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Emerging memristive artificial neuron and synapse
devices for the neuromorphic electronics era

Jiayi Li, a Haider Abbas, a Diing Shenp Ang, *a Asif Alia and Xin Ju b

Growth of data eases the way to access the world but requires increasing amounts of energy to store

and process. Neuromorphic electronics has emerged in the last decade, inspired by biological neurons

and synapses, with in-memory computing ability, extenuating the ‘von Neumann bottleneck’ between

the memory and processor and offering a promising solution to reduce the efforts both in data storage

and processing, thanks to their multi-bit non-volatility, biology-emulated characteristics, and silicon

compatibility. This work reviews the recent advances in emerging memristive devices for artificial neuron

and synapse applications, including memory and data-processing ability: the physics and characteristics

are discussed first, i.e., valence changing, electrochemical metallization, phase changing, interfaced-

controlling, charge-trapping, ferroelectric tunnelling, and spin-transfer torquing. Next, we propose a

universal benchmark for the artificial synapse and neuron devices on spiking energy consumption,

standby power consumption, and spike timing. Based on the benchmark, we address the challenges,

suggest the guidelines for intra-device and inter-device design, and provide an outlook for the

neuromorphic applications of resistive switching-based artificial neuron and synapse devices.

1. Introduction

Ever since the conception of the McCulloch–Pitts neuron1 and
perceptron2 models in the middle of the 20th century, artificial

intelligence (AI) or artificial neural network (ANN) has largely
remained a computer science terminology. Progress in the latter
part of the century was hampered by the lack of computational
power. Integrated circuit fabrication in the 1980–2000 period did
not allow a high-density integration of transistors on a single
processor and memory chip. Therefore, running simulations on a
deep neural network (DNN) or a deep convolutional neural net-
work (DCNN)3 and storing exponentially accumulated data were
impractical in terms of time and energy costs even though ANN
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models were already relatively well established at that time.4–10

With increased chip density and the advent of multi-core proces-
sors such as the graphics processing unit (GPU) brought by the
pursuit of Moore’s law, coupled with more efficient ANN
algorithms,3,11,12 the computational power bottleneck was success-
fully resolved at the beginning of this century. In 2012, a DNN with
a billion connections was shown to be able to recognize highly
conceptual objects such as a cat and the human body.13 In the
same year, the DNN was shown to be on par with humans in terms
of image classification accuracy (based on the MNIST database)
and it even outperformed humans in traffic sign recognition.14

Introduced by Maass in 1995,15,16 spiking neural networks (SNNs)
employ spiking neurons, also known as leaky integrate-and-fire
(LIF) neurons, to compute. SNNs are regarded as the third genera-
tion ANN model classified by computational units, where the first
generation is marked by the MCP model and the second is
characterized with feedforward and recurrent sigmoidal neural
nets, such as a rectified linear unit (ReLU), as well as networks of

radial basis function units.17 The substantial difference between
the second and third generation, as concluded by Roy et al.,18 lies
in the dynamics of the signal: SNNs rely on the temporal dynamics
(frequency and interval) of the binary incoming spikes, whereas the
former uses the spatial dynamics (amplitude) of the signal.

In recent years, researchers have focussed intently on imple-
menting the SNN computing model on the current computa-
tional architecture (von Neumann architecture) and
demonstrated excellent performance in visual and audio
processing.19–29 In this regard, it is worth carrying out more
comprehensive reviews on the emerging SNN software.18,30

However, like DNNs or CNNs, these are typically algorithms
implementing different computational cores under conven-
tional von Neumann architecture computing units, which limit
the potential of the SNN for separating computation, transmis-
sion, and storage of the data. As in the brain, which the SNN
dedicates to mimic, nerve cells and synapses not only transmit
the signal electrically (spikes along axons) and chemically
(neurotransmitters in synapses), but learn, compute, and mem-
orize as well.

At this juncture, the AI community is confronted with
another major challenge – the von Neumann bottleneck. This
issue arises from the physically separated processor and mem-
ory units in the modern-day computer. While such an archi-
tecture could turnaround, in a relatively short time, a general
computational job involving low data exchange between the
processor and memory, it suffers from considerable time and
energy overheads when executing computationally intensive
ANN algorithms. The iterative and recursive nature of such
algorithms results in a massive data exchange between the
serially interfaced processor and memory, creating therefore a
speed bottleneck. While outstanding algorithm optimization
work by computer scientists31,32 has offered some respite,
innovative hardware solutions are now deemed mandatory in
view of the imminent data explosion in the current internet-of-
things era.

Asif Ali

Dr Asif Ali obtained his BS degree in
electronics from Comsats University
Islamabad, Pakistan. He obtained
his MS degree in Electronic
Engineering from Myongji
University, South Korea in 2017
and his PhD degree in
Nanotechnology and Advanced
Materials Engineering from Sejong
University, South Korea in 2021. He
has joined School of Electrical and
Electronic Engineering, Nanyang
Technological University as a
research fellow since then. His

current research interests are focused on memristive devices and low
dimensional semiconductor materials.

Xin Ju

Dr Xin Ju received his BEng degree
in electronics science and
technology from Tianjin University,
Tianjin, China, in 2013, MS degree
in microelectronics from Peking
University, Beijing, China, in 2017,
and PhD from Nanyang Techno-
logical University, Singapore in
2021. He is currently a Research
Scientist in the 2D Semiconductor
Materials and Devices group at the
Institute of Materials Research and
Engineering (IMRE). His research
interests focus on next-generation

nanoscale transistor and memory technologies, low dimensional
semiconductor materials (e.g., 2D TMDCs), and characterization of
the reliability and variability of novel electronic devices and their
applications in artificial intelligence.

Diing Shenp Ang

Prof. Diing Shenp Ang obtained his
PhD degree in electrical engineering
from the National University of
Singapore. At present, he is a
tenured faculty member in the
School of Electrical and Electronic
Engineering, Nanyang Techno-
logical University, Singapore.
Earlier, he had conducted research
on front end CMOS reliability. His
current research interests are
focused on the development of
neuromorphic building blocks,
resistive switching devices for

storage class memory and radio frequency switch applications.

Review Nanoscale Horizons

Pu
bl

is
he

d 
on

 0
7 

8 
20

23
. D

ow
nl

oa
de

d 
on

 2
02

4-
06

-2
9 

 1
0:

05
:4

2.
 

View Article Online

https://doi.org/10.1039/d3nh00180f


1458 |  Nanoscale Horiz., 2023, 8, 1456–1484 This journal is © The Royal Society of Chemistry 2023

The capability of the human brain in processing massive
amounts of data in real time at a minute fraction of the energy
cost of the most advanced computers has continued to amaze
neuroscientists. In the pursuit of an efficient hardware plat-
form for ANNs, the human brain therefore naturally serves as
the golden guide. Attempts to extend existing digital circuit
design methodologies to mimic the functionality of neurons
and synapses in the biological neural network (CMOS-
based SNN) have proven futile because of the large footprints
and high energy cost of the resultant circuitries.33–35 Thus,
the last few years have seen an intensive amount of research
effort being directed toward developing alternative building
blocks, commonly termed neuromorphic devices, that are
both size and energy efficient, dedicated for implementing a
neuromorphic-device-based SNN, the scope of which was
reviewed by Marković et al. who discussed the underlying
physics,36 Wang et al. who examined the material
dependencies,37 and Zhang et al. who investigated the chip
level implementation.38 Their works have envisioned a frame-
work of the neuromorphic computing system, where neuro-
morphic devices will be the foundation.

Therefore, this review paper focuses on and summarizes
recent major progress in building block neuromorphic devices.
As similarly employed by Demise et al., terms ‘‘neuroscience’’
and ‘‘AI’’ are used to differentiate the biological/artificial
intelligence,30 we carefully use ‘‘biological’’ for discussions on
the study of the brain, biological neurons and synapses, and
their relative behaviours and the term ‘‘neuromorphic’’ for
discussions in the domain of electronic devices dedicated to
emulate the function of the brain, and biomaterial is not within
the scope of this work. This review is organized as follows: in
Section II, we review the basic operation of the biological neural
network. Since the exact function of the brain is still a subject
of continuing research, only essential concepts that underpin
current efforts towards a neuromorphic computer are empha-
sized. Section III details strategies that have been adopted in
the current transition phase from von Neumann to a fully
neuromorphic architecture. In Section IV, we compare various
promising neuromorphic memristive candidates for artificial
neurons and synapses. These devices are benchmarked accord-
ing to their action energy and standby power consumption and
spike timing. Section V concludes and presents challenges that
remain to be tackled in this major shift in the computing
paradigm, highlights potential guidelines for device design,
and provides an outlook on the promising neural network level
applications.

2. Biological neural network

This section describes the building blocks of a biological neural
network and its fundamental roles and functions in the cogni-
tive ability of living species. Although how exactly cognition
develops is a major question to be answered, some basic
principles have closely guided our current efforts in neuro-
morphic engineering.

A. Basic functions of the biological neuron

Unlike in a von Neumann computer where a clear partition
exists between the processor and memory, a biological
neural network comprises a massive, distributed network of
neurons,39 which serve as the basic ‘‘computational units’’. A
neuron receives input signals (data), in the form of voltage
spikes or action potentials, from neighbouring neurons via
synaptic junctions formed between axons of the transmitting
(or pre-synaptic) neurons and dendrites of the receiving (or
post-synaptic) neuron (Fig. 1a–c). A voltage spike arriving at the
axon-end of a synapse triggers an ionic current, comprising
sodium ions, that flows into the post-synaptic neuron. This in
turn depolarizes the neuron, i.e., causes its membrane
potential to increase positively from its negative rest level. As
depicted in Fig. 1d, when enough stimulation (VIN) is received
by a neuron, its membrane potential rises sharply (VMEM), and
this triggers a voltage spike (VOUT) down its axons to other
downstream neurons. After the ‘‘firing’’ of a voltage spike, the
inflow of sodium current ceases and other channels open to
allow an outflux of potassium ions from the neuron. This
returns or resets the membrane potential to a negative rest
level.40

In 1943, McCulloch and Pitts captured the accumulative
function of the biological neuron that led to the eventual firing
of an action potential into a mathematical model known as the
McCulloch–Pitts neuron,1 which was the first spiking neuron
model ever proposed. In 1952, Hodgkin and Huxley presented a
comprehensive analysis of the dynamics of membrane
potential under the concerted actuation of multiple ion
channels.41 However, the resultant model, comprising several
differential equations, is too complex. Some neuron modelling
work, therefore, focused on simplicity, representing the overall
function using lumped circuit components, e.g., the integrate-
and-fire neuron42 (described by a membrane capacitance C)
and improved leaky integrate-and-fire or LIF neuron43–45

(described by a parallel RC circuit). In the LIF neuron model,
the shunt resistor R is used to account for the loss of ionic
charge from the neuron in-between voltage spikes. Another
noteworthy model is the adaptive exponential integrate-and-fire
neuron,46–48 capable of describing numerous known firing
patterns, e.g., bursting, delayed spike initiation, fast spiking,
etc. A comprehensive review on different neuron models can be
found in Burkitt et al.49

B. Basic function of the biological synapse

A von Neumann computer always requires the same amount of
time to compute identical or similar data. In contrast, the brain
is well known for its ability to learn and can subsequently
process similar information in a much shorter time. Although
the exact manner by which learning or cognition occurs in
the brain remains an open question, this capability has been
widely attributed to the synapses across which neurons
communicate.39,50–52 During learning, it is believed that synap-
tic junctions throughout the biological neural network are
selectively strengthened or weakened. This process creates a
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‘‘memory map’’ comprising a subset of strongly connected
neurons responsible for subsequent fast processing and pro-
pagation of similar data through the network.

Synapses may be classified into two categories, namely
chemical and electrical40 (Fig. 1b and c). At an electrical
synapse, an incoming voltage spike creates a potential

Fig. 1 Building blocks of biological neurons and synapses. (a)–(c) Neurons and synapses including the basic structures of common neuron cell (a) and
the synapses (b) and (c), where the chemical synapse (b) and electrical synapse (c) are responsible for signal transmission between neurons. (d) LIF neuron
model. The neuron could fire a voltage spike after integrating several input voltage spikes and return to rest or off state. The input spikes (VIN) are
expected to be larger than the operating threshold of the circuit to start the integration (VMEM) and generate the output (VOUT). (e)–(g), Synaptic functions:
STDP (e), LTP and LTD (f), and STP and STD (g). For spiking-time dependent plasticity (STDP) in (e), the device conductance is modulated by the timing
difference of input pre-synaptic spikes and the back propagation of post-synaptic spikes (insets of c), Dt. The larger Dt is, the smaller effect on the device
conductance will be and vice versa. For long term potentiation and depression (LTP and LTD) in (f), device conductance changes with the consecutive
input pulses (insets of f) and the initial, final, and intermediate states are stable. For short term potentiation and depression (STP and STD) in g, device
conductance is modulated by a single or several pulses without permanent change on the conductance. Credits: (a)–(c) are reproduced under a Creative
Commons Attribution (CC-BY) license; (d) is reproduced under Creative Commons Attribution (CC-BY) license from ref. 53, copyright Rozenberg et al.
2019 Springer Nature.
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difference between the pre- and post-synaptic neurons and
directly induces the flow of a sodium ionic current through
the pores or intercellular channels that extend across the
synaptic cleft54,55 (Fig. 1c). An electrical synapse can be either
unidirectional or bidirectional and has a high transmission
speed since the passive current flow across the gap junction is
practically instantaneous. The purpose of electrical synapses is
to synchronize the firing of a group of neurons to generate a
strong stimulus that in turn triggers a crucial response, e.g., a
lifesaving reaction. On the other hand, a chemical synapse
responds to an action potential via the release of neurotrans-
mitters. Unlike the electrical synapse, a chemical synapse does
not have intercellular continuity across the synaptic cleft
(Fig. 1b). When neurotransmitters that randomly diffuse across
the gap junction are received at the receptor sites on the post-
synaptic neuron, ion channels open to allow an inflow of
sodium ions that in turn raise the membrane potential of the
post-synaptic neuron. Due to the lack of direct transmission
paths between the pre- and post-synaptic neurons, the response
of a chemical synapse is much slower compared to the elec-
trical counterpart.

Biological synapses modulate the flow of signals across the
biological neural network and are believed to play the role of
memory formation in the learning process.40 A strong synaptic
connection between two neurons allows almost the entire
action potential from the pre-synaptic neuron to be transmitted
to the post. On the other hand, a weak synaptic connection
suppresses the impact of an action potential on the post-
synaptic neuron. Here, we outline a widely accepted theory,
known as the Hebbian learning rule,56 which stipulates how the
synaptic strength between neurons evolves during the learning
process. This rule has thus far closely guided efforts in neuro-
morphic device development and may be summarized as
follows. If a post-synaptic neuron fires a voltage spike after
the pre, the latter is said to have directly influenced the
depolarization of the former, and the synaptic strength is
increased according to the time delay (Dt) between the two
firing events (Fig. 1e). The increase is most significant when
Dt B 0, i.e., the post-synaptic neuron fires almost immediately
after the pre. Conversely, the synaptic strength is reduced if the
post-synaptic neuron fires before the pre, i.e., Dt o 0. These
synaptic changes linked to the relative timing difference in the
firing of the pre- and post-synaptic neurons are widely coined
as spiking-time dependent plasticity (STDP).57–66

When there is consecutive firing of pre-/post-synaptic neu-
rons, which may also be referred as excitatory/inhibitory spik-
ing events, the synapse would progress towards long-term
potentiation (LTP) or depression (LTD), as shown in Fig. 1f,
respectively, for excitatory or inhibitory events, with the degree
of the change depending on the time difference between the
pre- and post-synaptic neuron spikes. In 1992, Dan and Poo
proved in biological neuromuscular synapses that immediate
and long-term depression happens when the postsynaptic
pulses alone or the pre-synaptic spike is asynchronous, whereas
synchronous pre- and postsynaptic spikes have no effects.59

To be precise, the synapse will be weakened if there are only

post-synaptic spikes, or the pre-synaptic spikes happen only
after the post-synaptic spikes. Such a biological observation was
then confirmed by Debanne et al. in a hippocampal slice two
years later.60 Afterwards, it was also found in rat hippocampal
neurons that LTP happens if repetitive post-synaptic spikes
occur within 20 ms of the pre-synaptic activation.62

Alternatively, when only one or a few such events happen,
the STDP rule will simplify to short-term potentiation (STP) or
depression (STD), as shown in Fig. 1g, which shows the change
from rest potential to action potential and back to rest potential
on neuron membranes, without persistent change in the
synaptic strength. Therefore, the major difference between
short-term potentiation/depression and long-term potentia-
tion/depression lies in whether the synaptic plasticity is perma-
nently changed during the spiking activities.

3. Strategies in current transition
towards neuromorphic computing
ANN and SNN

The difference between existing ANN and emerging SNN should
be addressed in the context of this review, due to the ambiguity
of the terms used for describing them. As the name suggests,
artificial neural networks include any neural network that is
man-made, however, it should be made clear, as it has been
introduced that SNN has established itself as the third genera-
tion of ANN because of its time-dependent spiking computa-
tional unit.18 Herein, in the context of this review, any artificial
neural networks that are not spiking neural networks will be
concluded as (traditional) ANN, and we separate the SNN for
the ease of discussion. Fig. 2 adapted from ref. 67 elucidates the
difference well. As shown in Fig. 2a, the inputs of ANNs are
usually a vector X, with a vector weight gain W by a synapse
multiplicator, then integrated and activated to generate the
output. The inputs of the SNN, however, are unipolar time-
dependent spike trains weighted by synapses and activated by
neurons. The synaptic weighting and neuron activating in the
SNN leverage on STDP and LIF, respectively, as described in the
earlier section. Further difference in implementation is then
illustrated in Fig. 2b that by using STDP, the time-dependent
unipolar trains in the SNN are interpreted as the analogous
weights stored in the synapses and then used for exciting or
inhibiting the post-synapse neurons, in clear comparison to the
ANN method that uses discrete numbers stored in the digital
memory and computed by the arithmetic logic unit in the
processor for countless multiply-and-accumulate (MAC) opera-
tions, followed by a non-linear activation for the final result.

Neuromorphic computing is generally summarized as the
electronic implementation of human-brain inspired comput-
ing. In the context of this review, neuromorphic computing,
however, only refers to the SNN implemented by emerging
synapse and neuron devices. The ANN has diverged from the
perceptron so much that there is no similarity between the
biological neural networks, except that it borrows some ter-
minologies from biological neuron illustrated in the above
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sections. Furthermore, the physical level implementation of the
ANN and SNN shown in Fig. 2b made the statement more clear.
The existing software-based ANN is performed entirely on a
processor with numerous data exchanges between the memory
and processor, either or both of which is bottlenecked in the
current development. The hardware-based ANN enabled by in-
memory computing (IMC) extenuates the load of memory,
processor, and the bus between them; therefore reduces the
power consumption, accelerates the speed, and eases the
burden of IC design. However, the hardware-based ANN emu-
lates the brain’s functionality in a way that there is no clear
distinction between the memory and computing as the von
Neumann architecture has. The basic operation resembles the
software ANN still. Hardware SNN uses artificial neurons and
synapses as the basic computational unit, in the most distinc-
tive way that no actual numbers are passed between any part of
the network except for unipolar spikes generated by neurons,
which is the exact emulation of the biological neural network.

Hardware ANN: in-memory computing

Although they do not yet yield a complete neuromorphic
system, in recent years, various notable hardware-based ANN
approaches have been proposed for addressing the as-

described von Neumann bottleneck.68–71 These approaches
are primarily aimed at boosting computational speed (thus
data throughput) by performing MAC, a typical unit of the
CNN algorithm, within the memory storage. Known as the IMC
approach, or the vector-matrix multiplication (VMM) machine
shown in Fig. 3a and b, this computational method reduces the
transfer of data between the processor and memory. For
example, Sony’s IMX500 intelligent vision system,72 announced
in mid-2020, is a systems-in-package AI-vision solution that
features a CMOS image sensor stacked on top of a digital signal
processor customized for performing computation within the
SRAM. The product offers two operational modes; a high-
resolution picture mode for human viewing and an AI inference
mode where the image is down-sampled and analysed using
MobileNet at B3 ms per frame.72 Li et al. proposed an analogue
spectrum analyser73 with a resistive random-access memory
(RRAM) array. The input voltage signal with different frequen-
cies (Fig. 3c) after multiplication with the conductance weights
in the array could be transformed into a current signal that
passes in certain cells (Fig. 3d). They performed 2D-discrete
cosine transform (2D-DCT), an image processing/compression
method to rearrange the pixels in the frequency domain, with
their VMM machine to encode the image (Fig. 3e) and compare

Fig. 2 ANN and SNN: comparison and implementation. (a) Computational units of traditional ANN models and emerging SNN neuron models, where W
denotes the synaptic weight, X denotes the input activation, S is the integration function, and f is the activation function. (b) Implementation of ANN and
SNN neurons. ANN is implemented as a software algorithm with computational speed boosted using in-memory computing. SNN, on the other hand,
requires emerging artificial neuron and synapse devices to function as time-dependent computing units. Credits: Adapted with permission from ref. 67,
copyright 2019, Springer Nature.
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with the software (Fig. 3f), in which the distortion to human
perception is negligible. Zidan et al., using a similar strategy,
implemented an RRAM-based analogue Poisson equation
solver.74 Likely, Oh et al. used RRAM to perform MAC and used
Mott activation neurons75 to emulate rectified linear unit
(ReLU) activation function to achieve edge detection of images.

Another IMC approach, proposed by Yao et al.,68 leveraged
on the multiplicative and additive nature of Ohm’s law and
Kirchhoff’s current law, respectively. It deployed a crossbar
array of resistive memory cells wherein MAC computation
was carried out. In an RRAM cell, the resistance or conductance
of a sandwiched insulator layer can be modified electrically and
the change is usually rendered non-volatile for storage applica-
tion. In Yao’s work, the resistances of RRAM cells in each
crossbar array denoted the optimized weights of a CNN kernel
derived from offline training. Image pixels were converted to
corresponding voltages and applied to the RRAM cells to realize
the CNN convolution, with the results represented by the
summed current of the array. The computational performance
was benchmarked against Tesla’s V10076 GPU and more than

two orders of magnitude better power efficiency and one order
of magnitude better performance density were observed.

While most IMC applications focused on image processing,
some unleashed MAC ability for the linear and partial equation
solver. For example, Fig. 3g shows Gallo et al.’s work on 1
million PCM devices for a linear equation solver, used for
partial gene correlation estimation in studies of cancer and
normal tissues.

Admittedly, there are far more simulation works using
RRAM for IMC than using physical arrays. However, the physi-
cal system is rather realistic, complicated, and interesting.
Here, in addition to the above-mentioned works, Table 1 sum-
marizes some of the on-array implementation of IMC using
RRAM and FLASH and this may be useful for future inspiration.

While the current innovative means of boosting computa-
tional speed have yielded a substantial improvement over the
cloud- and GPU-based approaches, data sampling, movement
and computation are still being controlled by a central clock
speed, like those in a von Neumann system. This operational
mode differs entirely from that of biological neural networks in

Fig. 3 In-memory computing using a RRAM array. (a) Schematic of a RRAM array. The output current is the sum of several channels of voltage times the
corresponding node conductance. (b) Schematic of the array with differential pair, where the differential output makes the array more robust. (c)–(f)
Spectrum analyser using a RRAM array based on differential VMM, where with the input voltage signal (c) times the pre-programmed array weights, the
array can output current at respective column expressing the frequency component of the input signals (d). With the functional hardware spectrum
analyser, image encoding (two-dimensional discrete cosine transform, 2D-DCT) using a RRAM array (e) in comparison to the software encoder (f). (g)
Gene correlation estimation on the IMC array. Partial correlation computed of 40 genes for cancer and normal tissues (only displayed correlation greater
than 0.13 for visualization reason). Credits: (a) is reproduced with permission from ref. 74, copyright Zidan et al. 2018 Springer Nature; (b) is reproduced
with permission from ref. 69, copyright Prezioso et al. 2015 Springer Nature Limited; (c)–(f) are reproduced with permission from ref. 73, copyright Li et al.
2018 Springer Nature; (g) is reproduced with permission from ref. 77, copyright Gallo et al. 2018 Springer Nature.
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the brain, which process sensory data in an asynchronous
spike-driven manner, i.e., computations are triggered by
changes in the data themselves. To attain the speed and energy
efficiency of the biological counterpart, man-made systems
must adopt a similar architecture and operating principle. A
major research effort has been underway for nearly a decade to
develop compact and low-power building block devices to
realize this goal.

4. Neuromorphic building block
devices

Building block devices for a neuromorphic computer must
exhibit the basic characteristics of biological neurons and
synapses. For artificial neurons, the internal variable must
progressively build up according to the rate of the incoming
voltage spikes and gradually dissipate in the absence of such
spikes (i.e., the device should display a short-term memory). As
for the artificial synapse, the internal variable must exhibit a
continuum of non-volatile states that mimic the plasticity
behaviour of the biological counterpart. Due to the significantly
higher number of synapses (B1015) compared to neurons
(B1010) in the human brain, size and energy consumption of
artificial synapses are other key considerations that cannot be
ignored in our drive towards a brain-like computer. In this
section, we review some promising candidates, including the
valence changing memristor (VCM), electrochemical metalliza-
tion memristor (ECM), interfaced-controlled memristor (ICM),
charge-trapping memristor (CTM), phase change memory
(PCM), spin-transfer-torque memory (STTM), and ferroelectric
tunnel junction memory (FTJM), with their pros and cons.

A. Memristor

First predicted by Chua in 197182 but largely disregarded until
the successful experimental demonstration in 2008,83 the two-
terminal memristor is the fourth fundamental electrical com-
ponent besides the capacitor, resistor, and inductor.82 A key
characteristic of the memristor is the current–voltage hysteresis
loop, which gives it a non-volatile resistance memory property.
The memristor can be ‘‘programmed’’ to at least two distinct
high and low resistance states (HRS and LRS), with numerous

intermediate states possible through controlling the applied
stimulation.83 Coupled with its structural simplicity which
enables ultrahigh integration density in the form of a crossbar
array, the memristor has been intensively studied in the past
decade both as resistive switching memory or RRAM for post-
flash tera-bit memory application and an artificial synapse/
neuron for neuromorphic computing. The idea of memristors
mimicking the dynamics of ion channels was theorized by
Chua and Kang84 in 1976.

Since the experimental validation of the memristor concept
by HP Labs in 2008,83 many different memristive devices have
been proposed and demonstrated (Fig. 4a–c). Generally, the
physical mechanisms that govern resistance switching in these
devices may be classified into the following categories, namely
valence change memory (Fig. 4a), electrochemical metallization
memory (Fig. 4b), interface-controlled memory (Fig. 4c), and
charge-trapping memory (Fig. 4d).

Valence-change memristor. In 2008 the memristor predicted
by Chua was first confirmed and built.83 A valence-change
memristor is typically made up of a sub-stoichiometric transi-
tion metal oxide (e.g., HfOx,85,93–112 TaOx,74,104,107,113,114

TiOx,114,115 AlOx,97,100,101,104,106,116 NiOx,117 etc.) and requires
an electroforming step to create a filamentary conducting path,
comprising oxygen vacancy defects, within the oxide network
with the electrodes typically non-active metals. Subsequent
resistance switching is ascribed to oxygen anion (O2� anion)
exchange between the filament and an adjacent active
electrode85,93,118,119 (i.e., one that functions as an oxygen reser-
voir). A negative voltage applied to the electrode drives O2�

anions towards the filament and re-oxidizes part of it, creating
a thin oxide barrier between the electrode and the remaining
filament. This resets the resistance to a higher value (HRS).
Conversely, a positive voltage induces across the thin re-
oxidized layer a large electric field that regenerates the vacancy
defects, setting the resistance to a lower value (LRS).

Zhang et al. used high-resolution transmission electron
microscopy (HRTEM) to capture the filament evolution of a
Pt/HfO2/Pt VCM device shown in Fig. 5a. Fig. 5b and c show
HRTEM images (with fast-Fourier Transform (FFT) diffraction
patterns) of devices operated at 0.1 mA compliance and 1 mA
compliance, respectively, where crystalline hexagonal-Hf6O
(h-Hf6O) is believed to be in the oxygen deficient conductive

Table 1 Summary of on-array in-memory computing approaches and their applications

Work Array size Array type On-array IMC (MAC/VMM) applications

Berdan et al.70 5 � 5 Passive Linear multiplicator
Zidan et al.74 16 � 3 Passive Poisson equation solver
Li et al.73 128 � 64 1T1R Spectrum analyser for image compression
Oh et al.75a 32 � 32 Passive Activation neuron for edge detection
Sheridan et al.78 32 � 32 Passive Sparse encoding
Yao et al.68 128 � 8 1T1R Hybrid CNN
Guo et al.79 785 � 128 NOR-FLASH MNIST classification
Yu et al.80 16 Mb 1T1R MNIST classification
Burr et al.81 500 � 661 2-PCM MNIST classification
Gallo et al.77 512 � 2048 1T1R Linear equation solver for partial correlation of genes estimation

a Size for Mott activation neurons. The edge detection was implemented by cooperating 32 � 32 Mott neurons with 16 � 16 RRAM synapses.
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filament region and m-HfO2 to be the shell of the filament. To
illustrate, Fig. 5d–k show the evolvement of the h-Hf6O filament
from the pristine state (Fig. 5d) to be formed (Fig. 5e–g), shelled
(Fig. 5h–j), and ruptured (Fig. 5k). The detailed mechanism,
restricted by the scope of this work, may not be well elaborated.
Dittmann et al. reviewed the VCM mechanism in detail120

where the engaged audience should refer to.
Many works present excellent analogue switching performance

in D.C. mode without95,98,99,121 or with94,96,97,100,101,109,114,116 the
help of compliance current, as shown in Fig. 5l. However, during
set, the current usually increases abruptly due to heating that in
turn accelerates defect generation.113,122,123 To suppress the ther-
mal runaway, a series resistance that limits the current surge is
required. This may be fulfilled by a selector device, typically a
transistor, which also helps eliminate the sneak-path current
problem in a crossbar array, which will be discussed in the
following section. On the other hand, the current decreases
gradually during reset because the migration of the O2� anions
would be self-limited by the increasing thickness of the re-
oxidized layer adjacent to the electrode.107,124 Sometimes, an
oxygen reservoir layer,99,105,106,108,109,111,112,115–117,121 thermal
enhancement or electro-thermal modulation layer (TEL/
ETML),68,104,107,125–127 is adopted to mitigate such abrupt set
behaviour. As shown in Fig. 5m, Kim et al.115 reported an

alumina VCM device with a TiOy (y = 1.81) overshoot suppres-
sion layer (OSL) (inset shows its TEM image) and showed a
conductance modulation within 20 nA error tolerance for 70
cycles.

Electrochemical metallization memristor. This memristor,
also known as a conductive-bridging random access memory
(CBRAM), relies on the formation and dissolution of a metal
filament as the mechanism for resistance switching (Fig. 4b).129

The metal electrode used is typically silver (Ag) or copper (Cu),
which exhibits high diffusivity in most solid electrolytes.130,131

Fig. 4 Resistive-switching-based artificial synapses and neurons. (a–g)
are schematic of valence changing memristor (VCM, a), electrochemical
metallization memristor (ECM, or namely conductive bridging memristor,
b), interface-controlled memristor (ICM, c), charge-trapping memristor
(CTM, d), phase changing memory (PCM, e), spin-transfer-torque memory
(STTM, f), and ferroelectric tunnel junction memory (FTJM, g), respectively,
where the red arrow indicates the set process. Credits: (a)–(g) are adapted
from ref. 38 and 85–92.

Fig. 5 VCM nanoscale mechanism and switching for neuromorphic
applications. (a) Device SEM image and schematic. (b) and (c), High
resolution transmission electron microscopy (HRTEM) images of devices
operated under 0.1 mA and 1 mA compliance current, respectively. (d)–(k),
Illustrations of the evolvement of conductive filaments from forming to
rupture. (l) Typical analogue set and reset cycle of VCM devices for
neuromorphic applications. (m) Multiple conductance levels achieved by
VCM devices for neuromorphic applications. (inset: TEM image of the
device) Credits: (a)–(k) are reproduced under CC-BY licence from ref. 128,
copyright Zhang et al. 2021 Springer Nature; (l) is reprinted from ref. 98,
copyright 2020 American Chemical Society; m is reproduced under CC-
BY licence from ref. 115, copyright 2022 Wiley-VCH.
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A positive voltage applied to the Ag electrode ionizes the Ag
atoms, and the cations then drift under the electrical field
towards the counter electrode where they are reduced, forming
a microscopic Ag ‘‘hillock’’ that serves as a virtual electrode for
subsequent reduction of Ag+ cations.129,132,133 A set occurs
when the Ag filament extends back and connects the anode.
A negative voltage reverses the process by driving Ag+ cations
back to the Ag electrode, causing a reset. Lyapunov et al.
demonstrated the diffusion of Ag ions clearly using in situ
TEM, shown in Fig. 6a–d.134 During a negative bias, the Ag
diffused out of the GeS layer (a-b-d-c). While for the fresh device
that has not undergone the formation of Ag filament, the device
is able to self-relax to its fresh state (c to a), as further illustrated
in Fig. 6e. The main disadvantage of this device is that the
resistance switching during both set and reset are abrupt, thus
might limit synaptic application to binary neural
networks,135–138 while recent work by Abbas et al. on a WTe2-
based device shows gradual reset with long retention139 and
work by Wang et al. on HfOx/AlOy super-lattice-like (SLL) device
shows that a controllable analogue set and reset101 may relieve
the issue.

Besides non-volatile switching, volatile or threshold switch-
ing is observed when the set current is capped below a certain
value (usually on the order of microampere).140,141 In this case,
the LRS is maintained over a limited voltage range only. When
the voltage is decreased below a threshold value, the device
reverts automatically to the HRS. The volatility is believed to
stem from a relatively thin Ag filament formed under a limited
set current.143 Furthermore, a more comprehensive review by
Abbas et al. on ECM elaborated it well and accurately, which
helps the understanding of this kind of device.143

Due to the high solubility of Ag, the thin filament readily
‘‘dissolves’’ when the excitation voltage is reduced. Exploiting
this characteristic, several works142,144,145 made use of this
behaviour to implement the integrate-fire function of a neuron.
The circuit comprises a capacitor connected parallel to the
threshold switch. When the capacitor is charged by input
spikes to a voltage higher than the set voltage, the switch
transits to the low-resistance state and discharges the capacitor.
As the capacitor voltage decreases below the threshold, the
switch transits back to the high-resistance state. The momen-
tary discharge of the capacitor produces an output current

Fig. 6 Electrochemical metallization memristor. (a)–(d), In situ TEM images showing Ag ion diffusion under a negative bias. (e) Illustration of the set/reset
process of the GeS ECM device. (f) Analogue switching for synaptic application of HfOx/AlOy super-lattice-like (SLL) device. (inset: the schematic of SLL
device) The analogue set is by setting different compliance currents, while the analogue reset is accomplished by setting different reset voltages. (g)
Biological LIF neuron emulated by ECM with circuitry. RL and Cm denote load resistor and membrane capacitor, respectively. (h) Artificial LIF neuron
response (current) to the input spike (voltage). Credits: (a)–(e) are reproduced with permission from ref. 134, copyright 2022 Kim et al., Wiley-VCH GmbH;
(f) is reproduced with CC-BY licence from ref. 101, copyright Wang et al. 2022 Wiley-VCH GmbH; (g)–(h) is reproduced with CC-BY licence from ref. 142,
copyright Duan et al. 2020 Springer Nature.
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spike. Duan et al.142 took this approach further by connecting 4
of such LIF neurons to 1 synaptic device to emulate the
biological neuron and synapse illustrated in Fig. 15h.

For the synaptic operation, tuneable long-term potentiation
and depression by varying spike amplitude,69,146 spike
number,147 and spike rate141 are reported using non-volatility
of ECM. With volatility, ECM shows also tuneable short-term
potentiation by varying spike amplitude,134,146 spike rate,134

and spike number.134 It is worth mentioning that on a beha-
vioural level, the ECM device is able to emulate Pavlov’s dog
experiment in simulation and can be developed for use in an
addiction inhibition machine,148 thanks to its easy transition
between volatile and non-volatile switching.

With the volatile switching characteristics, sometimes
referred to as threshold switching (TS), ECM devices may be
adapted for LIF neuron application, as illustrated in Fig. 6g.
The biological neuronal membrane is emulated by the parallel
capacitor (Cm) and the biological ion channel is emulated by
the TS device, which shares more similarity to the conduction
mechanism of ECM. Duan et al. used such a device with load
resistor and capacitor showing LIF neuron characteristics dis-
cussed above, as shown in Fig. 6h142 and they also applied the
neuron-synapse system for SNN simulation, more details of
which will be provided in the following sections.

Interface-controlled memristor. Interfacial resistive memory
is a distinct type of memristor that modulates device conduc-
tance by forming an oxide layer between the electrode and
dielectric layer, rather than by forming a conductive filament
via a redox reaction or oxygen vacancy movement. Due to the
lack of conductive filaments, it is also known as the non-
filamentary memristor. The switching materials typically
used in interfacial resistive memory are Pr0.7Ca0.3MnO3

(PCMO)86,149–155 and TaOx with TiO2
88 or Ta2O5.156 PCMO was

first introduced as a resistive-switching material in 2009.86 The
resistance switching behaviour of interfacial devices is attrib-
uted to the formation of a thin oxide layer at the interfaces
between the electrode and PCMO or oxygen vacancy rich
materials. As proposed by Wang et al.,88 a negative bias would
drive oxygen ions (O2�) away from the described interface and
thus increase the effective barrier width of the electron con-
duction, as illustrated in Fig. 7a. Further band diagram calcula-
tion in Fig. 7b shows that the conduction of a Ta/TaOx interface
is modulated by the tunnelling of the barrier for the LRS device
under a negative bias. Reversely, a positive voltage drives
oxygen ions towards the Ta/TaOx interface, subsequently
reduces the effective barrier width. In the meantime, as shown
in the band diagram in Fig. 7c, the modulation layer at a
positive bias is relocated on the TaOx/TiO2 barrier, which
results in lower resistance. Moon et al reported a similar
observation for Mo/PCMO devices.153. Park et al. used a N-
rich TiN/PCMO device to achieve gradual DC switching, thus
with further linearity ability for neuromorphic computing
applications.154 Interface-controlled memristors were first
introduced in 2013 as neuromorphic devices and early-stage
research has shown their capability of better linearity in LTP
and LTD.149–154 Lashkare et al. also emulated artificial neurons

with PCMO ICM with good firing energy control (212 pJ).
Consequently, many simulations based on interface-
controlled devices have been conducted to achieve spiking
neural network (SNN)-based face recognition,150 pronunciation
classification,149 and time-dependent signal prediction.150

Charge-trap memristor. Like charge-trap transistors com-
monly used in flash memory, switching of charge-trap memris-
tors (CTMs) leverages on the charge trapping and de-trapping
of the charge trapping layers of the device. Typically, two barrier
layers sandwiching a trapping layer are required for CTM, as
shown in Fig. 8a as an example, the device that Kim et al.
investigated in a comparative study.92 They discussed devices
without Ta2O5 layers, which suffer from LRS failure in retention
and the ones without Al2O3-x layers, which suffer from HRS
failure in retention and concluded with the illustration, as
shown in Fig. 8b, that aluminium oxide helps with buffering
Ti diffusion whereas tantalum oxide stops spontaneous de-
trapping. Although charge-trap transistors are widely investi-
gated and used, CTM, has drawn attention only until recent
years for its potential of higher memory density as compared to
flash, low operating current, free forming, and self-compliance
characteristics.92,157–160 Recently, Kim et al. vitalized CTM as a
neuromorphic device by showing its good analogue set (Fig. 8c),
LTP/LTD (Fig. 8d), and excellent 8-bit retention proving its
potential in IMC applications.92

Inherited from the charge trapping mechanism, a high
programming voltage (B10 V) might be one of the major
obstacles in the neuromorphic application, which shall be
enhanced in further studies.

B. Phase-change memory device

As the name suggests, phase-change memory (PCM) depends
on thermally induced transition between the crystalline and
amorphous phases as the mechanism for non-volatile resis-
tance switching (Fig. 4e). A material widely studied for phase-

Fig. 7 Interface-controlled memristor. (a) Illustration of the switching
mechanism explained by a homogeneous barrier modulation model:
oxygen ions migrate away from the oxygen vacancy-rich region at the
Ta interface with negative bias (reset) increasing the effective barrier width
for electron conduction and migrate towards that region with positive bias
(set). (b) and (c), Energy band diagrams in LRS calculated at �2 V and 2 V
read bias, respectively. Credit: Reproduced with CC-BY licence from
ref. 88, copyright Wang et al. 2015 Springer Nature.
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change memory application is germanium-antimony-tellurium
(GeSbTe or GST),161 by virtue of its ease of fabrication and low
phase transition temperature. Meister et al. employed in situ
TEM showing the resistance change at the nanoscale level of a
GST PCM device, as depicted in Fig. 9a.162 It is shown in Fig. 9b
that in the crystalline phase, GST has a low electrical resistance.
Under short high-current pulsing, GST can be transformed into
an amorphous phase having a much higher resistance (Fig. 9c),
i.e., the reset of the PCM device. Selected area diffraction (SAD)
of the red circle regions was carried out to confirm the poly-
crystalline and amorphous phases, as shown in Fig. 9d and e,
respectively. Reversal to the low-resistance crystalline phase or
the set process may be realized using a lower current pulse or a
voltage pulse, but applied over a longer period. Shown in
Fig. 9f, by applying 400 ns-varying amplitude voltage pulses,
the device resistance changes gradually, which was further
examined by TEM, as shown in Fig. 9g–i at the respective
points, confirming the transition from the amorphous phase
to crystalline phase during reset. In ref. 87, Wong et al. reviewed
more basics and theories of phase change materials and
devices to understand the mechanisms of PCM.

Through modulating thermal energy input, a gradual transi-
tion that yields multiple resistance states can be achieved,
which has been exploited for synaptic emulation during numer-
ous studies,163–171 where Suri et al. and Kuzum et al. were the
first to use PCM as an artificial synapse.163–168 Thanks to PCM
devices’ gradual phase transition by the Joule heating effect and
stable phase physics, PCM shows great potential in multi-bit
storage with long retention time. This stability gives many

Fig. 9 Phase-change memory device: nanoscale mechanism and LIF
neuron application. (a) Device structure illustration. (b) and (c) in situ
TEM images of PCM device in LRS and HRS, respectively. (d) and (e),
Selective area diffraction (SAD) images of the circled regions confirming
the amorphous and polycrystalline phases of (b) and (c). (f) Device reset by
a 400 ns varying amplitude voltage pulse, at which the TEM images of the
device are shown in (g)–(i), confirming the crystallization phase by the
reset voltage pulse. (j) PCM device used for artificial neuron. Figure shows
spiking rate and amplitude dependency of the neuron firing. Credits: (a)–(i)
are reprinted with permission from ref. 162, copyright 2011 American
Chemical Society; (j) is reproduced with permission from ref. 173, copy-
right Tuma et al. 2016 Springer Nature Limited.

Fig. 8 Charge-trap memristor. (a) Cross-sectional TEM image of the Pt/
Ta2O5/Nb2O5�x/Al2O3�x/Ti device. Inset: FFT image of each dielectric
layer. (b) Schematic energy band diagram shows the charge trapping
mechanism of CTM. (c) Multi-level analogue set/reset. (d) LTP/LTD emu-
lated by CTM device. Credit: Reproduced with CC-BY licence from ref. 92,
copyright Kim et al. 2023 Wiley-VCH.
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benefits in long term memory: PCM synapses show excellent
tuneable LTP by adjusting voltage or current pulse width,166,168

amplitude,171,172 and rate (duty cycle).165–167 Tuma et al. also
used a PCM device for artificial neuron application, as shown in
Fig. 9j. The artificial LIF neuron shows a tuneable firing rate
depending on the spiking rate and amplitude.

However, the phase change induced by the Joule heating
effect is non-linear. A typical milli-seconds to seconds interval
between set pulses is adopted to prevent over-heating with
pulses,163,166,167,170,174 which is detrimental to the high-speed
operation of the device. Another problem brought together by
Joule heating is the power consumption that despite the fact
that the technology node of PCMs has shrunk down to 40 nm
diameter,172 the action energy consumption for pulse operation
touches the bottom at the pico-Joule level.87,163,165,170–172

C. Spin-transfer-torque-based device

As a class of magnetic random-access memory (MRAM) devices,
spintronic devices have emerged as potential candidates for
emulation of neurons and synapses.175 The major difference
between MRAM and non-MRAM is the storage media: the
magnetic memory uses magnetization for the data storage,
while the non-magnetic memory uses electrons or defect states.
As shown in Fig. 4f, the typical structure of a spin-transfer
torque cell is a sandwiched structure of one non-magnetic layer
in between two nanomagnetic layers, of which one layer has
fixed magnetization Mfixed and the other has free magnetization
Mfree. When the current is injected into the stack, the spin
torque will rotate Mfree and thus through the magnetoresis-
tance effect change the resistance of the device.89 Spin torque
can either rotate Mfree towards or away from Mfixed, depending
on the polarity of input current, whose density also determines
the amplitude of spin torque.176,177 An ideal value of input
current is B40 mA under 22 nm CMOS technology.178 A parallel
state (P state) is hence achieved when magnetizations of the
free layer are paralleled with the fixed layer and an antiparallel
state (AP state) is achieved vice versa. The SET and RESET
processes are induced by sweeping positive and negative D.C.
currents, respectively. Since spintronic devices are
magnetization-based, it is not straightforward to include them
in our benchmarking scheme. Therefore, we will discuss briefly
the merits and challenges here. For the audiences who are
engaged in this field, a detailed review on neuromorphic
MRAM by Shao et al.179 is provided.

In 2014, Vincent et al.180,181 used a spintronic memristive
device to simulate neuromorphic computing ability. It is found
that a spintronic device has stochastic switching180–184 and
transiting185,186 nature, so the device functions binarily. Recent
reports proposed novel-structured spintronic devices187,188

to achieve continuous potentiation/depression by tuning hall
resistance.

From the discussion on device physics, the biggest merit
of MRAM lies in its non-volatility, i.e., long retention, high
endurance, and compatibility for front-end-of-line CMOS
fabrication.189 Thus, commercialized MRAM chips have been
fabricated189 for their capacitor-less high-density potential.

However, it is also reported that spintronic devices are inher-
ently prone to bit errors due to thermal activation,175 consume
large operating power,187,188 use complicated structure,190 and
require circuitry191 or extra components188 for the conversion
between the electrical signal and magnetic states, which may
challenge the device application.

D. Ferroelectric tunnel junction device

First discovered in 1920,192 ferroelectricity is a phenomenon
where the electrical polarization of a material can be reversed
by applying an external voltage, showing a hysteresis
curve. Ferroelectric materials are extensively demonstrated
and commercialized in non-volatile random-access memory
(NVRAM).193–195 As for artificial neuron and synapse applica-
tions, ferroelectric tunnel junction (FTJ) devices are introduced
here. As shown in Fig. 4g, as the polarization of the ferroelectric
nanolayer changes, the polarization charge effect induces
asymmetrical barrier heights.196,197 While with the polarization
points downward, the barrier height reduces to F- (LRS) and the
barrier height increases to F+ when the polarization directs
upward (HRS). Since tunnel transmission is determined by the
square root of the barrier height, the junction resistance is

Fig. 10 Ferroelectric tunnelling junction device for neuromorphic appli-
cation. (a) Piezoresponse force microscopy (PFM) images captured during
applying increasing positive (red) and negative (blue) voltage pulses. (b)
Tuneable FTJ device switching characteristics with different write voltages.
(c) and (d) Tuneable FTJ potentiation and depression by varying reset pulse
number (c) or set pulse number (d), where insets show the pulse scheme.
Credits: Reproduced with permission from ref. 198, copyright 2012
Chanthbouala et al. Springer Nature Limited.
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hence dependent on the barrier height.91 To investigate the
switching in nanoscale mechanisms, Chanthbouala et al.
employed piezoresponse force microscopy (PFM), as shown in
Fig. 10a during positive (red) and negative (blue) voltage
sweeping. Starting from the LRS, the device shows homoge-
neously up-polarized states and gradually transits to mostly
down-polarized states with PFM showing the nucleation and
expansion of down-domains under positive pulses of increasing
amplitude. In contrast, negative pulses with increasing ampli-
tude result in the nucleation and expansion of up-domains.
Typical ferroelectric dielectrics used in FTJ for neuromorphic
application are BaTiO3 (BTO),198–202 BiFeO3 (BFO),91,203,204 fer-
roelectric Hf0.5Zr0.5O2 (Zr-doped HfO2, FE-HZO),205–208 and
HfSiO (Si-doped HfOx).70 For more ferroelectric materials and
mechanisms, a rather interesting review by Mikolajick et al.
may help with the understanding of ferroelectric materials and
devices.209

The first BTO FTJ device reported by Chanthbouala et al.198

exhibits a gradual switching with a good on- to off-ratio (B103),
as shown in Fig. 10b. Their work also shows the device tuneable
potentiation and depression ability by applying consecutive
identical pulse trains varying the number of depression
(Fig. 10c) or potentiation pulses (Fig. 10d). Later, Ryu et al.206

reported a HZO FTJ device with a gradual polarization change
in hysteresis thus enabling a better potentiation and depres-
sion in synapse application.

E. Memcapacitor

The memcapacitor has been recently reported210 and used for
neuromorphic applications and has almost symmetrical and
linear LTP/LTD. Physics of a memcapacitor are rather simple:
the capacitance of memory dielectrics is modulated by the
applied field in a 4-terminal structure, while memory dielectrics
are commonly ferroelectric materials or charge trapping mate-
rials. With the appropriate programming gate voltage (memory
window), the charges or fields are trapped or fixed in the
dielectrics by a charge shield formed in the n� region. The
device states are read out from the bottom electrode when
applying a biased alternating voltage on the gate.210 However,
the device needs complex circuitry to read out device states due
to the capacitive nature. Also, benchmarking for this emerging
type of electronics is not straightforward as compared to the
resistive kind of device: although the capacitor consumes
ideally no energy during the operation as it only involves the
storage of charges rather than electro-conduction, in the neu-
romorphic application, the energy carried by the spikes shall be
stored, or consumed within the device to program the capaci-
tive states. Therefore, the performance is characterized in a
similar manner to the rest of the devices.

5. Universal benchmark of artificial
synapse and neuron devices

So far, seven basic types of resistive switching-based electronic
neuron and synapse devices and their switching mechanisms

have been discussed. Behind the obvious mechanism, devices
perform differently: some with large switching ratios, some
with faster switching speed, some with better potentiation/
depression linearity, some require large voltages, some require
long pulse intervals, some are flexible, some are CMOS-
compatible while some are not, and so on. There is thus an
urgent need for providing a benchmark that is straightforward
and universal to locate the device by its performance intra- and
inter-device groups. By considering the needs and the physics
of emerging neuromorphic devices, we find the energy/power
consumption becomes a suitable candidate for its universality,
i.e., can be applied to any devices that require electricity to
operate. Precisely speaking, we adopt the spike voltage (or
current for some phase changing synaptic devices), LRS and
HRS conductance, and spike timing used in spiking potentia-
tion and depression for the energy and power benchmarking.

A. Benchmark for artificial synapse devices

A benchmark for synapse devices is provided in Fig. 11a and b.
To describe the data, the action energy and standby power are
defined using eqn (1) and (2), respectively.

Ea ¼ Vspike
2 � Gon þ Goff

2
� tspike; (1)

Ps = Vspike
2 � Goff, (2)

where Ea and Ps are the action energy in Joule and standby
power in watts, respectively. Vspike, Gon, Goff, and tspike are the
spike voltage in volts, LRS conductance in siemens, HRS
conductance in siemens, and spike timing (pulse duration) in
seconds, respectively.

Action energy. We introduce the concept of action energy,
which is in correspondence to the action potential of the
neuron membrane. Because the transition from LRS to HRS
or vice versa is continuous with good linearity for most bench-
marked devices, the arithmetic means of conductance is used
in action energy instead of fitting each experimental result. For
devices with large HRS/LRS ratios, it is easy to prove that the
action energy is approximate to the energy consumption at LRS.

Standby power. The standby power metric measures the off
power of the device. For the passive crossbar array configu-
ration, the write operation will inevitably give a current flow
between cells, which consumes energy especially if the device
has high HRS conductance. And it is particularly relevant in the
context of a fully connected biological neural network. As an
example, a Purkinje neuron may have as many as 1000 den-
drites, which can further connect to 10 000 neurons.211 The
higher the standby power of the synaptic device, the higher the
chance of misfiring and the combined leakage current of 10 000
neurons can be disastrous.

Spike timing. In addition, we introduce the spike timing
metric as a separate benchmarking tool. This is important to
ensure the temporal dynamic range of the device. For tradi-
tional transistors, the operation frequency is always adopted as
an important timing factor for both digital CMOS and analogue
amplifier applications. Although the maximum frequency of
digital IC now is greatly affected by circuit level design, the
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Fig. 11 Universal benchmark for artificial synapse and neuron devices for valence changing memristive device (VCM), electrochemical metallization
memristive device (ECM), interface-controlled memristive device (ICM), ferroelectric tunnelling junction device (FTJM), and mem-capacitor. (a)
Benchmark for synapse applications, where standby power is a function of action energy and the diameter of the bubble indicates the spike timing
of the device. (b) Overall performance comparison of artificial synaptic devices based on the median of each device group in the benchmark. The outer
frame suggests possible neuromorphic application direction. (c) Benchmark for neuron applications, where firing energy is a function of spiking energy.
Credits: VCM data are extracted from ref. 94, 95, 97, 98, 100, 102–108, 114–116, 124–126 and 213–220, ECM data are extracted from ref. 69, 122, 123 and
220–228, ICM data are extracted from ref. 88, 149–154 and 229, and FTJM data are extracted from ref. 70, 198, 200, 204–207, 230 and 231, mem-
capacitor data are extracted from ref. 210, and artificial neuron data are extracted from ref. 142, 173 and 232–243.
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device maximum frequency still matters on the minimal timing
that the device operation is intact and the performance is not
significantly compromised. Similarly, for synaptic and neuron
devices, minimum spike timing matters for it determines the
temporal dynamic range and together with the voltage, metrics
by the action energy (the integral of amplitude as a function of
timing) determines the spatial dynamic range of the devices.
Thus, the smaller spike timing and lower the action energy the
device can show, the smaller the conductance that can be
controlled by each individual spike, which helps with the
overall performance of the array level application. If the spike
timing is greatly compromised, there will be little room left for
conductance modulation by multiple spikes, for example, 256
spikes (6-bit conductance) with each tspike = 1 ms will take half
a second to finish, in which case for the signal with high
dynamic range, performance will be greatly affected.

Overall metrics and applications. Fig. 11b shows the metrics
median comparison between VCM, ECM, ICM, and FTJM, in
the absence of CTM and a memcapacitor due to the limited
number of reported synapse devices that may cause the biased
statistics. Despite all three metrics being expected to be as low
as possible, it is very demanding to require all devices to
perform in this way. In Fig. 11b, we also suggest a few applica-
tion directions, including hardware SNNs, in-memory comput-
ing (updating frequently), and DNN accelerators (updating
rarely), if the device outperforms only part of the metrics,
admitted by the fact that CMOS transistors, even though they
have developed for decades, have lots of limitations, their
application in computing chips was never impeded. For
synapse devices, they are expected to outperform in all metrics
for hardware SNN implementation. As it can be concluded from
Section III that SNN requires in-time synaptic weight updating,
which requires low action energy and fast spike timing, as well
as demands for low standby power because the number of
neurons that one dendrite can connect can be extremely high,
thus preventing too much power consumption during firing of
the other neurons. In-memory computing, however, requires
only faster spike timing and lower action energy for the
frequent synaptic weight update operations. On the other hand,
DNN accelerators, which already have their synaptic weight
trained offline, rarely or never require the updates of synaptic
weight, thus suitable for devices with low standby power.

Discussion. VCM devices are premier candidates for artifi-
cial synapse applications for the number of states up to
2048 states,212 a long multi-bit retention of up to 6000 s for
3 bits (8 states)213 and an endurance of up to 1 billion cycles.214

VCM artificial synaptic devices consume low operational
energy (median B 220 pJ) as well as low standby power (median
B 34 mW), as shown in Fig. 11a, among the available data,
some devices can suppress the energy consumption per average
spike operation down to sub-pJ. The low energy budget is
ascribed to the following engineering: introduction of a vacancy
migration barrier by a multi-stacked layer (TiOx/HfOx/TiOx/
HfOx structure reported in ref. 94) or alternatively, introduction
of an electro-thermal modulation (or namely, overshoot sup-
pression) layer using TaOx reported in ref. 104, 107, 125, and

218, TiOx in ref. 115, or a VOx layer in ref. 214. The merits of
such engineering allow the spike pulse width of the above-
mentioned devices to be significantly shorter thanks to the
better control of the filament formation and rupture, which
allows them speed up to the 1 MHz to sub-GHz level when
operated with a CMOS-based processor. Moreover, the linearity
of potentiation and depression is also much enhanced101,104,115

for the additional benefit of better control of Vo and heat
generation. However, besides common RRAM variation pro-
blems, spiking operation of VCM suffers from a low action/
standby ratio, which causes high standby power (in a range
from microwatts to milliwatts, as shown in Fig. 11b) as com-
pared to non-RRAM devices. This is one of the reasons why
selector-less passive array application for VCM is yet to be
reported. Also, despite VCM devices show promising character-
istics like multi-states, long-retention, and high endurance,
these properties are reported in separate devices. There is not
yet any work showing a device having a collection of the
promising features. The difficulty may lie in the instability
and stochasticity of the oxygen vacancies.120 It may require
systematic studies to verify the coexistence of all these char-
acteristics. And we encourage the future work on multi-state
devices to include the retention and endurance data, no matter
excellent or mediocratic, to enable the further discussion in
this regard.

Further analysis of ECM devices in Fig. 11a and b shows
reasonable standby power (median B 56 mW) as compared to
its worst action energy (median B 13 nJ) between classes.
Despite ECM typically having a bigger memory window, the
high current used to stabilize the metal filament may cause a
high action energy in the synapse application. However, efforts
have been made to reduce the action energy to the pJ level.
Different from VCM, enhancement of ECM centres on the
manipulation of the cation conduction channel. Remarkably,
the authors of ref. 225 used a 2 nm Mo/Ti or Ti barrier layer to
buffer the diffusion of cations, reducing the action energy
consumption to 2 pJ and a similar cation barrier HfOx/AlOy

superlattice-like structured device was used in ref. 101, shown
in the inset of Fig. 6f, to lower the action energy to tens of
picojoules. Additionally, the optimized anion migration helps
greatly with the linearity in potentiation and depression to
1.44 and 2.55. The authors of ref. 244 used tellurium (Te), an
elemental small band gap semiconductor, as the anode to
reduce the 1-atom conductance from 80 mS to 2.4 mS and thus
reduce the 1-atom program energy to 0.2 pJ and action energy
for potentiation to 140 pJ. Similarly, the authors of ref. 122 used
less-diffusive tantalum (Ta) as the anode, which form, the
authors of a more controllable conductive channel to make
potentiation and depression fast to 100 ns spike to achieve
better energy performance (81 pJ). Following this path, the
authors of ref. 147 used epitaxially grown SiGe in which a
conduction channel enabled by dislocations was selectively
etched and widened to form an even better controlled
conduction channel. By confinement of the conduction chan-
nel in the selective-etched region, not only the standby
power is suppressed to 1.5 mW, but also its cycle-to-cycle and
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device-to-device (different etching batches) variation is stressed
to less than 1% and 4.9%, respectively. However, most devices
may suffer from high action energy to achieve a stable resis-
tance state, from visualization in Fig. 11b. Thus, instead of
trying to use it as a viable candidate for synapse application,
ECM is better suited for neuron applications due to its easy
transition in volatility and assembly to biological neuron
models, as described in Fig. 6g and will be covered in the
following discussions.

For interface-controlled synaptic device performance ana-
lysed in Fig. 11a; they have much lower action energy and
standby power than valence change or electrochemical metalli-
zation devices. This is attributed to the low action/rest current
of the device stack, which forms no conductive channel and is
fully modulated by the resistance change of the interface
between the electrode and the PCMO layer or between two
oxide layers with different stoichiometry during resistive
switching. However, the resistance modulation mechanism
that helps with energy consumption is not helpful to the spike
timing. Due to the slow redox reaction at the interface, the
median of spike timing is up to milliseconds, as compared to
the ms level timing of non-chemically reactive synaptic devices.
On the other hand, interface-controlled devices are much more
capable for the continuous signal with a small dynamic range
and a low fresh rate, thanks to their low standby power and
action energy, resulting from the oxygen interchange between
the two layers, which modulates the interface conduction
barrier only.104,107,125,218 Therefore, with the low standby power
and moderate action energy among the classes, ICM is recom-
mended for DNN accelerator applications, where rare updating
and frequent reading are required, refer to Fig. 11b.

From an energy budget perspective, most benchmarked FTJ
synaptic devices outperform the rest of the devices, as shown in
Fig. 11c. And one excellent HZO FTJ device207 stands out even at
10 femtojoule per spike, thanks to its ultra-thin switching layer
(3.5 nm) with a metallic oxide electrode (WOx), which helps
with a much lower barrier and also contributes to ohmic
conduction, allowing an enwidened hardware VMM application
range. And thanks to its all plasma-enhanced atomic layered
deposition (PE-ALD) fabrication process, the device shows
10 billion write–erase cycle endurance. As suggested in
Fig. 11b, FTJ devices are potential candidates for in-memory
computing applications discussed in the opening sections, for
their fast spike timing and low action energy that can be
adapted for frequent and fast updating of the synaptic weight
requirements.

As an emerging device, the memcapacitor device consumes
low standby power and moderate action energy, as shown in
Fig. 11a. Although it is a promising candidatefurther analysis
and comparison has not been possible to date due to the
limited reports on this kind of device. More investigation is
encouraged to enrich the research in this area.

B. Benchmark for artificial neurons

A benchmark for artificial neurons is provided in Fig. 11c.
Unlike the case of synapse which can be emulated by a single

device, most artificial neurons have external circuitry, accom-
panied by a source resistor, a parallel capacitor for charging
and discharging during the refractory period, and a load
resistor. Some are even equipped with an amplifier. It is not
fair to compare a device connected only to a load resistor with a
device equipped with a complex circuit with an external power
supply (for amplifier), even if some reports argued that their
stand-alone device is power efficient. Therefore, to ensure fair-
ness, benchmarking here refers to the net power consumption
used in the neuron system, not just the device itself, as defined
by the spiking energy and firing energy in eqn (3) and (4),
respectively.

ES = Vspike
2 � Goff � tspike, (3)

Ef = Vspike
2 � Gon � tspike, (4)

where ES and Ef are the spiking and firing energies in joules,
respectively. The same as for the artificial synapse devices,
Vspike, Gon, Goff, and tspike are the input spike voltage in volts,
the LRS conductance in siemens, the HRS conductance in
siemens, and the spike timing (pulse duration) in seconds,
respectively.

Spiking energy. The operation of an artificial LIF or IF
neuron device relies on the input spike trains, which means
only a single spike will have a minor impact on firing, especially
for LIF neuron devices. However, a continuous spike train is
required to fire the device, which consumes the most power if
device requires many spikes to fire. Thus, the benchmarking of
artificial neuron devices shall consider the energy consumption
of spike inputs towards the neuron even at the refractory
period, where the firing has not yet or just happened. And
the spiking energy characterizes the energy consumption per
spike during this period. Note that if there exists a source
resistor Rs in the neuron circuit, it will substitute the device at
HRS (Goff = 1/Rs).

Firing energy. It is adopted to characterize the energy con-
sumption per spike when the neuron is fired. In the most
benchmarked device, firing energy is within the order as
spiking energy, but some devices possess much lower LRS,
which results in the high firing energy that is not negligible for
the applications, which is the reason firing energy is separately
benchmarked.

Discussion. As the number of reports focusing on artificial
neuron emulated by memristive devices is limited, this review
may not be able to provide an overall inter-device comparison
of memristive neurons. However, based on the data availability,
Fig. 11c summarizes the energy benchmarking of memristive
neurons. The majority are ECM devices, as we have mentioned
earlier that due to the easy transition between non-volatile and
volatile switching of most ECM devices by using compliance
current, they can emulate the tuneable (leaky) integrate-and-
firing functions with ease. However, the ECM devices display
high firing energy consumption, with Bousoulas et al.233 being
an exception who managed and hypothesised to block Ag
migration using a SiO2/SiO2.07 bilayer structure and to form a
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thin filament by using a rough bottom electrode enabled by
Pt NPs.

Besides ECM neurons, some used ICM devices,242 PCM
devices,173,243 Si nanorods,232 mixed-ionic conduction
devices,239 and van der Waals heterojunction devices.238 It is
rather worth mentioning that instead of avoiding the discus-
sion of stochasticity of artificial neurons, Tuma et al. exploited
the stochastic nature of PCM neuron devices.173 Since they
found that cycle-to-cycle variation followed the normal distri-
bution, a population code was introduced using the quantity of
neuron devices to compensate the stochasticity of the neuron,
especially in the occasion when input spikes were at high-
frequency. With this method, the system robustness was
increased. Besides, their neurons consume low firing and
spiking energy because of the well-investigated spike timing-
interval dependencies, indicating a possible path to overcome
the energy consumption issue of most artificial neurons.

6. Challenges, guidelines, and
outlooks

Although neuromorphic devices and computing are a revolu-
tionary and promising technology, their development is still in
its infancy. However, lots of efforts have been made to pave the
road for it by many researchers in every possible direction. In
2022, a more envisionary roadmap on neuromorphic comput-
ing and engineering was proposed by leading scientists in their
fields to discuss the insightful perspectives, where the engaged
audiences may refer to. Here, based on our benchmarking data,
we provide some useful insights on device level challenges,
design guidelines, and an outlook.245

A. Challenges

Although many papers reported artificial synapses and neurons
made of resistive switching-based emerging devices in the last
decade, ANN performance was usually illustrated through
simulations based on device measurement data. There have
been several reports on array-level work,70,147,246 but none
matched the performance of current GPU-based systems. The
first system-level implementation with performance exceeding
that of the GPU counterpart was made by Yao et al.68 in early
2020. The delay in the device to array implementation may be
ascribed to two major challenges.

The first is variability, Fig. 12 shows the statistics of varia-
tion problem, both device-to-device (inter-device variation) and
cycle-to-cycle (intra-device variation) for a given device struc-
ture. This problem is particularly severe in memristors that
depend on the formation and rupture of a conducting filament
as the basis for resistance switching. For example, Mahade-
vaiah et al.110 reported the current variation in a 64 by 64
packed VCM array after forming, where the variation is random
overall and deterministic in a certain region, which might be
contaminated during fabrication.111 They also explored the
cumulative probability of devices’ current after the 1st, 10th,
and 100th set and reset pulses over 100 devices, showing a wide

and stochastic distribution of the pulse (A.C.) operation.111

Such a problem can be caused by intrinsic properties of the
switching material. As shown in Fig. 12a–c, by changing the
switching material, the distribution of LRS and HRS current is
improved over cycles and among 1000 devices.172 The stochas-
tic nature of filament formation and rupture, exacerbated by
manufacturing-induced jitters, has caused a significant varia-
tion of programmed resistance values used to represent the
weights in the ANN. Random variations in weights have been
shown to negatively impact network’s learning and prediction
accuracy111,171,172,247 because with the intra-device variation,
the resistance can sometimes overlap with each other, causing
inaccurate weight storage. This is worsened by the superposi-
tion effect of the inter-device variation for the array level
application, as shown in Fig. 12d. As shown in Fig. 12e and f,
for a 5-level storage device, the probabilistic density function
(PDF) of the current overlaps after temperature retention,
which causes the disturbance in training and testing of a two-
layer neural network, dropping from 82.6% accuracy to 72% in
the MNIST database.172 As compared to the results from fresh
samples shown in Fig. 12g, the confusion matrix of the testing
results in Fig. 12h clearly shows the compromised results. The
problem also renders online network training impractical.
Training is carried out offline via simulation and then the
optimized weights programmed into the memristor array. On
the other hand, the issue is less severe in interface-controlled
memristor devices because of the better resistance modulation
in a small dynamic range, as analysed in the benchmarking.
For instance, Yao et al.68 used an ICM device and demonstrated
through discussion of its physics that devices’ resistance states
are only modulated between the interfacial layers given good
control and stability and therefore suitable for hybrid training
(baseline weights obtained offline and updating online) a CNN
accelerator and achieved 3.81% final test error in the MNIST
dataset.

The other challenge lies in the sneak path current in a
passive crossbar array and the lack of a compact, reliable
selector or access device to suppress it. A sneak path current
is a parasitic current added, by neighbouring memristors in the
low-resistance state, to the read current of a memristor in the
high-resistance state thus giving rise to a wrong read-out value.
The typical way to solve this problem is to isolate memristors
from one another using access transistors,169 like in the current
dynamic random-access memory. However, doing so erodes the
high integration density and process simplicity advantages of
the crossbar architecture. Some researchers have proposed
threshold or volatile switching devices with the same structure
as memristors as potential selector devices.214,248 The sneak
path current issue has on the other hand motivated the devel-
opment of memory transistors, which combine both the select
and memory functions in a single device.

Another issue with memristors lies with the implementation
of the STDP learning rule, which is crucial to the operation of
SNNs. As shown in many papers,140,249 shaping and overlap-
ping of voltage waveforms at the two terminals are required to
achieve the desired outcomes. This adds substantial complexity
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to the design of supporting circuitry. To date, system-level
implementation of SNNs based on memristors has not been
demonstrated.

B. Guidelines

From the proposed benchmark and the analysis of a tiny corner
of the publications, we screen out several pathways for low-
energy consumption, high-speed, and highly robust artificial
neuron and synapse devices towards the neuromorphic electro-
nics era. Here, useful insights on the statistical data regarding
memristive devices are provided.

Intra-device design. As discussed earlier, there is never a
perfect device, but always room for improvement. Summarized
from the benchmarking, three pathways to optimize the fila-
mentary type devices for synaptic applications are illustrated in
Fig. 13. The rule of thumb in filamentary neuromorphic devices
is the engineering of the filaments. The most intuitive but
aggressive way is confining the conductive filament by direct
etching of the dielectrics gives a physical channel for the flow of
the filament, as illustrated in Fig. 13a.147 The confined fila-
ments contribute to a mostly linear potentiation and depres-
sion (Fig. 13b), as well as low device-to-device and die-to-die

variation. Less aggressively, the filament can be controlled
precisely with electro-manipulation. Rao et al. used a custo-
mised write-verification programming method to achieve nano-
scale filament control as shown in Fig. 13c, where small pulses
with precise control reduce the filament sizes, as confirmed
from the C-AFM images. And eventually, it gives 2048 conduc-
tance states, as shown in Fig. 13d.

Another major optimization path is to reduce the filament
by material designing. Here two designs of memristive neuro-
morphic devices with common feature are stressed: conduction
engineering (Fig. 13e and f) and electron/thermal (barrier)
modulation of filaments (Fig. 13h and i). Firstly, from
Fig. 11a, the energy consumption per spike for different devices
spreads from tens of femto-joules to hundreds of milli-joules. It
is obvious that Joule heat contributes most besides the energy
used for switching since there are no light, sound, or haptic
emission during switching. Thus, to control heat generation is
one of the most important ways to reduce energy consumption,
especially action energy. One approach is to create a potential
barrier by introducing multiple layers to slow down filament
migration (Fig. 13e)94,101,225 or using less diffusive filaments as
the electrode.122,244 The benefit of multiple repeating layers

Fig. 12 Challenges in variability. (a)–(c) Variability caused by materials on device-to-device over cycles statistics: pulse (A.C.) endurance test for 1000
devices with different switching materials, i.e., pHfO for polycrystalline hafnia (a), aHfO for amorphous hafnia (b), and HfAlO for hafnium aluminium oxide
(c) (|Vset| = 1.2 V, |Vreset| = 1.8 V). (d) Device-to-device variation on over 104 PCM cells with 50 consecutive potentiation pulses (tpulse = 50 ns, Ipulse =
100 mA) operation. The inset of (d) shows device conductance distribution after 10 and 40 pulses, both shapes’ normal distributions. (e)–(h), Temperature
instability for multibit operation: e and f, current probabilistic density functions read at 0.5 V before (e) and after (f) 125 Celsius degree baking, where the
latter shows a significant overlap between current states between the states. (g–h) Confusion matrix on MNIST classification results before (g) and after
(h) 1 hour annealing, accuracy drops from 86.5% to 72% after 125 Celsius degree baking. Credits: (a)–(c) and (g), (h) are reproduced under CC-BY licence
from ref. 111, copyright Milo et al. 2019 AIP Publishing; d is reproduced under CC-BY licence from ref. 172, copyright Sebastian et al. 2017 Springer Nature.
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reflected in the good linearity of potentiation and depression,
as shown in Fig. 13g. Another design is to introduce a single
modulation layer to mitigate the filament formation and rup-
ture (Fig. 13h). Among materials used in the benchmarked
devices, TaOx,104,107,125,218 TiOx,115 and VOx

214 are investigated
and reported to have such functions. As shown in Fig. 13i, they
function as the overshoot suppression layer by modulating the
conductive filament diffusion, which is also a key factor to
reduce the action energy, increase linearity of synapse potentia-
tion and depression and to lower the standby power. Rao et al.’s
work also adopted a similar approach using nanometre thin
Al2O3 and Ti functioning as an electro/thermal modulation
layer to help with filament control.

In complete contrast, non-filament switching layers are
used to suppress the conduction of electrons/vacancies and
heat.149,150,153,154 Good energy control of ferroelectric and spin-
tronic devices can also be attributed to the same reason that
switching is modulated by using the potential difference of
electron dipoles and different orbits of magnetization, allowing
no actual filament conduction inside the device, which ulti-
mately results in little Joule heat generation.

Inter-device configuration. Until now, the focus has
been on device level discussion (intra-device). It is not
enough, however, without mentioning the device-to-device
configuration (inter-device). Typically, intra-device stacks are

simple: metal–insulator–metal (MIM) for most devices and
metal–ferroelectric–insulator–semiconductor (MFIS) for ferro-
electric devices. As shown in Fig. 14a–g, inter-device configura-
tions are variously enabled by the innovative ideas of people:
passive crossbars shown in Fig. 14a (1 memristive device only,
1MR crossbar), active crossbars Fig. 14b (1 memristive device
built on the drain of a transistor, a 1T1MR crossbar, or a 1
selector built on the top of the memristive device,248 1S1MR, or
1 memristive device connected to the source of the ferroelectric
transistor,250 1F1MR), and 2 series memristive devices/cross-
bars shown in Fig. 14c (a series connection of 2 memristive
devices,142 series-2MR, or reconfigurable selector/memristor
enabled by two switching layers,214 1S/MR).

Active and passive crossbars. As shown in Fig. 14a and b, the
crossbar (cross-point, x-bar) configuration comprises the
device(s) connected by two perpendicular electrodes. No matter
whether active or passive, crossbar connection makes large
scale integration of memristive neuron or synapse devices
possible and requires a CMOS-compatible fabrication process,
which brings more challenges in variation control in deposi-
tion, lithography, etching, etc., especially for emerging materi-
als. No pain, no gain; nevertheless, the complex and high-
standard fabrication trades off for more opportunities.

Fig. 13 Intra-device nanoscale optimization path for neuromorphic applications. (a) Selective etching of epitaxial SiGe to form a channel for metal
filaments. (b) Long-term potentiation and depression of the epi-SiGe devices, showing good linearity. (c) C-AFM images of the Ta/Ti/Al2O3/HfO2/Pt
device before and after using a custom denoising write-verification pulse program, showing a better control filament using such a pulsing scheme.
(d) The 2048 conductance states obtained from fine conductance tuning of the device in (c). (e) Device with multiple repeated switching layers, or
superlattice-like (SLL) structure, TEM image of such a structure is shown in (f). (g) Enhanced long-term potentiation and depression achieved by the SLL
device in (f). (h) Device with overshoot suppression layer (OSL) or electro-/thermal modulation layer (ETML), TEM image of such a structure is shown in (i).
(j) C-AFM image comparisons of the device without OSL and with OSL in LRS and HRS, confirming the reduced filament size in OSL devices. Credits:
(a) and (b) are reproduced with permissions from ref. 147, copyright 2018 Choi et al. 2017, under exclusive licence to Macmillan Publishers Limited, part of
Springer Nature; (c) and (d) are reproduced with permission from ref. 212, copyright 2023 Rao et al. under exclusive licence to Springer Nature Limited; e
is adapted from ref. 104, 107, 115, 125, 214 and 218; (f) and (g) are reproduced under CC-BY licence from ref. 101, copyright Wang et al. 2022 Wiley-VCH
GmbH; h is adapted from ref. 94, 101 and 225; (i) and (j) are reproduced under CC-BY licence from ref. 115, copyright Kim et al. 2022 Wiley-VCH GmbH.
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Passive crossbars progressed slowly since the first validation
of the passive crossbar idea by Prezioso et al. on a 10 by 10 array
(Fig. 14d)69 because of the sneak path challenges of the passive
crossbar, as elaborated in the above sections. In our bench-
mark, standby power metrics show the potential of a device to
minimize sneak path current. Particularly, standby power of
FTJ and interfaced-controlled memristive devices is signifi-
cantly lower than that of the others shown in Fig. 11c, which
facilitates their potential in passive array application: a 5 by 5
FTJ array built by Berdan et al. showed that the VMM error of
the expected output was normally distributed with a standard
deviation of 0.77% (6-bit analogue precision), and the esti-
mated power consumption of which under the F-MNIST net-
work gave a 157.5 TOPS/W efficiency.70

For the active crossbars shown in Fig. 14e, substantial
progress has been made with the help of the most advanced
fabrication foundry since the first demonstration of a PCM
active array.251 In 2021, Xue et al. achieved 195.7 TOPS/W edge
computation using a 4-megabit 8-precision ReRAM chip built
with 22 nm technology,252 which evolved from 14.6 ns MAC
speed (53.17 TOPS/W) by a 1 megabit 8-precision ReRAM chip
based on 55 nm technology.253 Among active crossbar config-
urations, 1F1MR and 1S1MR are the most unique. Chen et al.
built a 4-bit 1F1MR crossbar array, a memristive device with

connection to the source of one ferroelectric transistor, which
provides more memory states than the single-state access
transistor.250

Series devices. Duan et al. introduced a 4 by 4 passive array of
non-volatile memristive synaptic device in connected in series
with a volatile neuron device,142 as shown in Fig. 14f, emulating
8 neurons fully connected by 16 synapses, based on which they
demonstrated supervised pattern recognition and coincidence
detection. Woo et al. built a three-terminal device with one
selector device stacked on the top of a memristive device with a
middle selector electrode to minimize the sneak path current as
shown in Fig. 14g.248 This compact device array can perform 3
by 3 bit ‘‘L’’, ‘‘I’’, and ‘‘X’’ pattern classification accurately using
pre-trained synaptic weight.

C. Outlooks

Spatial-temporal signal processing by memristive neurons
and synapses. Spatial signal detection with memristive
devices can be traced back to as early as 2012; Kuzum et al.
using simulations based on PCM devices performed the
distorted letter reconstruction and noise reduction164 and
Kim et al. used a 40 by 40 active ECM array to reconstruct
the input bitmap logo as shown in Fig. 15a where the
corresponding device conductance distribution remains the
window (Fig. 15b).136 While their work centred on spatial
signal reconstruction, Sabastian et al.172 used a 1 million
PCM array to map the temporal signals, where the temporal
rainfall data were fed to the array by several series of pulse
trains, as shown in Fig. 15c and the conductance states of the
device array showed good correspondence to the inputs in
Fig. 15d.

Spatial-temporal signal processing, or simplified hardware
SNN was realized later using 1000 synapses with N-PCM
devices, each synapse reported by Boybat et al.171 using a
software LIF neuron, as shown in Fig. 15e. Experimental results
in Fig. 15f show that a 7-PCM synapse with 1 software neuron
can distinguish the correlated inputs by the STDP learning rule.
To make a fully memristive SNN, Duan et al.142 used a TiOx

synapse and NbOx LIF neurons to emulate the biological neural
network. The schematic is shown in the inset of Fig. 15g and
the SEM and TEM images of the device array and cross-section
of a single device are shown in Fig. 14f. Their system can detect
the coincident signal (green and orange waveforms) and spikes
through the NbOx artificial neurons as shown in the blue
waveform in Fig. 15g. Wang et al.85 then developed a sound
azimuth angle detection system using 2 by 2 synapse arrays
based on the STDP learning rule, as shown in Fig. 15h. As
elaborated in Fig. 15i, the sound wave travels different dis-
tances before reaching left and right ears, so the inter-aural
time difference (ITD) between two inputs will pass to the
synapses where one synapse is inhibited and the other is
excited because of STDP. In turn, a voltage difference taken
between the two synapses can be correlated with ITD, which
can be transposed into a sound azimuth angle, as shown in
Fig. 15j.

Fig. 14 Inter-device designs: (a) passive crossbar structure (SEM image of
a 10 by 10 memristor array is shown in (d). (b) active crossbar structure, the
pass transistor or selector offers the third terminal to these configurations,
where the pass transistor or selector could be a traditional field effect
transistor, whose SEM-EDX image is shown in (e), or ferroelectric field
effect transistor. (c) series memristors, typically with (right) the inter-
device’s third terminal, which can be in planar structure and connected
by interconnects (SEM shown in (f), where the upper inset is the NbOx

memristor and the lower inset is the TaOx memristor, with their respective
TEM images) or vertically stacked (TEM images and schematic shown in
(g)). Credits: d is reproduced with permission from ref. 69, copyright
Prezioso et al. 2015 Springer Nature Limited, e is reproduced under CC-
BY licence from ref. 111 copyright Milo et al. 2019 AIP Publishing; f is
reproduced under CC-BY licence from ref. 142, copyright Duan et al. 2020
Springer Nature; and g is reproduced with permission from ref. 248,
copyright Woo et al. 2022 Wiley-VCH GmbH.
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Fig. 15 Spatial-temporal signal processing by memristive devices. (a) and (b) Spatial signal mapping using a 40 by 40 active ECM array where a is the
reconstructed bitmap image and b is the distribution of 1600 device conductance states showing no overlapping between the states. (c) and (d) Temporal
signal mapping using a 1000 by 1000 PCM device array to map the real rainfall data in a time-series pulse train (c) to the device array where it shows
excellent correlation between the rainfall precipitation and the device conductance (d). (e) and (f) Spatial-temporal signal classification using
1000 synapses x N PCM devices per synapse and one software LIF neuron based on STDP learning rule (e), in which the correlated inputs can be
well distinctive from the others when N = 7 (f). (g) Spatial-temporal signal classification using multi-TaOx synapses and NbOx LIF neuron (inset of (g)) to
detect the input correlation or synchronous input pulses, where synchronized events are the output current in blue colour. (h)–(j) Sound azimuth angle
detection by a 2 by 2 synapse array (h). The inputs of left and right ear (top waveform in (i)) differ by an inter-aural time difference (ITD, middle waveform
in (i)) gives a differential Vint (bottom waveform in (i)) which can be fitted to the red curve in (j) to identify the sound azimuth angle. Credits: (a) and (b) are
reprinted with permission from ref. 136, copyright Kim et al. 2012 American Chemical Society; (c) and (d) are reproduced under CC-BY licence from
ref. 172, copyright Sebastian et al. 2017 Springer Nature; (e) and (f) are reproduced under CC-BY licence from ref. 171, copyright Boybat et al. 2018
Springer Nature; (g) is reproduced under CC-BY licence from ref. 142, copyright Duan et al. 2020 Springer Nature; (h)–(j) are adapted from ref. 85,
r Wang et al., some rights reserved; exclusive license AAAS. Distributed under a CC BY-NC 4.0 license. Reprinted with permission from AAAS.
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7. Summary

Amazed by the natural beauty of the neurons and synapses,
researchers have re-invented the basic computing units of the
silicon-based chips and named them commonly as neuro-
morphic devices. Neuromorphic devices are hoped to be the
driving force to overcome the bottlenecks we have created in
the current IC technologies: power, speed, and communication
of the processors, memory, and sensors. Fantasies or reality,
neuromorphic devices have gained enormous attention, never-
theless. It is indeed the time to peel off the clothes of this new
emperor and review the progress made so far in a fair criterion.
Therefore, along the journey this article has led, the emergence
of neuromorphic devices and advances with current technolo-
gies are briefed, nanoscale mechanisms of resistive-switching-
based neuromorphic devices are discussed, and mostly, uni-
versal benchmarks of the devices for synaptic applications are
introduced, based on which the challenges are analysed, guide-
lines are suggested, and an outlook is envisioned. Reports on
neuromorphic devices are presented in such delicate ways with
fantastic data and imaginative but practical applications that
one may find it difficult to compare fairly. However, with the
provided benchmark, this work enables the comparison of
substantial metrics on energy and speed performance between
various neuromorphic devices.

Thomas Edison did not invent the light bulb in one night
and he surely could not have envisaged a world with countless
light-emitting diodes in people’s pockets. However, he taught
the story of believing in the failures. Here, by committing to the
drawbacks found by analysing the reported works, possible
guidelines for intra-device and inter-device optimization of the
resistive-switching-based devices are provided. The outlook on
the applications of neuromorphic devices is discussed briefly to
show their capability. And admittedly, in this emerging field,
the only limitation is the imagination. Combining all the power
and creativity the neuromorphic devices carried with them, we
may foresee the brain on a chip in the near future.
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109 G. González-Cordero, M. Pedro, J. Martin-Martinez,
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P. Yao, J. J. Yang, G. Indiveri, J. P. Strachan, S. Datta, E. Vianello,
A. Valentian, J. Feldmann, X. Li, W. H. P. Pernice, H.

Review Nanoscale Horizons

Pu
bl

is
he

d 
on

 0
7 

8 
20

23
. D

ow
nl

oa
de

d 
on

 2
02

4-
06

-2
9 

 1
0:

05
:4

2.
 

View Article Online

https://doi.org/10.1002/adma.202206042
https://doi.org/10.1002/aelm.202101139
https://doi.org/10.1002/aelm.202101139
https://doi.org/10.1039/d3nh00180f


1484 |  Nanoscale Horiz., 2023, 8, 1456–1484 This journal is © The Royal Society of Chemistry 2023

Bhaskaran, S. Furber, E. Neftci, F. Scherr, W. Maass,
S. Ramaswamy, J. Tapson, P. Panda, Y. Kim, G. Tanaka, S.
Thorpe, C. Bartolozzi, T. A. Cleland, C. Posch, S. Liu, G. Panuccio,
M. Mahmud, A. N. Mazumder, M. Hosseini, T. Mohsenin,
E. Donati, S. Tolu, R. Galeazzi, M. E. Christensen, S. Holm,
D. Ielmini and N. Pryds, Neuromorphic Comput. Eng., 2022,
2, 022501.

246 S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi and G. W. Burr, Nature, 2018,
558, 60–67.

247 D. Querlioz, O. Bichler and C. Gamrat, The 2011 Interna-
tional Joint Conference on Neural Networks, San Jose, CA,
USA, 2011.

248 H. C. Woo, J. Kim, S. Lee, H. J. Kim and C. S. Hwang, Adv.
Electron. Mater., 2022, 8, 2200656.

249 M. Ismail, H. Abbas, A. Sokolov, C. Mahata, C. Choi and
S. Kim, Ceram. Int., 2021, 47, 30764–30776.

250 W.-C. Chen, F. Huang, S. Qin, Z. Yu, Q. Lin, P. C. Mcintyre,
S. S. Wong and H.-S. P. Wong, 2022 IEEE Symposium on
VLSI Technology and Circuits (VLSI Technology and Cir-
cuits), Honolulu, HI, USA, 2022.

251 S. B. Eryilmaz, D. Kuzum, R. Jeyasingh, S. Kim, M. BrightSky,
C. Lam and H.-S. P. Wong, Front. Neurosci., 2014, 8, 205.

252 C.-X. Xue, J.-M. Hung, H.-Y. Kao, Y.-H. Huang, S.-P. Huang,
F.-C. Chang, P. Chen, T.-W. Liu, C.-J. Jhang, C.-I. Su, W.-
S. Khwa, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Y.-
D. Chih, T.-Y. J. Chang and M.-F. Chang, 2021 IEEE
International Solid-State Circuits Conference (ISSCC), San
Francisco, CA, USA, 2021.

253 C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin,
J.-H. Wang, W.-C. Wei, T.-W. Chang, T.-C. Chang, T.-Y.
Huang, H.-Y. Kao, S.-Y. Wei, Y.-C. Chiu, C.-Y. Lee, C.-C. Lo,
Y.-C. King, C.-J. Lin, R.-S. Liu, C.-C. Hsieh, K.-T. Tang and
M.-F. Chang, 2019 IEEE International Solid-State Circuits
Conference – (ISSCC), San Francisco, CA, USA, 2019.

Nanoscale Horizons Review

Pu
bl

is
he

d 
on

 0
7 

8 
20

23
. D

ow
nl

oa
de

d 
on

 2
02

4-
06

-2
9 

 1
0:

05
:4

2.
 

View Article Online

https://doi.org/10.1039/d3nh00180f



