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Introduction to CO2 capture and conversion
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An introduction to the Nanoscale themed collection on CO2 capture and conversion, featuring exciting

research on advanced nanoscale materials and reactions.

Greenhouse gases such as carbon
dioxide (CO2), methane, nitrous oxide,
and fluorinated gases (hydrofluorocar-
bons, sulfur hexafluoride, nitrogen tri-
fluoride, perfluorocarbons) are entering
the atmosphere in different quantities as
a result of anthropogenic agricultural and
industrial activities. All these gases can
trap heat in the atmosphere resulting in
global warming. Despite CO2 having the
lowest global warming potential (GWP),1

a measure used to compare the abilities
of different gases to trap heat in the atmo-
sphere, it is the most significant green-
house gas because of its longevity in the
atmosphere and the enormous amount
released into the atmosphere as a result
of large scale burning of fossil fuels for
energy and manufacturing uses. The
potential impact from CO2 emitted to the
atmosphere could linger for much longer
than that of other greenhouse gasses.2

The correlation between the increase in
atmospheric CO2 and higher surface temp-

erature was first proposed by Arrhenius in
1896.3,4 In 1938, Callendar demonstrated
that the Earth’s land surface was warming
and attributed this phenomenon to the
production of CO2 by the combustion of
fossil fuels.4 In 1971, Sawyer raised the
concern that mass discharge of CO2 from
human activities could affect the heat
balance of the Earth.5

There were about 34.9 Gt CO2 emitted
in 2021.6 The sustainable natural ways of
sequestering CO2 from the atmosphere
through photosynthesis by plants, car-
bonate formation via CO2 binding with
minerals and adsorption of CO2 by water
can provide 37% CO2 mitigation needed
through 2030 for a >66% chance of
holding warming to below 2 °C.7 While
forestlands, swamps, soils and oceans
can partially remedy the adverse effects
of the released CO2, they cannot combat
climate change. In addition, the elevated
levels of CO2 can affect photosynthesis,
carbon partitioning,8 and acidification
of oceans.9 Therefore, deep decarboniza-
tion of the global economy is required
for realization of both the 2.0 °C and
1.5 °C scenarios9 that restrict warming
to 2.0 °C or 1.5 °C above preindustrial
levels in order to mitigate the most
dangerous and irreversible effects of
climate change. This will require both
climate policy reinforcements10 and
innovation in materials design and
technologies. However, since major
changes in industrial practices and
human behavior are not expected to
occur in the next few decades,11 scienti-
fic breakthroughs in CO2 capture, con-
version, storage, and utilization are the
most promising game-changers that can

alter the trajectory of rapid deterioration
of the global environment.

One of the biggest obstacles in CO2

mitigation is its capture from dilute
sources.12 CO2 capture from dilute sources
using advanced sorbents and its further
conversion into carbon-based chemicals
and fuels is recognized as a necessary step
in addressing the continuous increase in
CO2 release into the atmosphere. Currently
implemented large scale post-combustion
amine scrubbing technology13 based on
formation of carbonate salts with amines
suffers from a few drawbacks such as high
consumption of water, degradation of sol-
vents and corrosion of the equipment.
High surface area sorbents, including
macromolecule structures, are currently
being explored as a class of materials to
replace amine scrubbing technology.

While CO2 utilization as a feedstock can
be seen as a cleaner alternative to hydro-
carbons in industrial or chemical pro-
cesses,14 its successful implementation at
scale faces economic challenges. The issue
is that CO2 is a highly stable molecule that
requires significant energy input for CO2

valorization. For example, dry methane
reforming, a conversion process of carbon
dioxide and methane (the two main gases
responsible for global warming) known
since 1928,15 can play an important role in
meeting global energy and climate goals.16

However, catalytic dry methane reforming
takes place at very high temperatures and
high pressures which challenges the stabi-
lity of the catalysts. The water–gas shift17

and lower temperature Sabatier18 reactions
producing carbon monoxide and methane
(lower value), respectively, from the reaction
of CO2 with hydrogen have attracted
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renewed interest as possible processes for
mitigation of CO2.

17,19 These reactions also
require high temperatures and restriction
of the production of undesired products.
More active, stable, and selective catalysts
are needed to make CO2 valorization
through thermochemical routes become an
economically suitable technology at scale.

Upgrading CO2 to hydrocarbons
using renewable energy sources is a
promising solution for closing the
carbon cycle. The chemical and physical
principles of heterogeneous photo-
catalytic CO2 transformation are rather
well understood; however, significant
improvements in the efficiency of opto-
chemical engineering of CO2 photocata-
lysis at scale are required.20 Photoactive
catalysts can also be designed from
enzymes and bio-organisms such as
algae and bacteria. Electrochemical
transformation of CO2 into hydro-
carbons is another attractive carbon net-
zero process as the electricity required to
catalyze the process can be easily
obtained from renewable sources.21,22

Understanding CO2 capture and con-
version has been essential in our efforts
to build a carbon neutral/negative
society and to achieve energy sustainabil-
ity. Recent studies have shown that CO2

can be captured from industrial waste in
more energy efficient manners and be
converted more selectively via various
catalytic processes to reusable chemicals
and fuels. This themed issue invites
experts in the field to publicize the latest
state-of-the-art progress they have made
in CO2 capture and conversion. Their
work focuses on selective CO2 capture via
carbonate formation, and CO2/carbonate
conversion via thermochemical, electro-
chemical, photochemical, and biological
means to reusable forms of carbon. The
collection also includes papers aiming to
understand structure–property correlation
to further improve the capture and con-
version efficiencies. We hope you enjoy
reading these articles and find them
useful in your on-going endeavors in CO2

capture and conversion.
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