displayed in
Fig. 4d, and the Ag@TiO,/TP electrode maintained an initial j
of nearly 100% with almost no fluctuation, confirming the
excellent tolerance of our catalyst. Furthermore, we carried out
8 consecutive measurements on Ag@TiO,/TP at —0.5 V, and
the volatility of NH; yields and FEs was negligible, again
proving the durability of Ag@TiO,/TP (Fig. 4e and S11%),
which is also in good accordance with the LSV curve
(Fig. S121), XRD pattern (Fig. S13t), and SEM images
(Fig. S147) of Ag@TiO,/TP after long-term electrolysis. These
results suggest that Ag@TiO,/TP has excellent stability for the
electrocatalytic reduction of NO,™ to NH;.

In summary, a Ag nanoparticle-decorated TiO, nanoribbon
array is proved to be an efficient and stable NO, RR catalyst
for NO, -to-NH; conversion in an alkaline electrolyte, produ-
cing a remarkable NH; yield of 8743.1 pg h™' cm™ with a
large FE of 96.4%. This study not only offers a highly selective
electrocatalyst for ambient NH; synthesis via NO,™~ reduction,
but also opens up a new avenue to construct a nanostructured
Ag/TiO, hybrid array for applications.
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