Cite this: Nanoscale Adv., 2023, 5, 5683

Received 31st August 2023
Accepted 22nd September 2023
DOI: 10.1039/d3na00712j
rsc.li/nanoscale-advances

Nanocomposites of $\mathrm{Cu}_{2} \mathrm{O}$ with plasmonic metals (Au, Ag): design, synthesis, and photocatalytic applications

Enrico Daniel R. Legaspiab and Michelle D. Regulacio (1)*a

Abstract

Metal-semiconductor nanocomposites have been utilized in a multitude of applications in a wide array of fields, prompting substantial interest from different scientific sectors. Of particular interest are semiconductors paired with plasmonic metals due to the unique optical properties that arise from the individual interactions of these materials with light and the intercomponent movement of charge carriers in their heterostructure. This review focuses on the pairing of $\mathrm{Cu}_{2} \mathrm{O}$ semiconductor with strongly plasmonic metals, particularly Au and Ag . The design and synthesis of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Ag}-\mathrm{Cu}_{2} \mathrm{O}$ nanostructures, along with ternary nanostructures composed of the three components, are described, with in-depth discussion on the synthesis techniques and tunable parameters. The effects of compositing on the optical and electronic properties of the nanocomposites in the context of photocatalysis are discussed as well. Concluding remarks and potential areas for exploration are presented in the last section.

1. Introduction

Nanomaterials have been the subject of intensive study in recent decades due to the structural and size effects that bestow them with unique properties that are not seen in bulk materials. Of notable interest are their optical properties that arise from their interactions with electromagnetic radiation or light. Given

[^0]

Enrico Daniel R. Legaspi received his MS in Materials Science and Engineering from the University of the Philippines Diliman, where he is presently pursuing his PhD under the mentorship of Dr Michelle D. Regulacio. His research revolves around the design and synthesis of metal-semiconductor nanocomposites with properties that are useful in catalytic and sensing applications.
that nanomaterials possess particle dimensions in the nanometer range, they are smaller than the wavelengths of light they interact with, resulting in optical properties that are different from those of bulk materials. Two prime classes of materials that display interesting optical behavior at the nanoscale are metal oxide semiconductors and plasmonic metals. Nanomaterials of metal oxide semiconductors (e.g. $\mathrm{TiO}_{2}, \mathrm{ZnO}$, and $\left.\mathrm{Cu}_{2} \mathrm{O}\right)$ possess tunable band structures that generate valuable electron-hole pairs when illuminated with light. ${ }^{1,2}$ Meanwhile, the interaction of plasmonic metal (e.g. Au, Ag, and Cu) nanomaterials with light gives rise to localized surface plasmon

Michelle D. Regulacio earned her PhD in Chemistry from Georgetown University and trained as a postdoctoral researcher at Princeton University. She was a research scientist at $A^{*} S T A R$ Singapore before joining the University of the Philippines Diliman as an associate professor. Her research focuses on the design and synthesis of inorganic nanomaterials (metals, semiconductors, and their hybrids), with applications in the fields of catalysis, sensing, biomedicine, textile functionalization, and energy conversion and storage.
resonance (LSPR), which dictates the optical activity of these materials. ${ }^{3,4}$ With their remarkable optical properties, both classes of nanomaterials can be used in a plethora of applications that cut across a wide range of scientific disciplines. However, maximizing the use of metal oxide semiconductors and plasmonic metals is challenging due to the drawbacks associated with each material. To attenuate these drawbacks, these materials can be composited with each other to create metal-semiconductor nanocomposites. ${ }^{5-11}$ The coupling takes advantage of the individual properties of each component and even possibly elicits synergistic effects while mitigating the negative aspects.

Numerous review articles have been published on metalsemiconductor nanocomposites, but many of these existing reviews are more general in terms of the materials that are coupled together to form the composite. ${ }^{5-8,12-14}$ This review gives particular attention to the pairing of semiconducting $\mathrm{Cu}_{2} \mathrm{O}$ with the plasmonic metals (PM) Au and Ag. The growing body of literature on this specific pairing over the last decade is a clear indication that research on this topic is rapidly progressing. A review article dedicated to this hybrid combination is therefore timely and relevant. In this review, the design and synthesis of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites are thoroughly described to provide a detailed overview of how these hybrids are formed. Their use in photocatalytic applications are also examined, especially their effectiveness in the photocatalytic degradation of organic dyes.

1.1 Copper(I) oxide $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$ nanomaterials

Cuprous oxide $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$ is a semiconductor that exhibits tunable optical properties in its nanostructured form. It is highly attractive for practical applications because it is made up of elements that are inexpensive, earth-abundant, and nontoxic. Synthesis of their nanostructures is relatively simple. They are usually prepared through facile chemical reduction procedures at mild temperatures and basic pH conditions. Numerous $\mathrm{Cu}_{2} \mathrm{O}$ nanostructures, such as nanocubes, nanooctahedra, nanospheres, nanowires, nanotubes, and nanoplates, have been synthesized, with nanocubes being the most common morphology due to the cubic crystal structure of $\mathrm{Cu}_{2} \mathrm{O}^{15-19}$ The type of exposed crystal facets in $\mathrm{Cu}_{2} \mathrm{O}$ nanostructures has been shown to affect their photocatalytic behavior. ${ }^{20,21}$ Thus, modification of their photocatalytic properties can be readily achieved through careful morphological control.
$\mathrm{Cu}_{2} \mathrm{O}$ is a p-type semiconductor with a theoretical band gap of 2.2 eV . Similar to other leading metal oxide semiconductors like TiO_{2} and $\mathrm{ZnO}, \mathrm{Cu}_{2} \mathrm{O}$ generates electron-hole pairs when irradiated with photons. Electrons are excited from the valence band to the conduction band when the energy of incident photons exceeds the band gap energy. The wavelengths of light that correspond to this energy for TiO_{2} and ZnO are in the ultraviolet (UV) spectral range. For $\mathrm{Cu}_{2} \mathrm{O}$, its band gap energy lies in the more desirable visible region. This enables $\mathrm{Cu}_{2} \mathrm{O}$ to take advantage of solar radiation, which is rich in visible photons. The excitation of electrons by light leaves behind positively charged holes in the valence band. These photogenerated electron-hole pairs and the subsequent associated
decay processes grant $\mathrm{Cu}_{2} \mathrm{O}$ its photocatalytic properties. Unfortunately, the electron-hole pairs generated have a high recombination rate in pure $\mathrm{Cu}_{2} \mathrm{O}$ particles, which limits its potential applications. ${ }^{19}$

1.2 Au and Ag nanomaterials

Au and Ag are regarded as plasmonic metals due to their unique interactions with electromagnetic radiation, specifically radiation with wavelengths that correspond to their surface plasmon resonance. ${ }^{3,4}$ When incident light reaches the surface of the plasmonic metal nanoparticle, coupling occurs between the electrons in the metal and the oscillating light wave, resulting in the coherent oscillation of electrons. The incoming electric field causes excitation in the nanoparticle, while the out-ofequilibrium surface charges produce a restoring electric field. When the external field oscillates at the frequency of the particles' resonant mode, the incoming and restoring electric fields sync and cause an increase in the amplitude of the electric field surrounding the plasmonic metal particle. This phenomenon is termed localized surface plasmon resonance and is known to induce near-field enhancements in highly localized regions just a few nanometers around the particle.

The LSPR frequency is highly dependent upon several factors, such as the size and morphology of the nanomaterial, the identity or composition of the metal, and the index of refraction of the surrounding medium. ${ }^{22-25}$ Changing any of these variables through various synthesis procedures allows for the tuning of the position of the LSPR peak, which consequently dictates the material's potential applications. The extinction spectra of spherical Au nanoparticles typically show an LSPR band peaking at around $520 \mathrm{~nm} .{ }^{24}$ This peak was found to redshift with increasing particle size and with aggregation, as well as in high-refractive index environments. For anisotropic Au nanostructures (e.g. nanorods and nanostars), multiple LSPR bands that extend to longer wavelengths of light are observed as a consequence of multiple resonance modes. ${ }^{26,27}$ In the case of Ag, the LSPR peak for simple spherical nanoparticles is typically found at shorter wavelengths of approximately $400 \mathrm{~nm} . .^{28,29}$ Similar to Au, this LSPR peak shifts to longer wavelengths when the particle size is increased, when aggregated, or when surrounded with a high-refractive index material. Additionally, shape anisotropy gives rise to several Ag LSPR bands that cover a wider spectral range.

Although Au and Ag exhibit similar optical effects, there are a number of considerations to be made when deciding whether Au or Ag will be used for particular applications. Au nanoparticles are stable and relatively easy to synthesize in diverse shapes and sizes. ${ }^{24,26} \mathrm{Au}$ nanoparticles are also biocompatible and can directly conjugate and interact with various biomolecules (e.g. proteins, antibodies, and nucleic acids), which make them ideal for use in biomedical applications. ${ }^{30,31}$ However, a significant drawback that limits the widespread application of Au nanoparticles is the high cost of Au . Ag nanoparticles have diverse uses for a number of reasons. Ag has the highest electrical and thermal conductivity among all metals and exhibits the strongest plasmon response, even greater than Au. ${ }^{25,32}$ In
terms of cost, Ag is substantially cheaper than Au. However, unlike Au, Ag cannot be haphazardly used in biomedical applications due to its cytotoxicity. ${ }^{33}$ Additionally, Ag reacts with sulfur in the air and forms a silver sulfide film on its surface. ${ }^{34}$

1.3 $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites

Individually, $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{Au}$, and Ag exhibit exceptional properties, but they are not without issues, as noted in the preceding subsections. Constructing nanocomposites of $\mathrm{Cu}_{2} \mathrm{O}$ with Au or Ag or both plasmonic metals can help address the downsides of the individual components. For instance, the high recombination rate of photogenerated electron-hole pairs in $\mathrm{Cu}_{2} \mathrm{O}$ can be mitigated by compositing it with a metal, which creates a Schottky junction at the metal-semiconductor interface. ${ }^{35}$ This heterojunction is a potential energy barrier that hinders the recombination of charge carriers, effectively promoting electron-hole separation that can then lead to an enhancement in photocatalytic activity. Aside from the Schottky junction effect, there are other photocatalytic enhancement mechanisms that come into play when the metal used is strongly plasmonic. These plasmon-mediated mechanisms are described in detail in Section 3.

In terms of cost, pairing precious Au with inexpensive $\mathrm{Cu}_{2} \mathrm{O}$ produces a more economical material. In the case of Ag , compositing with $\mathrm{Cu}_{2} \mathrm{O}$ can result in a more durable material. Moreover, coupling these plasmonic metals with $\mathrm{Cu}_{2} \mathrm{O}$, which has a higher refractive index than water, presents a critical variable that can be controlled to tune their LSPR frequency. For example, when Au nanoparticles are encased in a $\mathrm{Cu}_{2} \mathrm{O}$ shell, the Au LSPR band redshifts and broadens with increasing thickness of the $\mathrm{Cu}_{2} \mathrm{O}$ shell, as shown in Fig. $1 .{ }^{36}$ Because the LSPR frequency can also be modulated by controlling the size and morphology of the plasmonic metal component, the creation of rationally designed $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites can allow for absorption of light over a wider range of wavelengths. This is
especially beneficial for solar-driven applications, as being restricted to a narrow spectral range is detrimental to the practicality of using these materials.

2. Design and synthesis of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites

Nanocomposites of $\mathrm{Cu}_{2} \mathrm{O}$ with PMs come in a variety of hybrid configurations, which depend on the synthesis technique, the relative amount of each component, and the reaction conditions. The structures of these materials have a significant effect on their photocatalytic properties, which emphasizes the necessity of understanding how these structures are formed. In line with this, this section details the design and synthesis of various $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Ag}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites, including ternary structures that contain all three materials. A summary of the various $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites that have been reported in the literature is presented in Table 1.

2.1 Core-satellite structure

The core-satellite structure (also termed decorated structure or planet-satellite structure) is a nanocomposite configuration that consists of a singular core or "planet" of one component with smaller structures of the other component scattered along its surface like "satellites." A key feature of core-satellite structures is that both components have exposed surfaces, which allow for direct interaction with possible substrates or targets. The properties of these materials are dependent not only on the overall structure itself but also on the individual structure of each component. For core-satellite structures of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$, the satellite component is usually the plasmonic metal, of which small nanoparticles decorate the surface of the larger $\mathrm{Cu}_{2} \mathrm{O}$ core. ${ }^{37-45}$ Adorning the $\mathrm{Cu}_{2} \mathrm{O}$ core with PM satellites instead of encapsulating it in a full PM shell minimizes the consumption of the costly noble metal.

Fig. 1 (a) TEM image of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites with a core-shell structure. (b) UV-vis spectra and photograph (inset) of colloidal dispersions of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ core-shell nanocomposites with increasing $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness (from left to right), clearly showing the redshifting of the LSPR band. Reproduced with permission from ref. 36. Copyright 2012 American Chemical Society.
Table 1 Various designs of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites and the mode of synthesis used for their preparation

Hybrid configuration	Morphology, size	Modified feature/s	Synthesis method	Ref
(A) Core-satellite				
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: porous sphere, $150-200 \mathrm{~nm}$ Au satellite size: tuned, $5-25 \mathrm{~nm}$	Au size	Two-pot	37
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: cube, 200 nm ; octahedron, 500 nm ; rhombic dodecahedron, 370 nm Au satellite size: $\leq 10 \mathrm{~nm}$	$\mathrm{Cu}_{2} \mathrm{O}$ morphology	Two-pot	40
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: octahedron, 136 nm (edge length) Au satellite size: 6.8 nm	Au position Hybrid configuration	Two-pot	44
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: sphere, 800 nm ; cube, 700 nm (edge length); 3D flower with elongated petals Au satellite size: $\sim 10 \mathrm{~nm}$	$\mathrm{Cu}_{2} \mathrm{O}$ morphology	Two-pot	45
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: different polyhedral shapes, $100-150 \mathrm{~nm}$ Au satellite size: 20 nm	$\mathrm{Cu}_{2} \mathrm{O}$ morphology Hybrid configuration Metal component (Au, Pd)	Two-pot	42
Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: octahedron, 300-500 nm (edge length) Au satellite size: $20-50 \mathrm{~nm}$	Metal component (Au, Ag)	Two-pot, with light irradiation	39
Ag-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: same as above Ag satellite size: $10-30 \mathrm{~nm}$			
Ag-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: truncated cube, 700 nm (edge length) Ag satellite size: $25-30 \mathrm{~nm}$	Ag amount/density	One-pot	38
Ag-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: cube, $1.2 \mu \mathrm{~m}$ (edge length) Ag satellite size: 10 nm	Ag amount/density	One-pot	43
Ag-decorated $\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cu}_{2} \mathrm{O}$: different polyhedral shapes, 1.6-2.5 $\mu \mathrm{m}$ (diagonal size) Ag satellite size: tuned, $10-20 \mathrm{~nm}$	$\mathrm{Cu}_{2} \mathrm{O}$ morphology Ag size, amount/density	One-pot	41
$\mathrm{Cu}_{2} \mathrm{O}$-decorated Au	Au : hexoctahedron, 130 nm $\mathrm{Cu}_{2} \mathrm{O}$ satellite size: 90 nm	Hybrid configuration	Two-pot	46
(B) Core-shell				
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au and $\mathrm{Cu}_{2} \mathrm{O}$: different anisotropic and faceted shapes (e.g. cuboctahedron, truncated icosahedron, rod, plate)	Au morphology $\mathrm{Cu}_{2} \mathrm{O}$ morphology	Two-pot	50
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au and $\mathrm{Cu}_{2} \mathrm{O}$: different shapes (e.g. octahedron, cube, rod), tunable size	Au size, morphology $\mathrm{Cu}_{2} \mathrm{O}$ size, morphology	Two-pot	57
$\mathrm{Au@Cu} \mathrm{~L}_{2} \mathrm{O}$	Au : rhombic dodecahedron, truncated octahedron, icosahedron, trisoctahedron $\mathrm{Cu}_{2} \mathrm{O}$: face-raised cube, cuboctahedron, octahedron, truncated icosahedron	Au morphology $\mathrm{Cu}_{2} \mathrm{O}$ morphology	Two-pot	60
$\mathrm{Au@Cu} \mathrm{~L}_{2} \mathrm{O}$	Au : octahedron, tunable size ($50-70 \mathrm{~nm}$) $\mathrm{Cu}_{2} \mathrm{O}$: cube, octahedron, cuboctahedron, tunable size (90-220 nm)	Au size $\mathrm{Cu}_{2} \mathrm{O}$ size, thickness, morphology	Two-pot	56
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au: octahedron, 90 nm $\mathrm{Cu}_{2} \mathrm{O}$: cube and octahedron, $350-420 \mathrm{~nm}$	$\mathrm{Cu}_{2} \mathrm{O}$ morphology	Two-pot	54
$\mathrm{Au@Cu} \mathrm{~L}_{2} \mathrm{O}$	Au: sphere, 60 nm $\mathrm{Cu}_{2} \mathrm{O}:$ sphere to ellipsoid, tunable thickness (2-21 nm)	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot	36
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au : rod, $78 \times 26 \mathrm{~nm}$ $\mathrm{Cu}_{2} \mathrm{O}:$ octahedron, 136 nm (edge length)	Au position Hybrid configuration	Two-pot	44
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au : rod $\mathrm{Cu}_{2} \mathrm{O}$: octahedron, tunable edge length (96-250 nm)	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot	53
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au : rod, $40-60 \mathrm{~nm}$ (length), $10-15 \mathrm{~nm}$ (width) $\mathrm{Cu}_{2} \mathrm{O}$: brick, 40 nm (thickness)	Au morphology	Two-pot	52
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$	Au: rod, $112 \times 37 \mathrm{~nm}($ aspect ratio $=3$)	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot	61

Hybrid configuration	Morphology, size	Modified feature/s	Synthesis method	Ref
$\mathrm{Au@Cu} \mathrm{~L}^{\mathrm{O}}$	$\mathrm{Cu}_{2} \mathrm{O}$: tunable thickness ($15-30 \mathrm{~nm}$)	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot	58
	Overall morphology: flower with Au core and $\mathrm{Cu}_{2} \mathrm{O}$ petals			
	Au: sphere, 16.3 nm			
	$\mathrm{Cu}_{2} \mathrm{O}$: tunable thickness ($2-40 \mathrm{~nm}$)			
$\mathrm{Au@Cu} \mathrm{~L}^{\mathrm{O}}$	Overall morphology: flower with Au cluster core and cube-like $\mathrm{Cu}_{2} \mathrm{O}$ petals	$\mathrm{Cu}_{2} \mathrm{O}$ shell coverage	One-pot	59
	Overall size: 54 nm			
$\mathrm{Au@} \mathrm{Cu}_{2} \mathrm{O}$	Au : sphere, 9 nm	Metal component (Au, Ag, Two-pot, microwave-assisted		51
	$\mathrm{Cu}_{2} \mathrm{O}$: cube, $30-50 \mathrm{~nm}$ (edge length)	Pd)		
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: sphere, 13 nm			
	$\mathrm{Cu}_{2} \mathrm{O}$: cube, $60-80 \mathrm{~nm}$ (edge length)			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: sphere, tunable ($20-100 \mathrm{~nm}$) cube, tunable edge length (40-150 nm)	Ag size, morphology	Two-pot	49
	$\mathrm{Cu}_{2} \mathrm{O}$: tunable thickness	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness		
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Overall morphology: flower with Au spherical core and $\mathrm{Cu}_{2} \mathrm{O}$ petals	$\mathrm{Cu}_{2} \mathrm{O}$ shell uniformity	Two-pot	64
	Overall size: 120 nm			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: wire	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot, with pulsed laser irradiation	65
	$\mathrm{Cu}_{2} \mathrm{O}$: aggregated particles, tunable thickness ($20-140 \mathrm{~nm}$)			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: wire, $10 \mu \mathrm{~m} \times 100 \mathrm{~nm}$ sphere, 100-200 nm	Ag morphology	Two-pot	66
	$\mathrm{Cu}_{2} \mathrm{O}$: aggregated particles, 30 nm thick			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: sphere, 30 nm	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Two-pot	67
	$\mathrm{Cu}_{2} \mathrm{O}$: tunable thickness (11.4-40 nm)			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: sphere, 11 nm	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	One-pot	63
	$\mathrm{Cu}_{2} \mathrm{O}$: tunable thickness ($5.8-11 \mathrm{~nm}$)			
$\mathrm{Cu}_{2} \mathrm{O}$ @Au	$\mathrm{Cu}_{2} \mathrm{O}$: octahedron, $1.4 \mu \mathrm{~m}$	Hybrid configuration	Two-pot, GRR	62
	Au : aggregated particles, $10-50 \mathrm{~nm}$			
$\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{Ag}$	$\mathrm{Cu}_{2} \mathrm{O}$: octahedron, $1 \mu \mathrm{~m}$ (edge length)	Hybrid configuration	Two-pot, GRR	69
	Ag: aggregated particles, $80-100 \mathrm{~nm}$			
$\mathrm{Cu}_{2} \mathrm{O} @ 4 \mathrm{~g}$	$\mathrm{Cu}_{2} \mathrm{O}$: sphere, 400-500 nm	-	Two-pot, thermal decomposition	71
	Ag : aggregated particles			
$\mathrm{Cu}_{2} \mathrm{O} @ 4 \mathrm{~g}$	$\mathrm{Cu}_{2} \mathrm{O}$: hollow sphere, 300 nm	Ag size	One-pot	70
	Ag: aggregated particles, $20-50 \mathrm{~nm}$			
$\mathrm{Cu}_{2} \mathrm{O}$ @Ag	Overall morphology: cube, submicron	-	Hydrothermal	72
$\mathrm{Cu}_{2} \mathrm{O}$ @Ag	$\mathrm{Cu}_{2} \mathrm{O}$: aggregated particles, 150-170 nm	Ag size	Thermal oxidation, magnetron sputtering	68
	Ag: flowers, tunable size			
(C) Yolk-shell				
$\mathrm{Au@Cu} \mathrm{O}^{\mathrm{O}}$	Au : sphere, 22 nm	Void size	Two-pot	78
	$\mathrm{Cu}_{2} \mathrm{O}$: porous hollow sphere, 140 nm			
$\mathrm{Au@Cu} 2 \mathrm{O}$	Au: sphere, 15 and 63 nm	Hybrid configuration Au size Overall size	Two-pot; void formed via Ostwald ripening	80
	$\mathrm{Cu}_{2} \mathrm{O}$: porous hollow sphere			
	Overall size: tuned, 98-183 nm			
$\mathrm{Au@Cu} 2 \mathrm{O}$	Au : bipyramid, $\operatorname{rod}(70 \times 18 \mathrm{~nm})$	Au morphology	Two-pot; void formed via Ostwald ripening	81
	$\mathrm{Cu}_{2} \mathrm{O}$: porous hollow ellipsoid, 30 nm (shell thickness)			
	Overall size: 260 nm			
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Ag: cube, 70 nm	Void size	Two-pot; void formed via Ostwald ripening	82

Table 1 (Contd.)

	(c) EY - NC	a Creative Commons A	ution-NonCommercial 3.0 Unported Licence.	
Table 1 (Contd.)				
Hybrid configuration	Morphology, size	Modified feature/s	Synthesis method	Ref
	$\mathrm{Cu}_{2} \mathrm{O}$: porous hollow cube Overall size: tuned, 146-313 nm	Overall size		
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$	Overall size: $\sim 100 \mathrm{~nm}$	-	Thermal treatment of Cu@Ag; void formed via Kirkendall effect	83
$\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{Au}$	$\mathrm{Cu}_{2} \mathrm{O}$: etched sphere, submicron Au: aggregated particles, 5 nm	Hybrid configuration	Two-pot; void formed via etching	76
$\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{Au}$	$\mathrm{Cu}_{2} \mathrm{O}$: etched octahedron Au: aggregated particles, $5-10 \mathrm{~nm}$	Hybrid configuration	Two-pot; void formed via etching	84
(D) Janus				
$\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$	Au: sphere, 60 nm $\mathrm{Cu}_{2} \mathrm{O}$: cube	Au embedment depth Hybrid configuration	Two-pot	87
Ag- $\mathrm{Cu}_{2} \mathrm{O}$	Ag: cube, $60-70 \mathrm{~nm}$ (edge length) $\mathrm{Cu}_{2} \mathrm{O}$: pyramidal, rectangular	Ag embedment depth	Film-mediated embedment	90
(E) Dumbbell				
$\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$	Au: rod (center), $80 \times 16 \mathrm{~nm}$ $\mathrm{Cu}_{2} \mathrm{O}$: cuboid (ends), $48 \times 28 \mathrm{~nm}$ Au embedment depth: 14 nm	Hybrid configuration Au aspect ratio $\mathrm{Cu}_{2} \mathrm{O}$ size	Two-pot	92
(F) Ternary				
Au@Ag@Cu $\mathrm{O}_{2} \mathrm{O}$ core-shell-shell	Au : rod, tuned aspect ratio (1-5) Ag thickness: fixed at 3 nm	Au aspect ratio	Three-pot	93
$\mathrm{Au} @ \mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell-shell	Au : octahedron, 35 nm Ag: cube, tunable edge length (38-50 nm)	Ag size	Three-pot	94
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}-\mathrm{Au}$ core-shell-	$\mathrm{Cu}_{2} \mathrm{O}$: different polyhedral shapes, tunable size (121-257 nm) Ag : sphere, 35 nm	$\mathrm{Cu}_{2} \mathrm{O}$ size, morphology $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness		
$\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}-\mathrm{Au}$ core-shellsatellite	Ag: sphere, 35 nm $\mathrm{Cu}_{2} \mathrm{O}$: porous sphere Au satellite size: 5 nm	$\mathrm{Au}^{\text {amount/density }}$	Three-pot	95
$\mathrm{Au@Cu} \mathrm{Cu}_{2} \mathrm{O}-\mathrm{Ag} \text { core-shell- }$ satellite	Au : sphere $\mathrm{Cu}_{2} \mathrm{O}$: porous sphere Overall hybrid size: $80-100 \mathrm{~nm}$	Ag amount/density	Three-pot	96
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}-\mathrm{Ag}$ core-shellsatellite	Au : sphere, 13 nm $\mathrm{Cu}_{2} \mathrm{O}$: porous sphere, tunable thickness ($32-80 \mathrm{~nm}$)	$\mathrm{Cu}_{2} \mathrm{O}$ shell thickness	Three-pot	97

Zhao et al. fabricated Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$ nanostructures using a two-pot synthesis procedure that involves simple reduction at room temperature. ${ }^{37}$ Porous $\mathrm{Cu}_{2} \mathrm{O}$ nanospheres were first synthesized by preparing an ammoniacal Cu^{2+} solution and subsequently reducing it to $\mathrm{Cu}_{2} \mathrm{O}$ using ascorbic acid. The product was isolated through centrifugation and dried to be used as the starting material for the composite. To obtain the core-satellite structure, varying concentrations of the Au precursor ($0.5-5 \mathrm{wt} \% \mathrm{HAuCl}_{4}$) were added to the $\mathrm{Cu}_{2} \mathrm{O}$ nanospheres dispersed in water. NaBH_{4} was then added to reduce HAuCl_{4} to metallic Au . The SEM images of the product confirmed the formation of a core-satellite configuration,
where the $\mathrm{Cu}_{2} \mathrm{O}$ nanospheres (diameter $=150-200 \mathrm{~nm}$) are decorated with smaller Au nanoparticles (diameter $=5-25 \mathrm{~nm}$). The study highlighted the importance of the loading amount of HAuCl_{4}, which was found to directly influence the size of Au satellites in the final structure. Higher concentrations of HAuCl_{4} resulted in larger Au satellites. Meanwhile, Qin et al. utilized a facile one-pot synthesis procedure to synthesize Agdecorated $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes at $55{ }^{\circ} \mathrm{C} .{ }^{38}$ The $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes were synthesized by first preparing $\mathrm{Cu}(\mathrm{OH})_{2}$ and then reducing it to $\mathrm{Cu}_{2} \mathrm{O}$ through the addition of ascorbic acid. To form Ag satellites on the surface of the nanocubes, AgNO_{3} was subsequently added, and the mixture was left to react for 30 min . The

Fig. 2 SEM images of (a) pristine $\mathrm{Cu}_{2} \mathrm{O}$ and (b-e) Ag-decorated $\mathrm{Cu}_{2} \mathrm{O}$ nanostructures, representing a core-satellite structure. The number of Ag satellites increased with increasing concentration of AgNO_{3} (from (b) to (e)). The XRD patterns for (a) and (e) are shown in (f). Reproduced with permission from ref. 38. Copyright 2019 Elsevier.

SEM images in Fig. 2 show the successful formation of tiny Ag nanoparticles on the surface of the $\mathrm{Cu}_{2} \mathrm{O}$ nanocubes. Increasing the Ag precursor concentration increased the number of Ag satellites; however, the average Ag particle size did not change significantly, which indicates that precursor concentration is not fully predictive of satellite size. Luo et al. also prepared Agdecorated $\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites via a one-pot synthesis protocol. ${ }^{41}$ Six types of polyhedral shapes were synthesized for the $\mathrm{Cu}_{2} \mathrm{O}$ core by using different amounts of the PVP surfactant. The Ag coverage was also varied by changing the loading amount of AgNO_{3}. Increasing the loading amount resulted in more and larger satellites.

Wang et al. prepared PM -decorated structures of $\mathrm{Cu}_{2} \mathrm{O}$ through a light-mediated deposition method. ${ }^{39}$ In brief, octahedral $\mathrm{Cu}_{2} \mathrm{O}$ nanocrystals were first obtained by adding $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (reductant) to a basic CuCl_{2} solution. The isolated nanocrystals were then dispersed in water, sonicated, and irradiated with visible light using a 500 W column-like iodine tungsten lamp from a distance of 20 cm . Depending on the desired hybrid material, either AgNO_{3} or KAuCl_{4} was added, and the resulting mixture was subjected to irradiation. Visiblelight irradiation of semiconducting $\mathrm{Cu}_{2} \mathrm{O}$ produces electrons and holes, and the photogenerated electrons were believed to cause the reduction of the metal precursors to their corresponding PM nanoparticles. A temperature of $30{ }^{\circ} \mathrm{C}$ was maintained throughout the procedure. It was noted that significant etching of $\mathrm{Cu}_{2} \mathrm{O}$ occurs when the temperature is lowered to $20^{\circ} \mathrm{C}$.

Hong et al. were able to create a unique core-satellite architecture where hexoctahedral-shaped Au nanocrystals are decorated with $\mathrm{Cu}_{2} \mathrm{O} .^{46}$ In this structure, the $\mathrm{Cu}_{2} \mathrm{O}$ satellites are specifically situated at the Au hexoctahedron's eight sharp vertices pointed toward the <111> direction. The high anisotropy of the hexoctahedron morphology, which is enclosed by high-indexed facets and rich in high-curvature sites, and the use of a suitable stabilizing agent were viewed as key factors in the site-selective nucleation and growth of $\mathrm{Cu}_{2} \mathrm{O}$. PVP was found to be an appropriate stabilizer for the creation of this distinct architecture because it preferentially adsorbs onto lowcurvature sites, leaving the sharp vertices exposed for the deposition of $\mathrm{Cu}_{2} \mathrm{O}$. When the synthesis was performed using SDS instead of PVP, isotropic growth of $\mathrm{Cu}_{2} \mathrm{O}$ on the entire surface of Au occurred, resulting in a core-shell structure.

2.2 Core-shell structure

Core-shell structures have one component at the center (the core) that is entirely encapsulated in the other component (the shell). For $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites, two possible core-shell configurations exist: (i) $\mathrm{PM} @ \mathrm{Cu}_{2} \mathrm{O}$ where the core is made up of the plasmonic metal and the shell comprises $\mathrm{Cu}_{2} \mathrm{O}$ and (ii) $\mathrm{Cu}_{2} \mathrm{O} @ P M$ where $\mathrm{Cu}_{2} \mathrm{O}$ is the core and the metal serves as the shell. Core-shell structures offer some advantages over coresatellite structures. One specific advantage for $\mathrm{Ag}_{\mathrm{O}} @ \mathrm{Cu}_{2} \mathrm{O}$ structures is that they address the relatively low stability of Ag by limiting its interactions with reactants and the surrounding medium. In general, the encapsulation of plasmonic metals
prevents their corrosion and dissolution. ${ }^{47}$ The core-shell architecture also allows for maximum metal-support interaction due to the three-dimensional contact between the metal and the semiconductor. The type of core-shell configuration (i.e., whether it is $\mathrm{PM}_{2} @ \mathrm{Cu}_{2} \mathrm{O}$ or $\mathrm{Cu}_{2} \mathrm{O} @ P M$) is crucial for certain applications. For instance, the $\mathrm{Cu}_{2} \mathrm{O} @ P M$ configuration is preferred for SERS-based detection to maximize the contact of the plasmonic metal with the analyte, as the enhancement of Raman signals is largely influenced by the LSPR property of the PM component. In the case of photocatalysis, the $\mathrm{PM}_{\mathrm{M}} \mathrm{Cu}_{2} \mathrm{O}$ configuration with an optimal $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness is desirable to maximize the photocatalytic enhancement effects.

The formation of a core-shell configuration is strongly favored when the materials that are combined have similar crystal symmetry and lattice constants. ${ }^{48} \mathrm{Cu}_{2} \mathrm{O}, \mathrm{Au}$, and Ag are structurally compatible as they all crystallize in the facecentered cubic crystal system. The small lattice mismatch (f) between $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Au}(f=4.5 \%)^{36}$ and between $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Ag}(f$ $=4.2 \%)^{49}$ allows for the creation of their core-shell hybrids. Core-shell structures of $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O},{ }^{36,44,50-61} \quad \mathrm{Cu}_{2} \mathrm{O} @ A u^{42,62}$ $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O},{ }^{49,51,63-67}$ and $\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{Ag}^{68-72}$ have been reported in the literature. They are most commonly prepared using two-pot colloidal synthesis procedures, where the core component is synthesized and isolated first before being fully encapsulated in the shell component, usually through simple reduction in solution. An advantage of a two-pot synthesis is that there is full control over the shape and size of the core. Other synthesis methods, such as one-pot co-reduction, ${ }^{63}$ microwave-assisted, ${ }^{51}$ pulsed laser irradiation, ${ }^{65}$ and magnetron sputtering techniques, ${ }^{68}$ have been employed as well.

Huang's group has published numerous studies on $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures. ${ }^{50,54-57}$ Precise control of morphology was attained by using Au nanoparticles of different shapes (e.g. plates, rods, and octahedra) as the structuredirecting core for the overgrowth of the $\mathrm{Cu}_{2} \mathrm{O}$ shell. ${ }^{50} \mathrm{~A}$ twopot synthesis method was employed, where the Au cores were synthesized first through reduction of HAuCl_{4} at elevated temperatures in the presence of reducing (sodium citrate, NaBH_{4}) and capping (CTAB, CTAC) agents. The isolated Au cores were redispersed in water, and the dispersion was added to a solution containing CuCl_{2} and SDS. The $\mathrm{Cu}_{2} \mathrm{O}$ shell was grown with the subsequent addition of NaOH and hydroxylamine $\left(\mathrm{NH}_{2} \mathrm{OH}\right)$, followed by 2 h of aging. Fig. 3a-c show representative TEM images of the synthesized $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ coreshell nanostructures with different morphologies. ${ }^{50}$ In their ensuing studies, Huang et al. noted that the LSPR absorption properties of $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures are largely facet-dependent, allowing for the tuning of the plasmonic band through precise morphological control. ${ }^{55,56}$ Jing et al. also used the two-pot synthesis method to fabricate $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures with different morphologies (Fig. 3d-f). ${ }^{49}$ Starting with pre-synthesized Ag nanospheres and nanocubes as core materials, $\mathrm{Cu}_{2} \mathrm{O}$ shells were grown onto the surfaces of the Ag cores through controlled reduction of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ by $\mathrm{N}_{2} \mathrm{H}_{4}$ under basic conditions. The LSPR frequency of the Ag core was tuned across a wide spectral range by changing the size and morphology of the Ag core and by modulating the thickness of

Fig. 3 TEM images of $(a-c) A u @ C u_{2} O$ and ($d-f$) $\mathrm{Ag@Cu}_{2} \mathrm{O}$ core-shell nanocomposites with different morphologies. Reproduced with permission from ($\mathrm{a}-\mathrm{c}$) ref. 50, copyright 2009 American Chemical Society, and (d-f) ref. 49, copyright 2014 American Chemical Society.
the $\mathrm{Cu}_{2} \mathrm{O}$ shell. Different shell thicknesses were obtained by varying the molar ratio of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ to the Ag core.

One-pot procedures provide a facile, scalable, and economical synthesis method for core-shell structures. These typically involve the co-reduction of precursors to form the hybrid, where the species with a more positive reduction potential is reduced first and forms the core, followed by the reduction of the other species on the core surface to form the shell. Lee et al. obtained $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures through this approach. ${ }^{63}$ In a three-neck flask, $\mathrm{Cu}(\mathrm{acac})_{2}$ and AgNO_{3} were mixed in oleylamine, and the flask was then heated to $230^{\circ} \mathrm{C}$ for 3 h under inert atmosphere to produce the hybrid. According to their previous work, ${ }^{73}$ in oleylamine solutions, AgNO_{3} is reduced to Ag at $80^{\circ} \mathrm{C}$, while $\mathrm{Cu}(\mathrm{acac})_{2}$ is reduced to $\mathrm{Cu}_{2} \mathrm{O}$ at $180^{\circ} \mathrm{C}$, which means that Ag will form first when the reaction mixture containing both precursors is heated up. As expected, increasing the amount of $\mathrm{Cu}(\mathrm{acac})_{2}$
resulted in increased shell thickness and overall particle size. The Ag core diameter was similar regardless of the amount of $\mathrm{Cu}(\mathrm{acac})_{2}$ added, which indicates that all of the AgNO_{3} was reduced to Ag before the formation of $\mathrm{Cu}_{2} \mathrm{O}$. Legaspi et al. produced $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures with a unique nanoflower hybrid design using a one-pot synthesis procedure at ambient conditions. ${ }^{59}$ The core consists of aggregated small Au nanoparticles, whereas the shell is composed of larger $\mathrm{Cu}_{2} \mathrm{O}$ nanoparticles that surround the core in a petal-like arrangement. It was noted that the formation of a hybrid structure is more favored if the precursors for both the $\mathrm{Cu}_{2} \mathrm{O}$ and Au are already present in the reaction mixture prior to the addition of the reducing agent.

Microwave synthesis is advantageous for nanoparticle synthesis as it allows for the heating of precursor materials in a quick and homogeneous manner. This consequently leads to uniform nucleation, rapid crystal growth and thus, narrow size

Fig. 4 Schematic depiction of the formation of (a) $\mathrm{Cu}_{2} \mathrm{O} @ A g$ and (b) $\mathrm{Cu}_{2} \mathrm{O} @ A u$ core-shell nanocomposites through GRR. Also shown are the SEM images of the structures produced with (i) no metal and ((ii) to (iv)) increasing loading amount of metal. Reproduced with permission from (a) ref. 69, copyright 2017 the Royal Society of Chemistry, and (b) ref. 62, copyright 2016 Elsevier.
distribution. ${ }^{74}$ Torras and Roig presented a novel microwaveassisted synthesis procedure for both ${\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}}^{0}$ and $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ nanocomposites with spherical cores and cubic shells. ${ }^{51}$ The spherical metal cores were first made through a polyol synthesis performed in a microwave synthesizer at 120°
C. To form the $\mathrm{Cu}_{2} \mathrm{O}$ coating, a benzyl alcohol dispersion of the metal cores was mixed with $\mathrm{Cu}(\mathrm{acac})_{2}$ and PVP and was then subjected to microwave heating at $200{ }^{\circ} \mathrm{C}$. This microwaveassisted technique was also successful in producing ${\mathrm{Pd} @ \mathrm{Cu}_{2} \mathrm{O}}^{\mathrm{O}}$ nanocomposites.

Fig. 5 Schematic representation of the formation of (a) Au@Cu $\mathrm{A}_{2} \mathrm{O}$ and (b) $\mathrm{Cu}_{2} \mathrm{O} @ A u$ yolk-shell nanocomposites. The TEM images of the structures produced are also shown. Adapted with permission from (a) ref. 80, copyright 2011 American Chemical Society, and (b) ref. 84, copyright 2017 Springer Nature.

In creating the reverse core-shell configuration (i.e., $\mathrm{Cu}_{2} \mathrm{O} @ P M$), the galvanic replacement reaction (GRR) strategy has proven to be useful. GRR-mediated synthesis is driven by the difference in the reduction potential of the redox couples involved. ${ }^{75}$ In the case of $\mathrm{Cu}_{2} \mathrm{O} @ P M$, the precursors of the plasmonic noble metal are reduced by pre-synthesized $\mathrm{Cu}_{2} \mathrm{O}$ particles. This was demonstrated by Bakthavatsalam and Kundu in their synthesis of octahedral $\mathrm{Cu}_{2} \mathrm{O} @ A g$ core-shell structures. ${ }^{69}$ Fig. 4a displays a schematic illustration of the formation process and the SEM images of the obtained structures. First, the $\mathrm{Cu}_{2} \mathrm{O}$ surface was etched with an acid to release Cu^{+}ions, which can spontaneously react with the Ag^{+}ions in solution via GRR. The Cu^{+}ions get oxidized to Cu^{2+} ions as they reduce Ag^{+}ions to Ag , which are deposited as nanoparticles onto the $\mathrm{Cu}_{2} \mathrm{O}$ surface. Chen et al. fabricated octahedral $\mathrm{Cu}_{2} \mathrm{O} @ \mathrm{Au}$ core-shell structures following a similar process (Fig. 4b). ${ }^{62}$ It must be stressed that to achieve the $\mathrm{Cu}_{2} \mathrm{O} @ P M$ core-shell configuration, the loading amount of the metal precursor should be carefully controlled to ensure the formation of a continuous metal shell layer. An insufficient loading amount can result in a core-satellite structure where the $\mathrm{Cu}_{2} \mathrm{O}$ core is only partially decorated with metal nanoparticles. On the
other hand, an excessively high loading amount can lead to extensive GRR that dissolves the $\mathrm{Cu}_{2} \mathrm{O}$ core. Partial dissolution of the core produces a yolk-shell structure (see Section 2.3), whereas complete dissolution yields a hollow metal structure as the final product. ${ }^{76}$

2.3 Yolk-shell structure

Yolk-shell (or rattle-like) structures are similar to core-shell structures in that a shell component surrounds a core component. The key difference is the presence of a void in between the core and the shell in the yolk-shell structure. Yolk-shell structures have a number of properties that are advantageous for photocatalysis. The void contributes another variable that can be used to tune the catalytic efficiency, stability, and recyclability of the hybrid material. ${ }^{77,78}$ The presence of a void also allows for the scattering of incident light after it penetrates the shell, which contributes to a greater light-harvesting property of the hybrid. ${ }^{79}$

Yolk-shell structures can be fabricated through a variety of means, such as the Kirkendall effect, Ostwald ripening, chemical etching, and thermal treatment. ${ }^{76,77,80-84}$ In the same study as their $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell synthesis, Zhang et al. synthesized
$\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ yolk-shell structures by simply extending the reaction time from 2 min to $60 \mathrm{~min} .{ }^{80}$ With the prolonged reaction time, the polycrystalline $\mathrm{Cu}_{2} \mathrm{O}$ shell of the original core-shell structure underwent a symmetric hollowing process, which formed the characteristic void. Fig. 5a shows a schematic illustration of this hollowing process along with TEM images of the structures. The core-shell structure is maintained at a reaction time of 5 min . At 30 min , slight hollowing occurs, and voids begin to form around the Au cores. At 60 min , significantly larger voids are present, and the desired rattle-like formation was obtained. Extending the reaction time further to 90 min resulted in the collapse of the shell structure, which appears as fragmented crystals in the image. Two key observations here are the inside-out nature of the hollowing process and the maintained outer radius of the $\mathrm{Cu}_{2} \mathrm{O}$ shell. A similar hollowing process was described by the authors in their previous work, and they attributed the symmetric hollowing to Ostwald ripening. ${ }^{85}$ This approach is differentiated from other yolk-shell synthesis methods because the core structure is maintained as
 structures also through an Ostwald ripening process. ${ }^{82}$ Coreshell structures were first synthesized by coating Ag nanocubes with a polycrystalline $\mathrm{Cu}_{2} \mathrm{O}$ shell. The solution was aged for 13 min to allow for the hollowing of the shell. The inner region of the $\mathrm{Cu}_{2} \mathrm{O}$ shell has a higher surface energy compared to its outer surface, which makes it more susceptible to dissolution. As a result, $\mathrm{Cu}_{2} \mathrm{O}$ dissolves from the inside and recrystallizes on the surface as Ostwald ripening progresses.

Chen et al. detailed a self-generated acid etching method for the formation of $\mathrm{Cu}_{2} \mathrm{O} @ A u$ yolk-shell structures. Octahedral $\mathrm{Cu}_{2} \mathrm{O}$ cores were first formed through the reduction of CuCl_{2} in a basic solution using $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{84}$ The octahedral cores were then dispersed in ethanol, and PVP was added. Varying volumes of HAuCl_{4} were introduced followed by NaBH_{4}. Depending on the amount of HAuCl_{4} added, core-satellite, core-shell, or yolkshell structures were formed (in order of increasing HAuCl_{4}). Fig. 5b presents the progression of the synthesis reaction as more HAuCl_{4} is added. In contrast to the hollowing presented by Zhang et al. (Fig. 5a), ${ }^{80}$ the void in the $\mathrm{Cu}_{2} \mathrm{O} @ A u$ yolk-shell structures stemmed from the etching of the $\mathrm{Cu}_{2} \mathrm{O}$ core rather than the shell. Still, $\mathrm{Cu}_{2} \mathrm{O}$ was the component that was removed from the structure to form the void. In the self-generated acid etching synthesis, the $\mathrm{Cu}_{2} \mathrm{O}$ core is etched by HCl and $\mathrm{H}_{3} \mathrm{BO}_{3}$, which are generated during the reduction of HAuCl_{4} to Au by $\mathrm{NaBH}_{4}{ }^{76}$ This method provides a means of producing $\mathrm{Cu}_{2} \mathrm{O} @ A u$ yolk-shell structures with tunable void and core sizes through control of the amount of HAuCl_{4}.

2.4 Janus and dumbbell structures

Janus structures (or heterodimers) possess two faces of differing components that each have a specific shape and size. ${ }^{86}$ In Janustype nanocomposites, the constituent materials are joined at a heterojunction with the rest of their structures being exposed to the environment and open to interactions. Unlike the previously discussed hybrid configurations, there are no core or shell/satellite components in Janus structures. They have been
shown to be better than core-shell structures in terms of promoting charge separation and preventing charge accumulation. ${ }^{87}$ Additionally, due to their asymmetric structure, Janustype systems have been shown to function as photocatalytic nanomotors that can modulate mass transfer behavior for highly efficient photocatalysis. ${ }^{88}$

Janus structures can be created through lattice mismatching, which takes advantage of the difference in the lattice constants of the two components. ${ }^{89}$ However, due to the relatively small lattice mismatch $(f<5 \%)$ between $\mathrm{Cu}_{2} \mathrm{O}$ and the two plasmonic metals (Au and Ag), lattice mismatching cannot be utilized to construct their Janus structures, given that core-shell structures are usually formed. This has led scientists to devise different strategies for their fabrication. For example, GaleMouldey et al. developed a partial embedment technique to synthesize Janus-type $\mathrm{Ag}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites, where Ag is only partially coated with $\mathrm{Cu}_{2} \mathrm{O} .^{90}$ Their approach involves the following steps: (i) depositing pre-synthesized Ag nanocubes on a polystyrene (PS) film substrate, (ii) embedding the Ag nanocubes into the PS film via heating, (iii) growing $\mathrm{Cu}_{2} \mathrm{O}$ on the exposed area of the Ag nanocubes, and (iv) dissolving the PS film to release the $\mathrm{Ag}-\mathrm{Cu}_{2} \mathrm{O}$ Janus hybrid. The degree of exposure of the Ag domains in the Janus structure can be tailored by adjusting the embedment depth through controlled heating of the substrate.

Xu et al. were able to produce $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ Janus structures using 5-amino-2-mercaptobenzimidazole (AMBI) as a modifying ligand. ${ }^{87}$ Pre-synthesized Au nanospheres were incubated with an ethanolic solution of AMBI at $60^{\circ} \mathrm{C}$ for 2 h . This incubation step was performed to coat the surface of the Au nanospheres with AMBI ligands. $\mathrm{Cu}_{2} \mathrm{O}$ was then allowed to grow onto the Au nanospheres to form the heterodimers. The effect of AMBI concentration on the synthesized structures was observed through SEM (Fig. 6). In the absence of AMBI, cubic $\mathrm{Cu}_{2} \mathrm{O}$ fully coated the Au cores, forming a core-shell structure (Fig. 6a). When AMBI was present, the Au nanospheres became only partially coated with $\mathrm{Cu}_{2} \mathrm{O}$ cubes (Fig. 6b-d). The height of the exposed Au domain (i.e., the degree of exposure) was found to increase with AMBI concentration. AMBI is a strong thiol ligand that serves to control the interfacial energy of Au seeds to allow for the formation of a Janus structure rather than a core-shell one. Basically, the presence of AMBI on the Au surface weakens the $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ interaction and disrupts lattice matching, causing interfacial strain that deters the complete encapsulation of the Au nanospheres.

Another type of heterostructure design is the dumbbell structure, aptly named from its resemblance to a dumbbell. In a dumbbell configuration, one component is a nanorod, while the other component caps both ends of the nanorod. ${ }^{91}$ It is crucial that the second component selectively nucleates and grows on the tips of the nanorod, leaving the rest of the structure exposed to the environment. With their successful synthesis of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ Janus nanostructures, Xu et al. also employed their AMBI-mediated approach to prepare $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites with a dumbbell morphology (Fig. 7a). ${ }^{92}$ In this case, they used Au nanorods instead of Au nanospheres as their starting material. When no AMBI was present, $\mathrm{Cu}_{2} \mathrm{O}$ was able to

Fig. 6 Schematic illustration of the tunable synthesis of Janus-type $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites through control of interfacial energy using AMBI as the modifying ligand. Also shown are the SEM images of the structures obtained (a) without AMBI and (b-d) with increasing AMBI concentration. Reproduced with permission from ref. 87. Copyright 2020 Wiley-VCH.
completely encapsulate the Au nanorods, producing a coreshell configuration (Fig. 7b). In the presence of AMBI, $\mathrm{Cu}_{2} \mathrm{O}$ coated only the ends of the nanorods, leading to a well-defined dumbbell structure (Fig. 7c).

2.5 Ternary structure

Nanocomposites are not limited to the combination of only two components. It is also possible to create multinary structures such as ternary structures consisting of $\mathrm{Cu}_{2} \mathrm{O}, \mathrm{Au}$, and Ag . The synthesis of these structures are often amalgamations of previously discussed techniques. Compared to binary structures, nanostructures consisting of three components take more resources-not just reagents but also time and effort-to synthesize. Thus, the benefit of compositing three different materials must be weighed against the extra resources expended.

In their preparation of ternary structures, Hu et al. used a three-pot procedure where Au nanorods were synthesized in the first pot and then coated with Ag in the second pot. In the third pot, the Au@Ag core-shell nanorods were coated with $\mathrm{Cu}_{2} \mathrm{O}$, yielding $\mathrm{Au} @ \mathrm{Ag@Cu}_{2} \mathrm{O}$ core-shell-shell nanorods. ${ }^{93}$ In forming the $\mathrm{Cu}_{2} \mathrm{O}$ shell, the $\mathrm{Au@Ag}$ nanorods were mixed with SDS, ascorbic acid, and CuCl_{2} as the precursor to $\mathrm{Cu}_{2} \mathrm{O}$. The
mixture was placed in an ice bath, and NaOH was added to initiate the shell formation. The low temperature was crucial as it prevented the self-nucleation of $\mathrm{Cu}_{2} \mathrm{O}$. The LSPR features of the ternary structure were tuned by modulating the Au nanorod aspect ratio and the $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness. Yang et al. also prepared $\mathrm{Au} @ \mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell-shell nanostructures but with different faceted morphologies (i.e., rhombic dodecahedron, truncated octahedron, and cuboctahedron). ${ }^{94}$ They started with the hydrothermal synthesis of octahedral Au nanocrystals, which they subsequently enclosed within Ag nanocubes. These Au@Ag nanocubes were then encased in a polyhedral $\mathrm{Cu}_{2} \mathrm{O}$ shell. By modulating the amount of the metal cores, they were able to control the overall size and morphology of the encapsulating $\mathrm{Cu}_{2} \mathrm{O}$ shell, which resulted in tunable optical properties.

Another synthesis pathway for ternary structures is to synthesize a $\mathrm{PM} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell structure and then decorate it with a different plasmonic metal to form a core-shell-satellite architecture, where $\mathrm{Cu}_{2} \mathrm{O}$ is sandwiched between the two PMs. Both Ag and Au have been used as cores and satellites for this type of structure. ${ }^{95-97}$ To create Au-decorated ${\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O} \text {, Chen }}^{\text {Che }}$ et al. first prepared the Ag core through simple reduction of AgNO_{3} with sodium citrate under reflux. ${ }^{95}$ This was then added

Fig. 7 (a) Schematic diagram of the AMBI-mediated synthesis of dumbbell-type $\mathrm{Au}^{-\mathrm{Cu}_{2} \mathrm{O} \text { nanocomposites. (b and c) TEM images of the }}$ structures obtained (b) without AMBI and (c) in the presence of AMBI. (d and e) Comparison of the (d) photocurrent response and (e) photocatalytic activity for MO degradation of dumbbell and core-shell structures. Reproduced with permission from ref. 92. Copyright 2023 WileyVCH.
to a solution containing PVP and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ under constant stirring. $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ was added to induce the formation of the $\mathrm{Cu}_{2} \mathrm{O}$ shell on the Ag surface, yielding a $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell structure. A ternary structure was synthesized by simply adding HAuCl_{4} to an aqueous dispersion of the core-shell structure. A schematic depiction of the synthesis and the TEM images of the products are shown in Fig. 8. The synthesized ternary structure consists of a uniform spherical Ag core that is fully coated with an Au -decorated $\mathrm{Cu}_{2} \mathrm{O}$ shell. As the added HAuCl_{4} concentration increased, so did the density of Au decoration on the surface of the $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ structures. Following a similar
protocol, Wu et al. produced the reverse configuration, where $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ is decorated with Ag satellites. ${ }^{96}$

3. Photocatalytic applications

Literature on the photocatalytic applications of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites has mostly focused on the degradation of organic dyes, which can be conveniently monitored using UVvis spectroscopy. When irradiated with light, the $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ photocatalysts are able to accelerate the degradation of organic dyes into environmentally benign compounds, presenting a viable solution for the elimination of harmful pollutant dyes

Fig. 8 Schematic depiction of the synthesis of Au-decorated $\mathrm{Ag}_{\mathrm{ACH}}^{2} \mathrm{O}$ nanocomposites, an example of a ternary structure. Also shown are the TEM images of the structures obtained (a) without $A u$ and ($b-g$) with increasing loading amount of Au. Reproduced with permission from ref. 95. Copyright 2018 Elsevier.
in wastewater. For example, Zhao et al. conducted photocatalytic degradation studies using Au-decorated $\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites as photocatalysts for the following organic dyes under visible light: methylene blue (MB), methyl orange (MO), rhodamine $\mathrm{B}(\mathrm{RhB})$, and congo red (CR). ${ }^{37}$ For all four dyes, it was found that the hybrid showed superior photocatalytic activity relative to pristine $\mathrm{Cu}_{2} \mathrm{O}$. The authors stated two reasons for the improved photocatalytic properties: (i) the Schottky junction effect enhances the electron-hole separation rate and (ii) the plasmonic effect of Au boosts the absorption of visible light. Meanwhile, Yan et al. tested their synthesized ${\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}}$ core-shell nanowires for the photocatalytic degradation of RhB under visible light irradiation. ${ }^{65}$ They observed a dramatically enhanced photocatalytic behavior for the $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ nanowires relative to uncoated Ag nanowires and pristine $\mathrm{Cu}_{2} \mathrm{O}$ nanoparticles (Fig. 9a). This underscores the immense value that can be derived from compositing the two materials. Similar to the previous example, the enhancement was credited to both the Schottky junction effect and the plasmonic effect. The mechanisms behind these photocatalytic enhancement effects are discussed below.

3.1 Mechanisms of photocatalytic enhancement

3.1.1 Schottky junction effect. In designing photocatalytic composite systems, an important consideration in selecting material components is that their combination should allow for effective separation of charge carriers. ${ }^{13,98-100}$ This is especially crucial if the semiconductor component suffers from a high charge recombination rate, such as in the case of $\mathrm{Cu}_{2} \mathrm{O}$. In the Schottky junction effect, the difference in the work function of the metal and the semiconducting $\mathrm{Cu}_{2} \mathrm{O}$ generates a potential energy barrier (i.e., the Schottky barrier) at the metal- $\mathrm{Cu}_{2} \mathrm{O}$ interface that facilitates transfer and trapping of charges, effectively promoting charge separation. ${ }^{38,87}$ Fig. 9b presents the general scheme for the mechanism of photocatalytic degradation of dyes based on the Schottky junction effect. Upon light exposure, electrons are excited to the $\mathrm{Cu}_{2} \mathrm{O}$ conduction band (CB) and then migrate to the adjacent metal, where they accumulate as they are unable to flow back to the semiconductor due to the Schottky barrier at the interface. Thus, the metal serves as an electron sink that prolongs the lifespan of the photogenerated electrons. ${ }^{\mathbf{1 0 1}}$ These trapped electrons can then

Fig. 9 (a) SEM image and photocatalytic degradation activity of $\mathrm{Ag@Cu}_{2} \mathrm{O}$ core-shell nanowires (NWs) under visible light using RhB as target dye. The photocatalytic activity of uncoated Ag NWs and pristine $\mathrm{Cu}_{2} \mathrm{O}$ nanoparticles are also shown in the plot for comparison. Reproduced with permission from ref. 65. Copyright 2021 the Royal Society of Chemistry. (b) Schematic illustration of photocatalytic dye degradation mechanism based on the Schottky junction effect, which results in enhanced charge separation at the metal- $\mathrm{Cu}_{2} \mathrm{O}$ interface.
instigate reduction reactions that generate reactive free radicals. This leaves holes in the $\mathrm{Cu}_{2} \mathrm{O}$ valence band (VB), which are free to participate in radical-producing oxidation reactions. The adsorbed dye molecules are subsequently degraded by the free radicals that are produced. ${ }^{39}$
3.1.2 Plasmon-mediated effects. There are three major mechanisms that are often considered for the plasmonmediated enhancement effect observed for plasmonic metalsemiconductor photocatalysts. ${ }^{6,8,102,103}$ These are the (i) hot electron injection (HEI), (ii) plasmon-induced near-field interaction, and (iii) light scattering mechanisms, which are schematically summarized in Fig. 10. In the HEI mechanism (also referred to as direct electron transfer or DET), the plasmonic metal component serves as a photosensitizer (Fig. 10a). ${ }^{102}$ It absorbs resonant photons upon light illumination, and then generates high-energy electrons (called hot electrons) through non-radiative decay of surface plasmons. ${ }^{104}$ These hot electrons
are transferred to the CB of the adjacent semiconductor, encouraging charge separation and reducing the likelihood of charge recombination. For the transfer to take place, the metal and the semiconductor should be in direct contact with each other, and the hot electrons should have a sufficiently high energy to cross the Schottky barrier at the metal-semiconductor interface.

The plasmon-induced near-field interaction mechanism (Fig. 10b) involves the generation of strong electromagnetic fields that are localized at the metal nanoparticle surface (referred to as near-fields). ${ }^{105}$ Under light irradiation, the LSPR induced on a plasmonic metal nanoparticle gives rise to nearfields that are spatially non-homogeneous, being more intense at the nanoparticle surface and decreasing exponentially with distance. A semiconductor that is positioned close to the photoexcited plasmonic metal will experience these fields, promoting interband transitions that create electron-hole pairs

(b)

Plasmon-Induced Near-Field

Fig. 10 Schematic depiction of the three primary mechanisms for plasmon-enhanced photocatalysis by plasmonic metal-semiconductor nanocomposites: (a) hot electron injection (HEI), (b) plasmon-induced near-field interaction, and (c) plasmonic light scattering
in the semiconductor. It has been determined that the rate of electron-hole pair generation is directly proportional to the square of the local intensity of the electric field. ${ }^{106}$ Thus, the strong plasmon-induced near-fields can induce the formation of a large number of electron-hole pairs in semiconductor regions close to the metal. These fields can also mediate in a non-radiative energy transfer process between the plasmonic metal (donor) and the semiconductor (acceptor) in the form of plasmon-induced resonance energy transfer (PIRET). ${ }^{\mathbf{1 0 7}}$ PIRET leads to direct excitation of the electron-hole pairs in the semiconductor via the relaxation of the LSPR dipole. A spectral overlap between the LSPR absorption of the plasmonic metal and the band gap absorption of the semiconductor is necessary for the near-field effects to be observable. Unlike the HEI mechanism, intimate contact between the metal and the semiconductor is not a requirement. The near-field enhancement effects can be realized even when the plasmonic metal and the semiconductor are separated by an insulating layer. For example, Wu's group observed enhanced photocatalytic
efficiency for $\mathrm{Au@SiO} \mathrm{Sa}_{2} @ \mathrm{Cu}_{2} \mathrm{O}$ nanocomposites, even when Au and $\mathrm{Cu}_{2} \mathrm{O}$ are separated by an insulating SiO_{2} layer. ${ }^{107}$ However, the SiO_{2} layer should not be too thick as the enhancement was found to decrease with increasing metal-semiconductor separation distance. ${ }^{\mathbf{1 0 8}}$

The third plasmon-mediated mechanism is based on the light scattering effect of plasmonic metal nanoparticles. When irradiated with light, plasmonic metal nanoparticles are able to spread out the incident resonant photons, resulting in a longer average photon path for the metal-semiconductor hybrid compared to the pristine semiconductor (Fig. 10c). ${ }^{\mathbf{1 0 1}, \mathbf{1 0 9}}$ Resonant photons that are not initially absorbed by the semiconductor can be scattered by the metal domains, allowing these photons to pass several times through the semiconductor, thereby increasing their chance for absorption. ${ }^{\mathbf{1 0 2}}$ This leads to a higher rate of electron-hole pair generation in the semiconductor. The size of the metal nanoparticles strongly influence their light scattering ability. ${ }^{\mathbf{1 1 0 , 1 1 1}}$ As the scattering-toabsorption ratio of metal nanoparticles increases with
increasing particle size, the plasmonic light scattering mechanism becomes significant only when the size of the metal domains is sufficiently large ($>50 \mathrm{~nm}$).

3.2 Tunable photocatalytic properties

There are different ways by which the photocatalytic properties of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites can be optimized. For $\mathrm{PM@Cu}_{2} \mathrm{O}$ core-shell structures, one parameter that can be readily adjusted is the thickness of the $\mathrm{Cu}_{2} \mathrm{O}$ shell. Li et al. synthesized $\mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell nanostructures with different shell thicknesses and studied their photocatalytic activity toward MO degradation under visible light illumination (Fig. 11a). ${ }^{67}$ The core-shell hybrids exhibited better photocatalytic performance than pristine $\mathrm{Cu}_{2} \mathrm{O}$, and the authors attributed this to plasmonmediated effects. The enhancement was maximized by tuning the LSPR absorption through modulation of the $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness. Moreover, the highest photocatalytic efficiency was

achieved when the wavelength of incident light corresponds to the LSPR wavelength (Fig. 11b), confirming that the photocatalytic enhancement is plasmon-driven. The size of the Ag core for all samples was kept identical at 30 nm , which is too small for the light scattering mechanism to be significant. Transient absorption spectroscopy data revealed that both HEI (or DET) and PIRET mechanisms contribute to the enhancement of photocatalytic activity (Fig. 11c).

The effect of the $\mathrm{Cu}_{2} \mathrm{O}$ shell morphology on the photocatalytic activity of $\mathrm{Au}_{\mathrm{O}} \mathrm{Cu}_{2} \mathrm{O}$ core-shell hybrids was examined by Wang et al. ${ }^{60}$ Two types of faceted morphology were investigated: cubic and octahedral. The researchers synthesized various samples, including pristine $\mathrm{Cu}_{2} \mathrm{O}$ cubes and octahedra, $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell cubes and octahedra, and $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ coreshell face-raised cubes and octahedra, and evaluated their activity toward the photocatalytic degradation of MO dye under irradiation from a Xe lamp. The results showed that only the

Fig. 11 (a) Photocatalytic MO degradation rate for $\mathrm{Ag@Cu}_{2} \mathrm{O}$ core-shell nanostructures with different shell thicknesses. (b) Absorption spectrum (red) and apparent photocatalytic efficiency as a function of the wavelength of monochromatic light (blue) for $\mathrm{Ag}_{\mathrm{aCC}} \mathrm{Cu}_{2} \mathrm{O}$ hybrid with shell thickness of 23.7 nm . (c) Transient absorption spectra (\leqslant) and mechanism determination for $\mathrm{Ag@Cu}_{2} \mathrm{O}$ hybrids with shell thickness of 23.7 nm (top) and 40.0 nm (bottom). Each shell thickness is fit by a model for PIRET, DET, and PIRET + DET to show that both mechanisms are responsible for generation of charge carriers in $\mathrm{Cu}_{2} \mathrm{O}$. Reproduced with permission from ref. 67. Copyright 2013 American Chemical Society.
octahedral structures effectively catalyzed the degradation reaction, with the $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ face-raised octahedral structure displaying the highest photocatalytic efficiency. This was attributed to the presence of more $\{111\}$ facets in the face-raised octahedral geometry. Strong photocatalytic interactions occur with $\{111\}$ facets (i.e., the exposed faces of octahedra) because $\mathrm{Cu}_{2} \mathrm{O}$ crystals bound by these facets possess Cu atoms with dangling bonds, which increase surface energy and endow the surface with a more positive charge. ${ }^{112}$ This promotes interaction with negatively charged molecules, such as MO, the anionic dye used in the experiment. All the cubic structures were found to be photocatalytically inactive as $\mathrm{Cu}_{2} \mathrm{O}$ cubes are bound by low-energy $\{100\}$ faces. The authors also stated that the cubic $\mathrm{Cu}_{2} \mathrm{O}$ structures that showed photocatalytic activity in a previous study were actually truncated cubes that contain $\{110\}$ edges and $\{111\}$ corners. ${ }^{54}$ This highlights the significance of controlling the surface facets of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ hybrids and provides some considerations for the optimization of their photocatalytic properties.

For PM-decorated $\mathrm{Cu}_{2} \mathrm{O}$ hybrid designs (i.e. core-satellite structures), an optimal loading amount of PM is crucial to maximize the photocatalytic efficiency. Qin et al. used their Agdecorated $\mathrm{Cu}_{2} \mathrm{O}$ hybrid material as a catalyst in a photodegradation experiment with MB as the target dye. ${ }^{38}$ They found that there is a loading amount "sweet spot," in which a moderate amount of Ag satellites results in the highest photocatalytic activity. The results of this study comport with those of Li et al., who reported that an intermediate loading amount of Ag is more beneficial to the photodegradation of MO compared to low or high loading amounts. ${ }^{43}$ Low amounts of Ag decoration do not allow the plasmonic effects to be maximized. Meanwhile, excessive amounts can result in Ag blocking the photon absorption of $\mathrm{Cu}_{2} \mathrm{O}$ and covering the $\mathrm{Cu}_{2} \mathrm{O}$ active sites. Wang et al. compared the photocatalytic properties of $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Ag}$ and $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Au}$ core-satellite structures, which they prepared using the same synthetic protocol. ${ }^{39}$ The photocatalytic properties of the two hybrid materials were tested through the photodegradation of pyronine B . The $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Au}$ hybrid was found to degrade pyronine B at a higher rate than the $\mathrm{Cu}_{2} \mathrm{O}-\mathrm{Ag}$ hybrid, albeit the difference is very minimal with both facilitating approximately 75% degradation over the course of 150 min compared to 36% using $\mathrm{Cu}_{2} \mathrm{O}$ alone. The authors attributed this slight difference to the relative oxidative stability of Au compared to Ag .

The type of hybrid configuration can also influence the photocatalytic activity of the composite material. Janus and dumbbell structures are better than core-shell structures in avoiding charge buildup and in facilitating charge separation. ${ }^{87,92}$ A major downside of a core-shell structure is that the encapsulating shell causes charge carriers to accumulate in the core component, and this negatively impacts the photocatalytic efficiency as only the charge carriers on the surface can partake in photocatalytic reactions. A full shell also limits the core in absorbing incoming photons. In Janus and dumbbell structures, large sections of both components are exposed to the environment and are therefore accessible to interactions. Moreover, the distal separation of the metal and semiconductor
domains in such structures allows for a more efficient charge separation. Xu et al. compared the photocurrent generation capability of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ Janus and $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell structures and found that the Janus-type hybrid performed better, demonstrating its superior ability to promote charge separation. ${ }^{87}$ In a separate study, they compared $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ dumbbell and $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell structures and observed a greater photocurrent generation for the dumbbell structure (Fig. 7d). ${ }^{92}$ Consequently, the dumbbell structure exhibited better photocatalytic performance than the core-shell structure when tested for MO degradation (Fig. 7e).

In a recent work by Kovács et al., the position of Au was found to dictate the photocatalytic properties of $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites. ${ }^{44}$ They compared two types of configuration: core-satellite where Au nanoparticles decorate the surface of octahedron-shaped $\mathrm{Cu}_{2} \mathrm{O}$ and core-shell where an Au nanorod is embedded within an octahedral $\mathrm{Cu}_{2} \mathrm{O}$ shell. The overall size, shape (octahedral), and composition (Cu:Au ratio) of the hybrids were kept identical. Their study focused on the charge separation efficiency from the semiconductor standpoint. To exclude the contribution from plasmonic effects, they performed the photodegradation experiments using a 396 nm UV LED as the light source. This excitation wavelength is offresonant with the LSPR of Au; hence, the electron-hole pairs were generated solely in $\mathrm{Cu}_{2} \mathrm{O}$. The performance of the Au decorated $\mathrm{Cu}_{2} \mathrm{O}$ system was superior to that of the $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ core-shell structure, implying that a more improved charge separation can be achieved when Au is exposed rather than buried. Moreover, the core-satellite structure generates more easily accessible charge carriers at the particle surface where photocatalytic reactions take place.

The benefits of a yolk-shell structure as a photocatalyst were described in a paper by Chen and co-workers. Using MO as the test dye, they observed an improved photocatalytic degradation rate for their $\mathrm{Cu}_{2} \mathrm{O} @ A u$ yolk-shell hybrid compared to pristine $\mathrm{Cu}_{2} \mathrm{O}$ and Au-decorated $\mathrm{Cu}_{2} \mathrm{O} .{ }^{84}$ The authors described their yolk-shell structure as a cavity micro-reactor in which pollutant degradation can take place. The porous Au shell allows light to reach the $\mathrm{Cu}_{2} \mathrm{O}$ component and also enables the dye molecules to enter the cavity and react with the charge carriers on the $\mathrm{Cu}_{2} \mathrm{O}$ surface. The cavity in a yolk-shell structure also enables strong scattering of light, which improves the light-harvesting capability of the material. ${ }^{79}$

The morphology of the plasmonic metal component also exerts a substantial influence on the photocatalytic capacity of the hybrid. Ma et al. prepared $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ yolk-shell nanostructures with different Au core morphologies, such as sphere, rod, and bipyramid. ${ }^{81}$ Due to shape anisotropy, the Au nanorods and nanobipyramids exhibited strong longitudinal LSPR absorption at the near-infrared (NIR) region. As a consequence, the yolk-shell hybrids that contain these Au cores displayed a broader absorption range, which is desirable for maximum utilization of solar light. The photocatalytic behaviors of the different samples, including pure hollow $\mathrm{Cu}_{2} \mathrm{O}$ (i.e., no Au core), were examined for visible-light-driven MO degradation and for NIR-light-activated hydrogen production. As expected, the yolkshell hybrids with anisotropic Au cores performed better than
both the hollow $\mathrm{Cu}_{2} \mathrm{O}$ and the yolk-shell hybrid with spherical Au cores. Hu et al. fabricated nanorods of ternary $\mathrm{Au} @ \mathrm{Ag} @ \mathrm{Cu}_{2} \mathrm{O}$ and used them for the visible-light-mediated photodegradation of MO. ${ }^{93}$ These ternary nanorods were found to be photocatalytically superior to the corresponding ternary nanospheres due to the multiple plasmon resonances arising from the anisotropy of the $\mathrm{Au} @ \mathrm{Ag}$ nanorod interior coupled with the dielectric property of the $\mathrm{Cu}_{2} \mathrm{O}$ shell. The multiplasmon modes expanded the spectral overlap between the LSPR absorption band of the PM core and the absorption band edge of $\mathrm{Cu}_{2} \mathrm{O}$, which is necessary for PIRET-based plasmonic enhancement effect. Further optimization of the optical properties was done through tuning of the Au aspect ratio and the $\mathrm{Cu}_{2} \mathrm{O}$ shell thickness.

The advantages of creating a ternary nanocomposite were seen in a recent study by Wu et al. ${ }^{96}$ The Ag -decorated ${\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}}$ hybrid outperformed the binary $\mathrm{Au} @ \mathrm{Cu}_{2} \mathrm{O}$ system (i.e., without Ag decorations) in degrading malachite green (MG) under visible light illumination. $\mathrm{As}_{\mathrm{Cu}_{2} \mathrm{O} \text { is sandwiched between the }}$ two plasmonic metals in the ternary system, a Schottky barrier is formed at both the $\mathrm{Au}-\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Ag}^{-}-\mathrm{Cu}_{2} \mathrm{O}$ interfaces, prolonging the lifetime of the photogenerated charge carriers. The near-field effects are also heightened in this type of configuration, generating more electron-hole pairs, which leads to further enhancement in photocatalytic efficiency.

4. Summary and outlook

This review has gone over the key points related to nanocomposites of $\mathrm{Cu}_{2} \mathrm{O}$ with the plasmonic metals Au and Ag . These materials have been used in conjunction with each other to attenuate the drawbacks of the individual components and to take advantage of the positive effects that arise from compositing. The benefits include the suppression of electron-hole recombination through the formation of a Schottky barrier at the $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ interface, the expanded light absorbance range, and the increased electron-hole pair generation rate resulting from plasmonic effects, which can be manipulated through precise control of size, morphology, and shell thickness. Various configurations have been discussed along with their potential impact on the photocatalytic properties of the resulting materials. Included here are core-satellite, core-shell, yolkshell, Janus, dumbbell, and ternary structures. These structures have been obtained using a plethora of synthesis techniques, and the tuning points of these techniques have been detailed as well.

The potential use of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites in photocatalysis was explored in depth in this review, citing numerous studies that have been published over the last decade. Several mechanisms have been proposed to explain the observed enhancement in photocatalytic behavior, but further research is needed to build on the current knowledge base. A deeper understanding of the various possible contributing mechanisms and the interplay between them can aid us better in designing photocatalyst systems that can fully maximize the enhancement effects. It must also be noted that much of the current research on the photocatalytic applications of $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$
nanocomposites has delved mainly into the degradation of organic dyes. There are other important photocatalytic reactions, such as hydrogen production from water and reduction of CO_{2}, but literature reports on these are scarce for photocatalytic $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ systems. Moreover, recent reports have shown that aside from photocatalysis, $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites are similarly promising in electrocatalysis, ${ }^{45,82}$ sonocatalysis, ${ }^{113}$ organic transformation catalysis, ${ }^{144}$ and borohydride-mediated catalysis, ${ }^{59,61}$ but the mechanisms behind their favorable performance in these applications have yet to be thoroughly examined. In addition, there have been a couple of studies showing that these composite materials exhibit the photothermal effect, ${ }^{57,94}$ but their potential in photothermal catalysis is a topic that is overlooked and needs to be taken into consideration when studying their photo-activated catalytic activity. All these present a possible road forward with regard to research on $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ nanocomposites. It would be interesting to know how the different $\mathrm{PM}-\mathrm{Cu}_{2} \mathrm{O}$ hybrid designs discussed in Section 2 can be utilized for these different types of catalytic applications. Emerging hybrid designs, such as the interembedded heterostructure configuration, ${ }^{115}$ should be explored as well.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors gratefully acknowledge the University of the Philippines Enhanced Creative Work and Research grant (ECWRG-2020-2-15R) for funding support.

References

1 I. Ali, M. Suhail, Z. A. Alothman and A. Alwarthan, RSC Adv., 2018, 8, 30125-30147.
2 M. S. S. Danish, L. L. Estrella, I. M. A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb and T. Senjyu, Metals, 2021, 11, 80.

3 X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley and Y. Xia, Annu. Rev. Phys. Chem., 2009, 60, 167-192.
4 H. Kang, J. T. Buchman, R. S. Rodriguez, H. L. Ring, J. He, K. C. Bantz and C. L. Haynes, Chem. Rev., 2019, 119, 664699.

5 S. K. Dutta, S. K. Mehetor and N. Pradhan, J. Phys. Chem. Lett., 2015, 6, 936-944.
6 Y. Fu, J. Li and J. Li, Nanomaterials, 2019, 9, 359.
7 S. Liu, M. D. Regulacio, S. Y. Tee, Y. W. Khin, C. P. Teng, L. D. Koh, G. Guan and M.-Y. Han, Chem. Rec., 2016, 16, 1965-1990.
8 N. Wu, Nanoscale, 2018, 10, 2679-2696.
9 A. B. Djurišić, Y. H. Leung and A. M. Ching Ng, Mater. Horiz., 2014, 1, 400.
10 K. Y. Tang, J. X. Chen, E. D. R. Legaspi, C. Owh, M. Lin, I. S. Y. Tee, D. Kai, X. J. Loh, Z. Li, M. D. Regulacio and E. Ye, Chemosphere, 2021, 265, 129114.

11 J. Z. X. Heng, K. Y. Tang, M. D. Regulacio, M. Lin, X. J. Loh, Z. Li and E. Ye, Nanomaterials, 2021, 11, 856.

12 M. M. Abouelela, G. Kawamura and A. Matsuda, J. Cleaner Prod., 2021, 294, 126200.
13 Y. Ben-Shahar, D. Stone and U. Banin, Chem. Rev., 2023, 123, 3790-3851.
14 Y. Lv, S. Duan and R. Wang, Prog. Nat. Sci.: Mater. Int., 2020, 30, 1-12.
15 S. Sun, X. Zhang, Q. Yang, S. Liang, X. Zhang and Z. Yang, Prog. Mater. Sci., 2018, 96, 111-173.
16 F. Mohammadparast, S. B. Ramakrishnan, N. Khatri, R. T. A. Tirumala, S. Tan, A. K. Kalkan and M. Andiappan, ACS Appl. Nano Mater., 2020, 3, 6806-6815.
17 W.-H. Ke, C.-F. Hsia, Y.-J. Chen and M. H. Huang, Small, 2016, 12, 3530-3534.
18 S. Thoka, A.-T. Lee and M. H. Huang, ACS Sustainable Chem. Eng., 2019, 7, 10467-10476.
19 B. A. Koiki and O. A. Arotiba, RSC Adv., 2020, 10, 3651436525.

20 Q. Su, C. Zuo, M. Liu and X. Tai, Molecules, 2023, 28, 5576.
21 A. Kumar Sahu, M. Pokhriyal, S. Upadhyayula and X. S. Zhao, J. Phys. Chem. C, 2022, 126, 13094-13104.

22 K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 2003, 107, 668-677.
23 Z. Starowicz, R. Wojnarowska-Nowak, P. Ozga and E. M. Sheregii, Colloid Polym. Sci., 2018, 296, 1029-1037.

24 M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, Chem. Soc. Rev., 2006, 35, 1084.

25 M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and Y. Xia, Chem. Rev., 2011, 111, 36693712.

26 C. L. Nehl and J. H. Hafner, J. Mater. Chem., 2008, 18, 2415.
27 F. Hao, C. L. Nehl, J. H. Hafner and P. Nordlander, Nano Lett., 2007, 7, 729-732.
28 N. G. Bastús, J. Piella and V. Puntes, Langmuir, 2016, 32, 290-300.
29 M. A. Mahmoud and M. A. El-Sayed, J. Phys. Chem. Lett., 2013, 4, 1541-1545.
30 L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West and R. A. Drezek, Small, 2011, 7, 169-183.
31 S. J. Amina and B. Guo, Int. J. Nanomed., 2020, 15, 98239857.

32 K. E. Fong and L.-Y. L. Yung, Nanoscale, 2013, 5, 12043.
33 P. V. AshaRani, G. Low Kah Mun, M. P. Hande and S. Valiyaveettil, ACS Nano, 2009, 3, 279-290.

34 J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. GarciaGutierrez, A. Camacho-Bragado and M. J. Yacaman, Chem. Mater., 2005, 17, 6042-6052.
35 L. V. A. Sayson and M. D. Regulacio, ChemNanoMat, 2022, 8, e202200052.
36 D.-Y. Liu, S.-Y. Ding, H.-X. Lin, B.-J. Liu, Z.-Z. Ye, F.-R. Fan, B. Ren and Z.-Q. Tian, J. Phys. Chem. C, 2012, 116, 44774483.

37 C. Zhao, H. Fu, X. Yang, S. Xiong, D. Han and X. An, Appl. Surf. Sci., 2021, 545, 149014.

38 H. Qin, Q. Wei, J. Wu, F. Yang, B. Zhou, Y. Wang and S. Tian, Mater. Chem. Phys., 2019, 232, 240-245.

39 Z. Wang, S. Zhao, S. Zhu, Y. Sun and M. Fang, CrystEngComm, 2011, 13, 2262.
40 G.-Z. Yuan, C.-F. Hsia, Z.-W. Lin, C. Chiang, Y.-W. Chiang and M. H. Huang, Chem.-Eur. J., 2016, 22, 12548-12556.
41 H. Luo, J. Zhou, H. Zhong, L. Zhou, Z. Jia and X. Tan, RSC Adv., 2016, 6, 99105-99113.
42 M. D. Susman, R. Popovitz-Biro, A. Vaskevich and I. Rubinstein, Small, 2015, 11, 3942-3953.

43 J. Li, L. Sun, Y. Yan and Z. Zhu, Micro Nano Lett., 2016, 11, 363-365.
44 D. Kovács, A. Deák, G. Z. Radnóczi, Z. E. Horváth, A. Sulyok, R. Schiller, O. Czömpöly and D. Zámbó, J. Mater. Chem. C, 2023, 11, 8796-8807.
45 A. Zhang, J. Wu, L. Xue, C. Li, S. Zeng, D. Caracciolo, S. Wang and C.-J. Zhong, ACS Appl. Mater. Interfaces, 2021, 13, 46577-46587.
46 J. W. Hong, D. H. Wi, S.-U. Lee and S. W. Han, J. Am. Chem. Soc., 2016, 138, 15766-15773.
47 T. Hirakawa and P. V. Kamat, J. Am. Chem. Soc., 2005, 127, 3928-3934.
48 J. Liu and J. Zhang, Chem. Rev., 2020, 120, 2123-2170.
49 H. Jing, N. Large, Q. Zhang and H. Wang, J. Phys. Chem. C, 2014, 118, 19948-19963.
50 C.-H. Kuo, T.-E. Hua and M. H. Huang, J. Am. Chem. Soc., 2009, 131, 17871-17878.
51 M. Torras and A. Roig, Cryst. Growth Des., 2021, 21, 50275035.

52 S. M. Majhi, P. Rai, S. Raj, B.-S. Chon, K.-K. Park and Y.-T. Yu, ACS Appl. Mater. Interfaces, 2014, 6, 7491-7497.

53 L. Kong, W. Chen, D. Ma, Y. Yang, S. Liu and S. Huang, J. Mater. Chem., 2012, 22, 719-724.
54 C.-H. Kuo, Y.-C. Yang, S. Gwo and M. H. Huang, J. Am. Chem. Soc., 2011, 133, 1052-1057.
55 M. H. Huang, S. Rej and C.-Y. Chiu, Small, 2015, 11, 27162726.

56 Y.-C. Yang, H.-J. Wang, J. Whang, J.-S. Huang, L.-M. Lyu, P.-H. Lin, S. Gwo and M. H. Huang, Nanoscale, 2014, 6, 4316.

57 H.-J. Wang, K.-H. Yang, S.-C. Hsu and M. H. Huang, Nanoscale, 2016, 8, 965-972.
58 S. Zhu, D. Deng, M. T. Nguyen, Y. R. Chau, C.-Y. Wen and T. Yonezawa, Langmuir, 2020, 36, 3386-3392.

59 E. D. R. Legaspi, M. D. Regulacio, L. A. E. Pineda, L. V. A. Sayson, W. Jiang, J. Z. X. Heng, W. Wu and E. Ye, ChemistrySelect, 2023, 8, e202300904.
60 W.-C. Wang, L.-M. Lyu and M. H. Huang, Chem. Mater., 2011, 23, 2677-2684.
61 Y.-Q. Dou, T.-S. Deng, Q. Zhang, X. Zhao, J. Liu and Z. Cheng, J. Mater. Sci., 2023, 58, 7583-7593.

62 L. Chen, Y. Zhao, Y. Zhang, M. Liu, Y. Wang, X. Qu, Y. Liu, J. Li, X. Liu and J. Yang, Colloids Surf., A, 2016, 507, 96-102.

63 C. Lee, K. Shin, Y. J. Lee, C. Jung and H. M. Lee, Catal. Today, 2018, 303, 313-319.

64 H. Feng, W. Wang, W. Wang, M. Zhang, C. Wang, C. Ma, W. Li and S. Chen, J. Colloid Interface Sci., 2021, 601, 531543.

65 S. Yan, Q. Yue and J. Ma, CrystEngComm, 2021, 23, 24-29.
66 J. Xiong, Z. Li, J. Chen, S. Zhang, L. Wang and S. Dou, ACS Appl. Mater. Interfaces, 2014, 6, 15716-15725.
67 J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow and N. Wu, ACS Catal., 2013, 3, 47-51.

68 J. Zou, W. Song, W. Xie, B. Huang, H. Yang and Z. Luo, Nanotechnology, 2018, 29, 115703.
69 R. Bakthavatsalam and J. Kundu, CrystEngComm, 2017, 19, 1669-1679.
70 W. Zhang, X. Yang, Q. Zhu, K. Wang, J. Lu, M. Chen and Z. Yang, Ind. Eng. Chem. Res., 2014, 53, 16316-16323.

71 Z. Yang, C. Ma, W. Wang, M. Zhang, X. Hao and S. Chen, J. Colloid Interface Sci., 2019, 557, 156-167.
72 R. Ji, W. Sun and Y. Chu, RSC Adv., 2014, 4, 6055.
73 C. Lee, N. R. Kim, J. Koo, Y. J. Lee and H. M. Lee, Nanotechnology, 2015, 26, 455601.
74 Y.-J. Zhu and F. Chen, Chem. Rev., 2014, 114, 6462-6555.
75 H. Cheng, C. Wang, D. Qin and Y. Xia, Acc. Chem. Res., 2023, 56, 900-909.
76 M. Pang, Q. Wang and H. C. Zeng, Chem.-Eur. J., 2012, 18, 14605-14609.
77 X. Sun, J. Han and R. Guo, Front. Chem., 2020, 8, 606044.
78 B.-B. Zhang, Y.-H. Wang, S.-M. Xu, K. Chen, Y.-G. Yang and Q.-H. Kong, RSC Adv., 2020, 10, 19192-19198.

79 M. Xiao, Z. Wang, M. Lyu, B. Luo, S. Wang, G. Liu, H. Cheng and L. Wang, Adv. Mater., 2019, 31, 1801369.
80 L. Zhang, D. A. Blom and H. Wang, Chem. Mater., 2011, 23, 4587-4598.
81 Y. Ma, X. Liu, X. Wei, J. Le, Y. Fu, Q. Han, H. Ji, Z. Yang and H. Wu, Langmuir, 2021, 37, 4578-4586.

82 L. Xiong, X. Zhang, L. Chen, Z. Deng, S. Han, Y. Chen, J. Zhong, H. Sun, Y. Lian, B. Yang, X. Yuan, H. Yu, Y. Liu, X. Yang, J. Guo, M. H. Rümmeli, Y. Jiao and Y. Peng, $A d v$. Mater., 2021, 33, 2101741.
83 Y. Lu, H. S. Kang, Y. S. Lim, B. C. Lee, S.-H. Kim and L. Piao, Bull. Korean Chem. Soc., 2015, 36, 2150-2153.
84 R. Chen, J. Lu, S. Liu, M. Zheng and Z. Wang, J. Mater. Sci., 2018, 53, 1781-1790.
85 L. Zhang and H. Wang, ACS Nano, 2011, 5, 3257-3267.
86 N. Safaie and R. C. Ferrier, J. Appl. Phys., 2020, 127, 170902.
87 W. Xu, J. Jia, T. Wang, C. Li, B. He, J. Zong, Y. Wang, H. J. Fan, H. Xu, Y. Feng and H. Chen, Angew. Chem., Int. Ed., 2020, 59, 22246-22251.
88 B. Dai, Y. Zhou, X. Xiao, Y. Chen, J. Guo, C. Gao, Y. Xie and J. Chen, Advanced Science, 2022, 9, 2203057.

89 J. Qiu, Q. N. Nguyen, Z. Lyu, Q. Wang and Y. Xia, Adv. Mater., 2022, 34, 2102591.
90 A. Gale-Mouldey, E. Jorgenson, J. P. Coyle, D. Prezgot and A. Ianoul, J. Mater. Chem. C, 2020, 8, 1852-1863.

91 M. Wang, A. Hoff, J. E. Doebler, S. R. Emory and Y. Bao, Langтиir, 2019, 35, 16886-16892.
92 W. Xu, R. Xiao, S. An, C. Li, J. Ding, H. Chen, H. B. Yang and Y. Feng, Small, 2023, 19, 2300587.

93 Z. Hu, Y. Mi, Y. Ji, R. Wang, W. Zhou, X. Qiu, X. Liu, Z. Fang and X. Wu, Nanoscale, 2019, 11, 16445-16454.
94 K.-H. Yang, S.-C. Hsu and M. H. Huang, Chem. Mater., 2016, 28, 5140-5146.
95 L. Chen, M. Liu, Y. Zhao, Q. Kou, Y. Wang, Y. Liu, Y. Zhang, J. Yang and Y. M. Jung, Appl. Surf. Sci., 2018, 435, 72-78.

96 T. Wu, H. Zheng, Y. Kou, X. Su, N. R. Kadasala, M. Gao, L. Chen, D. Han, Y. Liu and J. Yang, Microsyst. Nanoeng., 2021, 7, 23.
97 T. Wu, Y. Kou, H. Zheng, J. Lu, N. R. Kadasala, S. Yang, C. Guo, Y. Liu and M. Gao, Nanomaterials, 2019, 10, 48.

98 B. Dai, J. Guo, C. Gao, H. Yin, Y. Xie and Z. Lin, Adv. Mater., 2023, 35, 2210914.
99 B. Dai, J. Fang, Y. Yu, M. Sun, H. Huang, C. Lu, J. Kou, Y. Zhao and Z. Xu, Adv. Mater., 2020, 32, 1906361.

100 A. Ayati, A. Ahmadpour, F. F. Bamoharram, B. Tanhaei, M. Mänttäri and M. Sillanpää, Chemosphere, 2014, 107, 163-174.
101 M. R. Khan, T. W. Chuan, A. Yousuf, M. N. K. Chowdhury and C. K. Cheng, Catal. Sci. Technol., 2015, 5, 2522-2531.
102 S. Linic, P. Christopher and D. B. Ingram, Nat. Mater., 2011, 10, 911-921.
103 Y. Wang, J. Zhang, W. Liang, H. Yang, T. Guan, B. Zhao, Y. Sun, L. Chi and L. Jiang, CCS Chem., 2022, 4, 1153-1168. 104 C. Clavero, Nat. Photonics, 2014, 8, 95-103.
105 M. Thangamuthu, T. V. Raziman, O. J. F. Martin and J. Tang, J. Electrochem. Soc., 2022, 169, 036512.

106 P. Anger, P. Bharadwaj and L. Novotny, Phys. Rev. Lett., 2006, 96, 113002.
107 S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow and N. Wu, J. Am. Chem. Soc., 2012, 134, 15033-15041.
108 J. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow and N. Wu, Nat. Photonics, 2015, 9, 601-607.

109 A. Amirjani, N. B. Amlashi and Z. S. Ahmadiani, ACS Appl. Nano Mater., 2023, 6, 9085-9123.
110 P. K. Jain, K. S. Lee, I. H. El-Sayed and M. A. El-Sayed, J. Phys. Chem. B, 2006, 110, 7238-7248.
111 A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter and S. Link, Nano Lett., 2010, 10, 1398-1404. 112 J.-Y. Ho and M. H. Huang, J. Phys. Chem. C, 2009, 113, 14159-14164.
113 S. Yadav, M. Chauhan, M. Jacob and P. Malhotra, New J. Chem., 2022, 46, 9685-9694.
114 G. Singh, M. Kumar and V. Bhalla, ACS Sustainable Chem. Eng., 2018, 6, 11466-11472.
115 B. Ma, J. Bi, J. Lv, C. Kong, P. Yan, X. Zhao, X. Zhang, T. Yang and Z. Yang, Chem. Eng. J., 2021, 405, 126709.

[^0]: ${ }^{a}$ Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines. E-mail: mdregulacio@up.edu.ph
 ${ }^{b}$ Materials Science and Engineering Program, University of the Philippines Diliman, Quezon City, 1101, Philippines

