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1 Introduction

What is the status of DFT? Where is DFT heading? What are the
important new developments in DFT and what are the points of
contention? What is DFT?

Such questions are discussed whenever developers and
users of density-functional theory (DFT) meet - in conferences
and workshops, during coffee breaks and over dinners. We do
not expect short, clear answers to such questions but the
discussions and conversations they give rise to are often infor-
mative and entertaining - and different from discussions in
publications and presentations. We learn about new ideas and
developments and about failed attempts - a casual remark may
trigger new research or lead to new collaborations. These discussions
are an important reason for travelling to conferences and
something we have missed during the pandemic.

This article is an attempt to bring such discussions to the
printed format - to let prominent workers in the field exchange
views and thoughts about DFT in an open informal manner,
mimicking the format of a roundtable discussion, but backing up
their statements by arguments and references to the literature.
The end result should be a lively guide to DFT and its
development.

The format of the present article is an unusual one, resembling
most closely the Faraday Discussions but not anchored to the talks
presented at a conference. It is to our knowledge the first paper of
its kind in PCCP and the first such paper on DFT. Given its
unusual format, we here describe how it came about.

The initiative for the article was taken by three of the
authors, Andy Teale, Trygve Helgaker, and Andreas Savin.
Having received a go-ahead for the project from the publisher,
the three initiators compiled an initial list of questions about
DFT and some tentative answers. A letter of invitation was then
sent out to about hundred workers in the field, inviting them
“to participate in what will hopefully be an open, thought
provoking and informal discussion about density-functional
theory and its applications”. To clarify the format of the article,
the invitation contained a link to the document with the
preliminary questions and answers. A total of 67 accepted the
invitation, bringing the number of authors to 70.

In a process involving all authors, the preliminary questions
were revised and preliminary answers removed. A final set of
26 questions was agreed upon: five questions for DFT, nine for
Density-Functional Approximations (DFAs), eight for The
Future of DFT and DFAs, and four for Communicating and
Sharing Our Results.

All authors were then invited by the initiators to contribute
to the discussion by providing answers to the questions and
also comments to answers over a six-week period, encouraging
discussions among the authors. Guidelines were provided to
ensure a smooth collaborative process. The end result was an
extensive first draft of the manuscript, running over sixty pages
and with several hundred references. After a two-week internal
review involving all authors, an additional two weeks were
allotted for responses to the internal review. The purpose of the
internal review was solely to improve clarity of expression — not to

28702 | Phys. Chem. Chem. Phys., 2022, 24, 28700-28781
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restrict in any way the freedom of the authors to express their
opinions.

The final draft was edited by the three initiators, with the
aim of improving the organization of the manuscript by reor-
dering contributions and comments, reducing, where possible,
repetition and ensuring a certain level of uniformity in notation
and clarity of presentation. However, to retain the spontaneity of
the discussion and reflect the multitude of views presented,
reorganization was kept to a minimum. As a consequence, some
themes may be revisited in different contexts throughout the
paper — much as would happen in a lively roundtable discussion.

Having received a final go-ahead from all co-authors, the
final manuscript was submitted to the journal. All work on the
paper was carried out with LaTeX, using the Overleaf platform’
for ease of collaboration.

The final manuscript provides an interesting snapshot of
where DFT stands today and where it is moving. It covers much of
DFT with an extensive bibliography, but coverage is nevertheless
not exhaustive - classical DFT and multicomponent DFT are not
discussed, for example. The topics covered in the paper reflect
the interests of the authors. Also, the views stated are those of the
individual authors - as such, the paper has no conclusion. In the
spirit of the paper, you are instead encouraged to continue this
exchange of views, by contacting the authors.

2 Density-functional theory
2.1 What is DFT?

2.1.1 Savin. Density-functional theory (DFT) is more than
existence theorems. I like to make the distinction between

(1) a density functional, a number obtained from the
density;

(2) DFT, the collection of theorems useful for obtaining exact
results with procedures using density functionals, without
having to solve the exact many-body problem;

(3) the methods using them - for example, the Kohn-Sham
method; and

(4) density-functional approximations (DFAs), the approxi-
mations (or models). The latter can originate from a choice of a
“closed form”, as mentioned in contribution (2.1.4), or from
controllable ones, as related to the numerical treatment and
discussed in contribution (4.6.7).

2.1.2 Levy. Federico Zahariev and I have recently shown in
ref. 2 that it is useful and variationally valid to employ spin-free
wave functions in the constrained-search formulation when
deriving certain properties of a functional for the purpose of its
approximation.

In the constrained-search formulation of pure-state (or
ensemble) DFT, the kinetic plus electron-electron repulsion
energy of a density is the expectation value of the wave function
(or ensemble) that yields this density and minimizes the kinetic
plus electron-electron repulsion expectation value. That is,

Fas = min| [0 + £l W

This journal is © the Owner Societies 2022
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where, with the use of pure-state wave functions,

Flp) = min(¥|T + W|?). 2)

The wave functions are here spin-free, but antisymmetric in
the first M spatial coordinates and separately antisymmetric in
last (N — M) spatial coordinates. The generalization of F[p]
to ensembles should be clear. This generalization ensures
convexity.

2.1.3 Reining. One may distinguish different possible
aspects in this question: What is the message of DFT? Why has
it been successful? How is it used today? What distinguishes it from
other theories that deal with the many-body problem? Some are
treated later, so I think we should focus on the first aspect here.
I also think that, in answering this and many other questions, a
glance at other possible theoretical approaches is healthy,
because we always learn from comparison, so let us try to have
such a point of view whenever possible.

The term DFT expresses the fact that observables in the
ground state at zero temperature can be considered as func-
tionals of the ground-state density. This can then be extended
to thermal equilibrium, etc., as others point out. So, it means
that the density is a sufficient descriptor. It is important to say
“can be considered as a functional of the density”” and not “is a
functional of the density”’, because this is a choice: observables
can also be considered as functionals of the many-body ground-
state wave function, or the one-body Green’s function, or many
other possible choices. The functional of the many-body
ground-state wave function is very simple (whereas the wave
function is not, of course), and a density functional will in most
cases be exceedingly complicated (whereas the density is sim-
ple). Actually, I chose to say “can be considered as”, because
this does not imply that there must be an explicit expression.

A second important point: the density is not known a priori
but is needed as input to evaluate our density functionals for a
given system and observable. So, as a second aspect of DFT, we
also have to invoke the variational character of the energy as
functional of the density, because it allows us to find the
density that is needed to evaluate the functionals for the
various observables, without calculating the density from the
many-body wave function. Otherwise, DFT could probably not
compete with other approaches, not even as an idea - for
example, also the external potential is a sufficient descriptor
(for given particle number or chemical potential), it is simple,
and it has the advantage that we (think we) know it. The
variational character also has the benefit that a slightly wrong
density may still lead to a reasonable energy (whereas this may
not hold for other observables).

So, we may consider DFT as one possibility: one possible way
to formulate the calculation of observables in a many-body
system. There are many such ways, and we know that for most
systems we will never be able to obtain the exact answer.
Therefore, once we agree that those various ways are in princi-
ple exact, the true question is: how suitable are they as starting
points for approximations? And so, for our purpose here: in
which way is DFT a good starting point for approximations?

This journal is © the Owner Societies 2022
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2.1.4 Scheffler. Since the development of the quantum
mechanics of atoms and polyatomic systems, it was clear that
inspection of the ground-state electron density p(r) provides the
information on the total number of electrons, N, the positions
of the atoms, {R}, and from p(R,) the nuclear charges.>* Thus, p(r)
determines N, {Rj}, {Z;} - that is, the many-electron Hamiltonian,
and therefore, it determines everything. This is the algorithm that
defines how to go from the ground-state density to the energy.

The theorem of Hohenberg and Kohn® and the works by
Levy®” and Lieb® are beautiful mathematical treatments.
Importantly, the basic concept that the ground-state electron
density determines everything often enables decisive physical
insight. The often misleading assumption is that the above laid
out, exact algorithm “p(r) — ground-state energy (and even
everything)”’ can be expressed in terms of a closed mathema-
tical expression. Approximating the algorithm by a mathema-
tical functional, i.e., by a DFA, suffers from the severe problem
that the range of validity of this functional is typically unclear:
We can test its accuracy only by comparing results with experi-
ments or high-level wave-function theories. We trust the reliability
for systems that we believe (!) are “similar” to the tested ones, but
we don’t know about the accuracy for untested systems. And the
term “similar” is not even defined.

Let me add: I am not aware of a proof that the exact exchange-
correlation-functional exists, beyond the noted algorithm which
requires to solve the many-body Schrédinger equation. However,
and most importantly, the works by Hohenberg and Kohn and
Kohn and Sham have shown the way to develop density-
functional approximations which revolutionized the description
and understanding of polyatomic systems.

2.1.5 Kvaal. I agree with Savin in contribution (2.1.1) - in
particular with respect to the claim that a distinction between
exact DFT and approximate DFT is useful. In my opinion, they
are both conceptually and mathematically different. They share
the use of the density and potential as dual basic variables, but
otherwise the similarities disappear for me. For instance, a DFA
will have much nicer mathematical properties than the exact
universal functional, as they are built from simple, explicit
ingredients, at least partially necessitated by the need for efficient
numerical evaluation and optimization in order to be useful. On
the other hand, the exact universal density functional has a
complicated implicit definition, leading to a highly complicated
functional. A concrete formulation of this is due to Schuch and
Verstraete,” who demonstrated that, if an efficient evaluation of
the universal functional could be done, all NP hard problems
would be solvable in polynomial time. This is highly unlikely. On
the other hand, DFAs are necessarily computable! (It is of course
one of the marvels of DFT, that it is even possible to obtain such
good results with so little computational effort.)

Thus, approximate and exact density-functionals are math-
ematically quite different. The noncomputability of the exact
functional indicates that systematically improvable DFAs are
probably possible, in the sense of mathematical a priori error
estimation - that is, mathematical statements towards an
approximation’s accuracy in terms of its adjustable parameters,
such as basis size. Therefore, I would like to go out on a limb
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and say that approximate density functionals are not really
approximations to exact density functionals. They are instead
largely independent and, to a variable extent, semiempirical
models that have the common use of the density as a basic
variable as a characteristic. The latter aspect is for me an
answer to the question “What is DFT?”

2.1.6 Savin. Let me comment on the difficulty of obtaining
exact functionals in a (semi)local form by choosing a simpler
example. The Hartree density functional,

Eulpl=3| | oo/ —ridnde, @)

is universal, and not only known but also simple. However, I
don’t see how to replace it by a (semi)local form.f One can
argue that this does not lead to problems, as we compute Ey
explicitly. However, this argument is not valid if we choose to
express the exchange functional, E,, in a (semi)local form: for
one-electron systems, Ey = —Ey.

2.1.7 Yang. I agree with Savin on the difficulty of semilocal
functionals. The example of the interaction energy of a one-
electron system is a clear case: the exact exchange-correlation
energy has to cancel the classical Coulomb energy.'® Otherwise,
the functional has a self-interaction error (SIE).

For many years, the SIE had been assumed to be the main
systematic error in DFAs, related to the incorrect dissociation of
molecular ions, the underestimation of chemical reaction
barriers and band gaps of molecules and bulk materials, the
overestimation of polymer polarizability, and many other failure
of commonly used DFAs.""'> However, the development of two
SIE-free functionals, the Becke05** and the MCY2'* functionals,
changed the understanding.'® While these two exchange-corre-
lation functionals, nonlocal and also nonsemilocal, are SIE-free
by construction for any one-electron system and perform as well
on thermodynamics benchmarks as hybrid functionals, they
still retain significant errors in the dissociation of molecular
ions, band gaps of molecules, and polymer polarizability pro-
blems, much like the hybrid functional B3LYP. The only sig-
nificant improvement observed is in the prediction of reaction
barriers. Thus the systematic error is clearly not the SIE.

To describe the systematic error of DFAs, the concept of the
delocalization error has been developed, and it can be under-
stood from the perspective of fractional charges.'®'” For sys-
tems of small or moderate physical sizes, conventional DFAs
usually have good accuracy in total energies for an integer
number of electrons. For a fractional number of electrons,
conventional DFAs, however, violate the Perdew-Parr-Levy-Bal-
duz (PPLB) linearity condition,"®° which states that the exact
ground-state energy E(N) is a linear function of the fractional
electron numbers connecting adjacent integer points. Inconsis-
tent with the requirement of the PPLB linearity condition, E(N)
curves from conventional DFAs are usually convex, with drastic
underestimation to the ground-state energies of fractional

+ Note that there is a (semi)local form for short-range interactions, e.g., d(r; — 1),

e s 1) (0203001 — p2)drndey = Lo (e
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systems. The convex deviation of conventional DFAs decreases
when the systems become larger and vanishes at the bulk limit.
However, the delocalization error is exhibited in another way, in
which the error manifests itself in too low relative ground-state
energies of ionized systems and incorrect linear E(N) curves with
wrong slopes at the bulk limit."®*"*!

To reduce or eliminate the delocalization error, enormous
efforts have been devoted to the development of new exchange-
correlation functionals. None of these developments are based
on a semilocal form. All have nonlocal features in the func-
tionals - see the development of the scaling approaches.”*>*

In addition to the delocalization error characterized by
fractional charges, commonly used DFAs also have a significant
systematic static correlation error characterized by the violation
of the constancy conditions on fractional spins."”?**° The combi-
nation of the exact fractional charge condition'® and the exact
fractional spin condition’®*® leads to the general flat-plane
condition,”” the satisfaction of which is a necessary condition for
describing the band gap of strongly correlated Mott insulators. The
flat-plane condition also leads to the conclusion that the exact
exchange-correlation functional cannot be a continuous func-
tional of the electron density or the density matrix of the non-
interacting reference system everywhere.>” To reduce or eliminate
the static correlation error, one has to use nonlocal functionals.?®

2.1.8 Savin. Warren Pickett said during a talk (Brisbane,
1996): “True, the density gives the potential, and this makes the
Hohenberg-Kohn theorem sound so empty, because the
potential, we know it anyhow”. We do not need to start with an
unknown function, p(r), when it is equivalent to using a known
function of the position r - namely, the external potential, v(r).

2.1.9 Trickey. The Pickett remark quoted by Savin is a
paraphrase of the analysis that Per-Olov Lowdin had attributed
earlier to E. Bright Wilson.>® The density cusps tell you the
nuclear charges, hence the external potential v, hence the
Hamiltonian. Also see Krylov’s contribution (2.1.22) below.

2.1.10 Yang. The Hohenberg-Kohn work established the
principles for describing a many-electron system from the
reduced variable of its electron density and the Kohn-Sham
work provided the formulation to use a noninteracting refer-
ence system to represent the electron density of a many-
electron system. These works are the solid foundation of DFT.
However, they do not lead to any systematic pathway to the
approximation of the density functional; see contribution
(2.1.8). The specific approximations for the density functionals
are the key to all applications.

2.1.11 Helgaker. I suppose the nontrivial result is that (for
a given number of electrons) the potential and density are dual
variables — what you can calculate from one, you can calculate
from the other. In particular, we can calculate the energy
directly from the density, bypassing the potential.

2.1.12 Yang. Indeed, the dual formulation of DFT is the
potential-functional theory (PFT).*° PFT establishes two results:
the dual of the Hohenberg-Kohn theorem in terms of the
external potential as the basic variable and the dual of the
Kohn-Sham theorem in terms of the potential of the non-
interacting reference system. The first result provides a solution
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to the v-representability problem in the original Hohenberg-
Kohn work. The second result provides the theoretical
foundation for the optimized-effective-potential approach for
Kohn-Sham calculations with functionals of orbitals.

2.1.13 Helgaker. I like to think of DFT in terms of
Legendre-Fenchel transforms.®?' In short, from the concavity
and continuity of the ground-state energy v— E[v] as a function
of the external potential v e L**(R®) + L*(R®) follows the
existence of a universal density functional p— F[p] as a function
of the electron density p € L}(R*) n L'(R?) such that>®

Ev] = inf(F[p] + (v|p)) < HK variation principle (4)
p

F[p] = sup(E[v] — (v|p)) « Lieb variation principle (5)

where (v|p) = [v(r)p(r)dr. Since E and F can be calculated from
each other, they contain the same information, only expressed
in different ways. However, although the Lieb variation princi-
ple is a powerful tool for analysis and method development, it
is not a practical tool for computation. Instead, the power of
DFT derives from Kohn-Sham theory, making it possible to
approximate F{p] (sufficiently) accurately and inexpensively for
densities p of interest to us by introducing orbitals.

2.1.14 Levy. In contribution (2.1.13), Helgaker states that
he prefers the Legendre-transform formulation. However, it has
been shown that the Legendre-transform formulation is equiva-
lent to the ensemble constrained search.®

2.1.15 Helgaker. It is of course correct that the ensemble
constrained-search functional is identical to Lieb’s functional.
With respect to the different formulations of DFT, my view is
the following.

The Hohenberg-Kohn theorem,’ often thought of as the
cornerstone of DFT, is easy to prove (apart from some subtleties)
but perhaps not so easy to understand intuitively. Hohenberg
and Kohn’s original formulation of DFT is therefore not only
restrictive in scope (in that it assumes v-representability) but
may also appear a little mysterious.

Levy’s constrained-search formulation® took the mystery out
of DFT and brought clarity and generality to the field - a major
step forward, indeed. Lieb’s convex formulation,® on the other
hand, gave DFT beauty and elegance by identifying the density
functional with the Legendre transform (convex conjugate) of
the ground-state energy, thereby placing DFT in a broader
mathematical framework.>?

It is an important and nontrivial result in DFT that the
ensemble constrained-search functional and the Legendre-
transform functional are the same - they are merely comple-
mentary formulations of the same thing.® Together, they con-
stitute the solid foundation of DFT.

2.1.16 Scheffler. I somehow disagree with the last sentence
of contribution (2.1.13). Clearly, Kohn-Sham theory has provided
us with significant understanding, for polyatomic systems,
mostly for cases where the physics is largely governed by the
independent-particle kinetic-energy operator (or its orbitals).
However, in general, I would hesitate to call Kohn-Sham theory
together with the known DFAs ‘“(sufficiently) accurate”. A key
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scientific problem is that the range of validity of the known DFAs
is unknown, and a reliable estimate of the accuracy and a
systematic convergence of the accuracy are not possible. Our
own pragmatic approach is to perform calculations with different
DFAs, and if the results are similar, we tend to accept them.
Otherwise, we are worried. And, if possible, we check final results
by a higher-level theory - by, for example, coupled-cluster theory.

2.1.17 Kvaal. It is interesting to note that Lieb’s convex
formulation of exact DFT, the essence of which is succinctly
described in contribution (2.1.13), does not rely in any way on the
classical Hohenberg-Kohn theorems to establish duality of p and v.
Neither are the theorems necessary for the derivation of exact Kohn-
Sham theory. While the original Hohenberg-Kohn theorems are
now established rigorously, albeit with mild assumptions on the
potential,”® it is my opinion much easier to say that the Legendre
transform of E[v] is the essence and foundation of DFT, from both a
mathematical and a physical point of view. Lammert has pointed
out that the Hohenberg-Kohn density-potential correspondence
map is quite ill-behaved.** Nearby v-representable densities may
have wildly different potentials, and thus fundamental arguments
that rely on, for example, some kind of differentiation of v as a
function of p are not useful, at least for exact DFT.**

2.1.18 Laestadius. With recent development of unique-
continuation from sets of measure zero, in particular by
Garrigue,® I regard the Hohenberg-Kohn theorem as rigorous,
albeit with some limitations. In particular, certain I” spaces need
to be considered for the potentials - for example, Theorem 30 in
ref. 33 is a Hohenberg-Kohn result with all previous gaps filled,
although it is not given for L** + L*”.

Furthermore, comparing the situation with paramagnetic-
current DFT, where the lack of a (corresponding) Hohenberg-
Kohn theorem has been established by Capelle and Vignale,*® it
is striking that although (p,j,) determines the nondegenerate
ground state, if degeneracies are allowed, then the level of
degeneracy is not determined.>” A given (,jp) can therefore be
associated with two different Hamiltonians (in fact, infinitely
many) that may have different numbers of degenerate ground
states. (Of course, this doesn’t stop the constrained search,
which remains well defined.) In DFT, the extra layer of a
Hohenberg-Kohn theorem (not just the first part of a con-
strained search) rules out such situations. I view the Hohen-
berg-Kohn theorem as a gold reserve - it is perhaps unexciting
and just sits in the vault but is, on the other hand, good to have
in certain extreme situations.

2.1.19 Helgaker. Regarding the Hohenberg-Kohn theorem
in DFT, it is interesting to see what role it plays within the
Legendre-Fenchel formulation of DFT. The condition for a
minimizing density in the Hohenberg-Kohn variation principle
as given in contribution (2.1.13) is —v € 0F[p] where 0Fp] is the
subdifferential of F at p - that is, the collection of potentials with
ground-state density p. Likewise, the condition for a maximizing
potential in the Lieb variation principle is p € OE[v], where the
subdifferential of E at v is the collection of all ground-state
densities of v. In fact, the two conditions are equivalent:

E[v] = Flp] + (v|p) < —v € OF[p] < p € OEP].  (6)
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By the Hohenberg-Kohn theorem, the optimality condition of
the Hohenberg-Kohn variation principle takes the form

{=v+clc € R}, pis v-representable,
OF[p] = )

[/ p is not v-representable.

This uniqueness of the potential (up to an additive constant) is
not mission critical for DFT but tells us that there is a unique
maximizing potential in the Lieb variation principle (if any).

The optimality conditions in eqn (6) give some additional
insight: the ground-state energy E and the universal density
functional F are functions whose subdifferential mappings
(“functional derivatives”) are each other’s inverses. Loosely
speaking, therefore, E and F may be obtained from each other
by differentiation followed by inversion and integration.

2.1.20 Salahub. Savins answer in contribution (2.1.1) to
“what is DFT?” appeals to me because of its breadth. DFT
appeals to different people for different reasons, from the joy of
pure theory, to the satisfying hard work of DFAs, to the romp of
applications across disciplines (when it works), to the agony
when it doesn’t (appealing to masochists, but also affording the
possibility of looping back for improvements). So “DFT” is like
an excellent marketing logo, as recognizable to scientists as the
Nike logo is to the general public. Reasons for buying into DFT
are numerous and varied, as reflected in the sections of
this paper.

2.1.21 Fuentealba. The first time I heard about DFT was in
the eighties in Germany, and people called it ‘“Density Func-
tional Method”, because the theory is the quantum mechanics
and one cannot have a theory into another one.

2.1.22 Krylov. I first learned about the key ideas behind
DFT before its modern incarnation was developed. Back in the
eighties, chemists were using the Xo method, which was
regarded by ab initio theorists as semiempirical and, therefore,
inferior to the then gold standard - the full Hartree-Fock
method. We were struggling to understand why an inferior
method would give more accurate results. I think the real
insight was to understand that the Wilson conjecture - the
observation that the one-electron density contains all the
information needed to reconstruct the many-body Hamiltonian
(and, therefore, to find the exact solution of the Schrédinger
equation) - provides a physical justification for the existence of
a mapping between the density and the exact energy of the
system. The Hohenberg-Kohn theorems inform us that this
mapping is unique.

With such justification, one can approach the problem of
finding this mapping in a completely different way - not by
building approximations to the known exact solution (as done
in the wave-function theory), but by parameterizing an empiri-
cal representation of the mapping device, the functional. Most
DFAs are built upon mathematical representations of the
functional grounded in our physical understanding of what it
should look like (based on exact results for model systems), but
one can envision finding the mapping without any such help
from physics - for example, by brute-force training of a neural
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network (machine learning).*® One can, therefore, think of DFT
as an empirical method that can be made exact.

While the blind brute-force (e.g., via ML) discovery of the
density-energy mapping is, in principle, possible, it has impor-
tant limitations compared to physically motivated DFAs. First,
without any constraints due to physics, such brute-force search
is going to be computationally wasteful. Second, having
discovered the mapping between energy and density, one still
has no recipe for computing energy derivatives with respect to
various perturbations (i.e., properties), unless properties (or
various energy derivatives) were included in the training. In
contrast, using a physically motivated form of the functional
opens access to properties (although the quality is not guaran-
teed, as illustrated by the developments of magnetic DFAs*?).

2.1.23 Helgaker. I am not so fond of the Wilson conjecture -
it works only if we already know that the potential is a Coulomb
potential. It is a striking observation, but to some extent it
trivializes DFT. The Hohenberg-Kohn theorem makes no such
assumptions regarding the potential.

2.1.24 Jones. A fixation on exact energies appears to be so
strong among chemists that it justifies any amount of data
fitting, so reducing DFT to a ‘“semiempirical” or “‘empirical”
method. With their focus on extended systems, materials
scientists know that new knowledge can result from DFT
calculations, even if all the calculated energies are wrong. See
also contribution (2.2.23).

2.1.25 Ayers. Arguably, any electronic structure theory
method can be reformulated as a DFA by substituting its asso-
ciated energy functional into the Legendre transform or its
associated wave-function ansatz into the constrained search. So
Hartree-Fock may be legitimately considered a DFT (a general-
ized Kohn-Sham DFT). Is Hartree-Fock theory and its analysis
therefore DFT? Clearly, many coupled-cluster and propagator
methods are also frequently analysed as DFT. I would not like
to define DFT as “the sort of stuff that is done by density-
functional theorists” but some work that is marketed as DFT
(¢f contribution (2.1.20)) is not presented in the context of the
mathematical framework of DFT (¢f. contribution (2.1.1)).

To me, only orbital-free DFT is unequivocally DFT; every-
thing else can also be fruitfully viewed from an alternative
perspective. Indeed, some theoretical approaches and computa-
tional methods can legitimately be considered wave-function
theories/methods, density-matrix theories/methods, propagator
theories/methods, and density-functional theories/methods. I
do not wish to take a hard line and proclaim that these types of
theories/methods are not DFT because the philosophy (espe-
cially the emphasis on explicitly defining and characterizing the
functional that is being approximated), traditions (especially the
openness to pragmatic parameterization and approximation),
and tools of DFT can be useful even for theories/methods that
are “not just DFT”. But other, non-DFT, approaches could
sometimes be even more useful.

2.1.26  Gorling. While the electron density certainly is a key
quantity in DFT, I feel that there is a too strong focus on it - in
particular, on the idea of getting the total energy or other
information directly from the density. While this is the idea
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behind certain flavours of orbital-free DFT, it is not the idea
behind the most commonly used DFT approaches, which are
the Kohn-Sham or generalized Kohn-Sham methods. For these
methods, a quite different view on DFT can be taken: to
consider the electron density as the quantity that enables one
to associate the real electronic system with a model system that
has the same ground-state density, which makes it possible to
describe the ground-state energy and other properties of the
real system via the model system, ie., via its orbitals and
eigenvalues. From the Kohn-Sham orbitals, traditionally, only
the ‘noninteracting’ kinetic energy is calculated exactly, while
the exchange-correlation energy is approximated by an explicit
functional of the density.

But this is just one strategy. It is possible to determine
additionally other contributions to the energy from the orbitals -
for example, parts of the exchange energy in hybrid methods - or
even to calculate all contributions to the energy exactly from the
occupied orbitals, except the correlation energy. The latter can
then be approximated by orbital-dependent functionals.*® In the
latter case, the density is not needed at all in the calculation of
the total DFT energy. If, furthermore, the orbitals are obtained via
the optimized-effective-potential (OEP) method*®*® or within
an appropriate generalized Kohn-Sham approach, then DFT
methods results that do not require at any point the calculation
of the density. The density is then only required in the underlying
formalism.

I feel that the perception of DFT has been somewhat blurred
by a questionable statement that, one way or another, is
frequently found in textbooks and articles. This is the state-
ment that DFT is distinguished from wave-function methods by
using the electron density instead of a wave function to
calculate the total energy of an electronic system. This state-
ment is at least misleading if not wrong because most DFT
methods used in practice are Kohn-Sham or generalized Kohn-
Sham methods, which require orbitals and thus one-electron
wave functions to calculate crucial parts of the total energy.

2.1.27 Gidopoulos. I believe the distinction in the literature
between wave-function methods and DFT is slightly different. In
my understanding, the distinction is not that in DFT the energy
is actually calculated from the density, once we know the
density, because the question remains how to find the density.
Rather, the distinction is that in DFT the solution to the
electronic-structure problem is obtained by minimizing a total
energy as a functional of the density, while in wave-function
theory the solution is obtained by solving Schrodinger’s equa-
tion. So, calculating the energy from the density does not mean
literally plugging the density into some orbital-free expression,
but the process of minimization of the total-energy density
functional to obtain the minimum value, which is the total
energy of the interacting system.

2.1.28 Chattaraj. Any theory that applies density to under-
stand a many-particle system, without using the exact wave
function, can be termed as DFT.*”*° According to Hohenberg-
Kohn theorems,” DFT is a theory that legitimizes the use of the
density to calculate all possible properties. The Hohenberg-
Kohn theorems are just existence theorems and do not provide
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any know-how for an explicit form of the energy as a functional
of the density as well as functional forms of other properties.

2.1.29 Trickey. The foregoing discussion seems a bit paro-
chial - for example, the identification in contribution (2.1.4) of DFT
with “ground state”. That restriction seems to have been accepted
by subsequent commentators in this section. But there are several
instances of what generically is a DFT. There is, for example, a well-
developed classical DFT. Closer to the focus of this discussion
(many-fermion systems), there is free-energy DFT (also known as
finite-temperature DFT).>° It inexorably involves excited states. There
has been progress on free-energy DFAs.>'>® Another ensemble DFT
is the Gross-Kohn-Oliveira (GOK) approach for excited states at
T =0 K (see other commentators below).

The common theme of these DFTs is the reduction of the
inherent complexity of the direct description of a many-body
system to the comparative simplicity of functionals of the
density - either explicitly, or implicitly in terms of auxiliary
functions such as orbitals. The strategy, in the time-independent
case at least, is to obtain the relevant physics (hence also chemistry)
by an appropriate minimization procedure on a functional of
the density itself (whether it be pure-state or ensemble).

2.1.30 Galli. In the Hohenberg-Kohn formulation, DFT is
an exact theory of ground and excited states, entirely based on
the electron density. That is, the density determines uniquely
the potential, hence both ground and excited state properties of
the system may in principle be derived. However there is no
practical recipe on how to derive such potential and hence on
how to derive neither ground or excited state properties. The
Kohn-Sham formulation, in contrast, is applicable only to
ground-state properties, although in practice it is applied also
to excited states.

2.1.31 Schwerdtfeger. We should be reminded that the
charge density p(r, ¢) is not Lorentz invariant. As relativistic
quantum (field) theory demands a fully covariant formalism,
we have to use the four-current density j* as a function of the
four-position x* instead of the charge density, the latter appear-
ing only as the time-like (first) component of the four-vector
(0, Jilc, Jylc, joIc), where c is the speed of light in vacuum. The
Hohenberg-Kohn theorem has been generalized to the relati-
vistic domain by Rajagopal and Callaway®” and field-theoretical
aspects have also been taken into account by Engel.’® Beside
this enormous progress on the theoretical side, it is fair to say
that applications in this most rigorous relativistic framework
using the current-dependent exchange-correlation energy func-
tional are more or less absent.”® The main reason lies, as one
can guess, in the fact that relativistic DFT (RDFT) faces exactly
the same fundamental problems as DFT in the nonrelativistic
domain. As we know, relativistic effects can be very large for
electronic properties of compounds containing heavy elements,
often larger than the error introduced by many DFAs, thus
justifying the introduction of the exchange-correlation func-
tional into the (no-pair) Dirac-Coulomb (DC) equation (the
Douglas-Kroll Kohn-Sham scheme) or into its corresponding
two-component (such as exact two-component [X2C]) or scalar
relativistic schemes, with or without the relativistic pseudopo-
tential approximation. The latter together with DFT is clearly
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the main workhorse in solid-state physics. One may however,
question the inclusion of smaller radiative QED corrections
into RDFT as it cannot compete with more accurate wave-
function based methods. On the other hand, we should mention
that RDFT approximations based on the density p and the
(noncollinear) magnetization density m*>*® have now become
feasible and useful in many applications.

2.1.32 Tellgren. In my view, a lot of work remains to be
done on the theoretical side of RDFT too. Every rigorous formula-
tion of nonrelativistic ground-state DFT depends on the ground
state being identified as a global energy minimum. At the relati-
vistic level, an energy minimization principle strong enough to
construct a DFT is missing and the present attempts to establish a
relativistic Hohenberg-Kohn theorem are not rigorous.

2.1.33 Gritsenko. DFT can be formally considered as the
result of the simplest exact functional closure of the conven-
tional expression for the nonrelativistic ground-state energy
E[p, y, P], which includes the electron density p, the first-order
reduced density matrix (1RDM) y, and the diagonal part P of the
2RDM [ corresponding to a ground-state wave function ¥. This
can be achieved in the spirit of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) chain®' of the quantum dynamical
reduced theories of many-electron systems. Truncation of the
BBGKY chain with its exact or approximate closure at the mth
level produces theories that operate with the mth (and lower)
order RDMs.®? In this sense, DFT can be considered as the result
of the exact closure at the ‘“zero” (i.e., only density functional)
level of E[p, 7, P] with two maps, in complete analogy with those
employed in the derivation of time-dependent density-matrix-
functional theory (TDDMFT).®® The first map is the evident map
P~ I — 7y — p,while the second map p — ¥ — I employs the
Hohenberg-Kohn theorem. It is its simplicity and compactness
in the BBGKY sense and also its definite connection with a real
world via its exactness that make DFT such a fertile ground for
the present wealth of DFAs.

This great success of DFT can be favourably compared with a
rather tumultuous development of “higher-order” full 1RDM or
density-matrix-functional (DMFT) and 2RDM theories, which
still do not enjoy a truly successful “take-off’. The ongoing
development (see contribution (4.1.1)) explores a way** in
which DFT can help DMFT with such a “take-off”’, while DMFT
can help DFAs with the problematic inclusion in the latter of
nondynamical or strong electron correlation.

2.2  What is Kohn-Sham DFT?

2.2.1 Perdew. Often we need to predict the ground-state
total energy and electron density of a system of real interacting
electrons in a scalar external potential (created, for example, by
their attraction to nuclei). Correlated wave-function theory
provides “‘the right answer for the right reason”, but at a high
computational price for systems of many electrons. Kohn-Sham
DFT® employs a simpler noninteracting or Coulomb-uncorre-
lated wave function, but includes a density functional for the
exchange-correlation energy that is exact in principle but
requires improvable approximations in practice. It often provides
“almost the right answer for almost the right reason at almost the
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right price” for real atoms, molecules, and materials. The non-
interacting kinetic energy and the electron density are found by the
not-so-expensive self-consistent solution of effective one-electron
Schrodinger equations. Indeed, the exchange-correlation energy
and exchange-correlation potential “exactify” the Hartree approxi-
mation for the ground-state energy and density. The generalization
from total density to spin density®® provides more information and
enhances the accuracy of the approximations.

2.2.2 Gould. Kohn-Sham DFT® typically means any DFT
approximation that employs a set of one-body orbitals, usually
denoted {¢}, to produce a kinetic energy functional, Tp] := Ts[{¢)}]
that approximates the many-body kinetic energy, 7{¥] = (¥|T|¥).
Generalized Kohn-Sham DFT incorporates traditional approaches
to DFT as well as “hybrid” functionals, which allow for a nonlocal
operator treatment of the Hartree-Fock exchange terms.®’”

As a result, one can replace a many-body interacting Hamil-
tonian, H, by a simpler-to-evaluate one-body Kohn-Sham effec-
tive Hamiltonian:

L%W+wmmﬂ@®:&@®> ®)

where vy is an effective one-body potential (or operator potential).
The density may then be calculated as p = Y. |¢;(r)|?, while

ic€O0cc
the energy is given by Eo[p] = Ty[p] + Eux[p] + (v|p). We will define
Vs and Epy. below.
Formally, one may define Ti[p] = sup(Ey[v] — (v|p)), where

Eyv] = ir.},f{T[l‘y] + (v|py)} in the notation defined in contribu-

tion (2.1.13).% Thus, Typ] is the lowest kinetic energy of a
noninteracting system with density p. Kohn-Sham DFT is
useful because the Hartree-exchange-correlation (Hxc) energy,

Enx[p] := Flp] — T4[p], ©)

is easier to approximate than F[p]. Here, Eyy incorporates the
energetics of the interacting system, including some kinetic-
energy terms. The one-body effective potential that minimizes
Ey[p] can be shown to be vg = v + 3Ey/dp.

2.2.3 Gritsenko. A profound physical meaning of the
exchange-correlation part of the Kohn-Sham potential vy is
revealed with its partitioning

_ =hole
Vxe = Vxe

+ Dresp (10)

into the potential of the exchange-correlation hole 72" and the
response potential ¥egp. This partitioning emerges from differ-
entiation with respect to p of the exchange-correlation energy
E[p] represented via the exchange-correlation pair-correlation
function g,

Eulp] = [[pmetn e peandn, @
where the overbar indicates the coupling strength integrated

pair-correlation function. The potential #°°', the derivative of

i T4 p] has a slightly different meaning in hybrid DFT, where the Slater determi-
nant @ in Ts = (@|T|P) minimizes T + oW with 0 < o < 1 rather than T; see
Garrick et al.®®
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the p functions under the integral, represents the universal
interaction (for both occupied and virtual Kohn-Sham orbitals)
with the exchange-correlation hole of the unit charge. In turn,
the potential .., the derivative of the pair-correlation function
Zxe, €xhibits the spatial step-like structure, with the individual
steps distinguishing various atomic and molecular electron
shells.®’

2.2.4 Baerends. The Kohn-Sham method is often cited as
the method that made DFT a feasible computational method by
offering a decent approximation to (a large part of) the kinetic
energy. The latter proved too hard to obtain as a density
functional. But more importantly, the Kohn-Sham method
has provided DFT with an orbital model. This has greatly
facilitated its acceptance in the computational chemistry com-
munity. After initial reservations about the Kohn-Sham orbitals
(“they are only there to build the density”’), it has become
evident that these orbitals are not inferior to or more approx-
imate than the Hartree-Fock orbitals, but on the contrary are
even more suitable for the qualitative and semiquantitative
molecular-orbital (MO) theories of chemistry. If the exact
Kohn-Sham orbitals and orbital energies could be obtained,
this would be evident. The Kohn-Sham orbitals build the exact
electron density, i.e., the exact charge distribution in molecules,
so they are perfect for the so-called charge control factor of
chemical reactions. The energies of the exact upper valence
Kohn-Sham orbitals approximate the first ionization energies
exceedingly well: whereas the Hartree-Fock orbital energies,
within the frozen orbital approximation for ionization energies
(Koopmans’ theorem), deviate typically by more than 1 eV from
ionization energies, the exact Kohn-Sham orbital energies have
deviations that are typically an order of magnitude smaller.”®”*
The virtual orbitals of the Kohn-Sham model are not Koopmans-
type approximations to the electron affinities, but the virtual-
occupied orbital energy gaps are excellent approximations to
excitation energies.”>”® These are properties that have been the
basis for the whole edifice of orbital-based explanations in
chemistry.

Ultimately, virtually all explanations of chemical behaviour
are cast in orbital language, even if the underlying computations
are based on the most sophisticated techniques of theoretical
chemistry. The ready acceptance of DFT in chemistry has been
greatly aided by the availability of the familiar orbital model. As
for the old adage that Kohn-Sham orbitals and orbital energies
“have no meaning, there is no Koopmans’ theorem like in
Hartree-Fock theory”: the opposite is true.”®”*

The orbital energies of almost all DFAs do not have the nice
properties of the exact Kohn-Sham model, being some 5 eV too
high (not negative enough). This is unfortunate and has some
adverse consequences, but fortunately the upshift is approxi-
mately the same for the upper valence and the lower virtual
(valence) orbitals, so the correct relative order is preserved in
most DFAs. Nevertheless, more efforts should be made to
construct DFAs that obey these exact Kohn-Sham properties
(much) more closely.

2.2.5 Kirylov. The orbital picture of Kohn-Sham DFT is
indeed of great importance. With the exact functional, the
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energies of the highest occupied Kohn-Sham orbitals become
exact ionization energies (IEs) (as per Janak’s theorem). Numer-
ical investigations show that the shapes of the Kohn-Sham
orbitals in cases when their IEs are close to the exact IE (such
as when tuning the range-separation parameter to make the
Koopmans IE match A SCF IE) become similar to the shapes of
the Dyson orbitals.”*”> Interestingly, the energies of lower-lying
Kohn-Sham orbitals provide surprisingly accurate approxima-
tions to the exact many-body IEs (when used with appropriate
DFAs),”®”” which can be understood by analysing the curvature
of the total Kohn-Sham energy with respect to the occupation
numbers.”®

This endows the theory with the ability to provide physically
relevant quantities — for example, Dyson orbitals enter the expres-
sions for photoionization/photodetachment cross-sections and
can even be reconstructed from experimental data.”* Moreover,
the orbitals provide a link between many-body theories and DFT -
for example, one can judge the quality of a particular DFA by how
well the shapes and energies of the Kohn-Sham orbitals agree with
those from high-level many-body calculations (e.g., equation-of-
motion coupled-cluster theory).”® These ideas are already exploited
in optimally-tuned range-separated DFAs.”®”” But, perhaps
more opportunities exist for using ab initio Dyson orbitals to
build better DFAs?

2.2.6 Calaminici and Koster. To further underline the
importance of Kohn-Sham orbitals in chemistry and physics,
we mention their interpretative use in cluster science for the
definition of so-called superatoms - see, for example, ref. 79
and references therein.

Specifically, the electronic states of small metal clusters are
bunched in shells. These shells are experimentally observed in
the variations of polarizabilities, ionization energies, and electron
affinities - to name a few characteristic observables. Kohn-Sham
orbitals, as approximations to Dyson orbitals, reflect these shell
structures in a large variety of free and ligand-stabilized clusters.
Thus, the now common concept of superatoms in chemistry is
based almost exclusively on Kohn-Sham calculations and the
corresponding canonical Kohn-Sham orbitals.

2.2.7 Gritsenko. True, the shape of the accurate Dyson
orbital of a primary ionization is very close to that of the
corresponding accurate occupied Kohn-Sham orbital ¢;
obtained by “reverse engineering”’ from the correlated density.
However, the same is true also for Dyson orbitals of the satellites
of this ionization, reflecting the fact that Dyson orbitals are
neither orthogonal to one another other nor normalized. This
“unfortunate” feature of Dyson orbitals definitely hinders their
comparison with other, “normally behaving” sets of orbitals.

Due to this, the Kohn-Sham orbital energies ¢; differ, in
general, from the ionization energies I; by the spectroscopic
average of the satellite ionizations (see contribution (2.4.9)) as
well as by the contributions from the response potential (see
contribution (2.2.3)), with equality only for the highest occupied
Kohn-Sham molecular orbital.”* The “well-behaved” (i.e., ortho-
normal) Kohn-Sham orbitals are, in no way, the “poor cousins”
of the Dyson orbitals, forming a distinctively different set of
“optimal” orbitals. Indeed, unlike the Dyson orbitals, the
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occupied Kohn-Sham orbitals meaningfully accommodate the
“electron pairs” of conceptual chemistry, while their energies
provide a fair estimate of the potentials of primary ionizations.
Furthermore, combined with the virtual Kohn-Sham orbitals and
their energies, they form the basis for the successful treatment of
electronic excitations in TDDFT (see contribution (2.4.9)).

2.2.8 Staroverov. The classic Kohn-Sham scheme almost
solves the problem of the kinetic-energy functional but its one-
determinantal form creates formidable challenges for approxi-
mating the exchange-correlation part. These include the diffi-
culty of devising exchange-correlation functionals for strongly
correlated systems (see contribution (3.4.1)), limitations imposed
by the assumption of noninteracting v-representability by a
single Slater determinant, and the intricate behaviour of exact
Kohn-Sham potentials (e.g., shifts within nodal surfaces of the
highest-occupied Kohn-Sham orbital®®), which DFAs somehow
have to get just right. Although the existing Kohn-Sham DFAs are
amazingly more accurate than the Hartree-Fock method in
general, it is sobering that they still inherit most qualitative
failures (see Section 3.4) of the mean-field approximation.
Ensemble methods (see Section 3.7) seem unavoidable from this
perspective.

2.2.9 Reining. Just to emphasize a few points, more from a
solid-state physicist’s point of view: first, Kohn-Sham theory
seems to be a natural next step when choosing to work with
DFT. Certainly, formulating things (or at least, energies) in
terms of functionals of the density is very much helped by the
fact that the huge Hartree electrostatic energy is known as an
explicit functional of the density. It allows us to have a large
part that we know exactly and only a small remainder that has
to be approximated.

What is more logical than continuing along this line and
taking out another part (the kinetic energy of some noninter-
acting system)? And what is more logical than taking this
noninteracting system to be “similar” to the real system - with
the same density, in the spirit of DFT? Generalized Kohn-Sham
theory is then also very natural, both because we know more
pieces and because (like the kinetic energy) we do not know
them as explicit density functionals. Making these pieces and
the resulting “potentials” more and more complex appears to
build a continuous bridge between Kohn-Sham and Green’s
functions equations. Another generalization is to start with the
consideration that the calculation of any observable will in
general integrate out certain details of a system, so the same
value for the observable might well be found in a simpler system.
This holds for the density — with the Kohn-Sham system, for
example - but one can also build auxiliary systems for other
observables and profit from the Kohn-Sham experience.

Second, further to the discussion about the Kohn-Sham
system, we should keep in mind that, for a single electron, the
Kohn-Sham excitation energies equal the exact ones, while the
Kohn-Sham electron addition energies are different from the
exact ones. So we may expect that, for certain systems, there is a
reasonable correspondence for the excitation energies. It is far
from obvious that this would also hold true in extended
systems with many electrons, and, of course, the Kohn-Sham
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gap does not equal the optical gap in general. The Kohn-Sham
band structure is nevertheless a powerful starting point for
calculations using, for example, one- and two-body Green’s
functions.

Third, the sometimes bad reputation of the Kohn-Sham
noninteracting system stems from the fact that it is often used
in place of the real system - not to yield simply its density, but
also any other observable, in particular, spectral functions. Of
course, this can lead to strong disagreement with the truth -
and the band gap is just one example. Maybe we should just be
more precise in saying what we are doing here — namely, that
we use the Kohn-Sham expression (which is a functional of the
density) for a given observable as an approximate functional
because we do not know a better one? This doesn’t change the
results, but it sounds a little more fair to the Kohn-Sham
noninteracting system.

2.2.10 Draxl. Indeed, the bad reputation of the Kohn-
Sham system may often come from the fact that we either tend
to overinterpret results or are not precise enough about what we
are doing. Sloppy phrases like “DFT is well known for its
notorious band-gap problem” might have been considered
appropriate long time ago, but should not be said anymore in
2022. Pointing out the SIE of many functionals is certainly
important, but we should always make clear at the very same
time that Kohn-Sham eigenvalues are not supposed to provide
band gaps.

2.2.11 Baerends. I would like to endorse the statement in
contribution (2.2.10) that Kohn-Sham eigenvalues are not
(should not be) supposed to provide band gaps. The fact that
in solids the Kohn-Sham band gap is not equal to (or close to)
the fundamental gap I-A is extremely frequently cited as the
(notorious, infamous,. . .) band-gap problem. But it is a problem
of wrong expectations.

In molecules, it is well known that the Kohn-Sham HOMO-
LUMO gap is much below the /-4 difference. This is due to the
fundamental difference that the Kohn-Sham system has an
attractive potential due to the exchange-correlation hole of —1
electron also for the virtual levels, while the Hartree-Fock
system lacks this attractive hole potential for the virtual levels.
In the same way, the presence of this viole potential lowers the
LUMO level (bottom of the conduction band, BCB) in solids
strongly.®' The exchange-correlation hole in solids is pretty
localized - at a given point r, its size is usually well within a
unit-cell range around r and therefore its potential is strongly
stabilizing. In a delocalized excitation, from an occupied Bloch
state to an empty Bloch state, the excited electron does not
benefit from this stabilization. Neither does an added
electron - the excitation energy to this delocalized state is
understandably close to the fundamental gap. So, physically
we cannot expect the Kohn-Sham band gap to match approxi-
mately the fundamental gap or a delocalized excitation energy.
Excitons in a solid (except for Frenkel excitons) typically have a
large size, extending over many unit cells. They have excitation
energies not much lower than the delocalized excitations, so
also for them the attractive Kohn-Sham potential Rl does not
fit reality.®*
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The situation is different in molecules since there the
physical hole that the excited electron leaves behind is roughly
mimicked by the attractive exchange-correlation hole in the
Kohn-Sham potential. Hence the Kohn-Sham virtual-occupied
orbital energy differences have the nice property that they do
approximate excitation energies in molecules;”>”* see contribu-
tion (2.4.9).

The difference between the Kohn-Sham band gap and the
fundamental gap can be cast in the form of expectation values
of the response potential part v'**P of the Kohn-Sham
potential;** see also contribution (3.8.6).

2.2.12 Vignale. A question that keeps resurfacing is: Why
are the Kohn-Sham orbitals better than the Hartree-Fock
orbitals? From the point of view of the variational principle,
the Hartree-Fock orbitals should be the best, since they build a
Slater determinant which has the lowest energy (defined as
expectation value of the Hamiltonian) among all Slater deter-
minants. The Kohn-Sham wave function - also a single Slater
determinant - cannot beat that. Nevertheless, we know that the
DFT energy is better than the Hartree-Fock energy and also that
the Kohn-Sham orbitals, as discussed in contribution (2.2.4),
far from being meaningless, are in many ways “better” than the
Hartree-Fock orbitals.

The resolution of the apparent paradox is that the Kohn-
Sham energy is not calculated as the expectation value of the
Hamiltonian in the Kohn-Sham wave function. The moment
we adopt the Kohn-Sham approach, the original Hamiltonian
of the system is no longer relevant. We are dealing with a
reference system that is no longer interacting, but the rules for
calculating the energy from the orbitals have also changed and
are now expressed in terms of the exchange-correlation energy
functional of the density. One could argue that the “particles”
of this reference system are the “quasiparticles” of the original
system, and this may help to rationalize the a priori surprising
success of the Kohn-Sham orbitals in predicting single-particle
excitation energies.

2.2.13 Baerends. So in what sense are Kohn-Sham orbitals
better than Hartree-Fock orbitals? When the energy of the
determinant of Kohn-Sham orbitals is calculated with the full
Hamiltonian, its energy is of course higher than the Hartree-
Fock energy, but actually by only a tiny amount.®* On the other
hand, the Kohn-Sham density, being equal to the exact one and
not so diffuse as the Hartree-Fock one (in molecules), leads to
much improved (more negative) electron-nuclear energy. Also
the orbital shapes are “better” than the too diffuse Hartree-
Fock orbitals (in molecules), so the kinetic energy is also
considerably better (higher). The errors of the Hartree-Fock
model for these two energy terms are large, in molecules often
larger than the bond energy, and they rapidly increase upon
bond lengthening.®* They cancel to some extent, which is why
they are not so readily recognized. The Hartree term is of course
also better (exact) with Kohn-Sham orbitals and density.

A tongue in cheek observation would be that the Hartree—
Fock model manages to build a determinant that has a little bit
lower expectation value of the Hamiltonian, but it has to distort
the orbitals (make them more diffuse) because the lowering of
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the kinetic energy then just outweighs the energy penalty of the
increase in the electron-nuclear energy. The Hartree-Fock
model does not care - it just tries to get the lowest energy
determinant. As noted in contribution (2.2.12), the true power
of Kohn-Sham DFT has to come from accurate approximations
of the exchange-correlation energy (defined in the Kohn-Sham
context), but the good properties of the Kohn-Sham orbitals are
an asset of this model.

2.2.14 Gidopoulos. To address the recurring question by
Vignale in contribution (2.2.12), I would like to point out that
the Kohn-Sham orbitals are in fact as “energetically optimal”
as the Hartree-Fock ones. Let me first quote Walter Kohn, who
said in his Nobel Prize lecture that, while the Hartree-Fock
orbitals are “total energy optimal”, the Kohn-Sham orbitals are
“density optimal” because they yield the exact density.

Although, undeniably the Hartree-Fock Slater determinant
has the lowest energy among all Slater determinants, we now
know that the Kohn-Sham determinant can at least match, if
not beat that (record), since it is “‘energy optimal” in a similar
sense: in the Hartree-Fock optimization, we use the full inter-
acting N-electron Hamiltonian, H and then seek the lowest
energy Slater determinant as the best approximate ground state.
For the Kohn-Sham orbitals, we may perform an equivalent, but
reverse Rayleigh-Ritz optimization: let us assume that the ground
state ¥ of the physical N-electron, interacting system is somehow
known (and fixed). Then, we consider all N-electron effective,
noninteracting Hamiltonians, H,, with a local potential v(r). The
ground-state wave function and energy of each H, are @, and E,,
respectively.

For N > 1, ¥ cannot be the exact ground state of any of
these noninteracting Hamiltonians, ¥ # @, for each v, because
¥ is an interacting state while all @, are noninteracting states
(Slater determinants). Hence, the following Rayleigh-Ritz
energy difference on the left-hand side is strictly positive:

(¥|H,|¥) — E, > 0. (12)

This energy difference gives a measure of how well ¥ approx-
imates the ground state @, of the effective Hamiltonian H,,. The
smaller the energy difference, the better the approximation of
¥ to @,. It is elementary to confirm that the energy difference is
minimized by the exact Kohn-Sham Hamiltonian H, .*! Inter-
estingly, the exact density property of the Kohn-Sham state is
the result of the Rayleigh-Ritz optimization and the density is
not a priori fixed. Hence, the Kohn-Sham Slater determinant,
on top of being ‘“density optimal”, it is also “energetically
optimal” in a Rayleigh-Ritz optimization, which physically is
equivalent to the total energy minimization of Hartree-Fock
theory.

I note that the variational principle in eqn (12) can be used
to construct optimally converging power series expansions for
the Kohn-Sham potential, without using the adiabatic connec-
tion (AC) path formalism.%’

2.2.15 Yang. I would like to address the physical meaning
of Kohn-Sham orbitals in calculations with DFAs. Most DFAs to
the exchange-correlation energy E,. usually produce reasonable
total energies for small and medium-size molecules; however,
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they have major deficiencies in the orbital energies. As has been
known for a long time, for finite systems, the eigenvalue of the
HOMO for the exact Kohn-Sham potential is equal to the
negative of the first ionization potential (IP), as follows from
the asymptotic decay behaviour of the exact electron density
and the requirement that the Kohn-Sham effective potential be
zero at infinity.*® However, in a Kohn-Sham calculation, the local
Kohn-Sham potential can have any additive constant and give
the same total energy and density but different orbital energies.
Thus, the argument based on the long-range behaviour of density
and potential hinges on a particular choice of the additive
constant of the potential.

The orbital energies for the frontier HOMO and LUMO were
rigorously shown to be the DFA prediction of the negative of the
first IP and the first electron affinity (EA) in 2008.”" Three key
results were used in the proof. (1) The Janak theorem shows
that Kohn-Sham orbital energies are the derivatives of the total
energy with respect to the orbital occupation numbers. Note
that the Janak theorem does not relate orbital energies to any
physical observables.?” (2) The left and right derivatives of the
total energy with respect to the total electron number, or the left
and right chemical potentials, are the negative of the first IP and
the first EA, respectively, of the corresponding energy functional.
This follows from the linear condition on the behaviour of the
total energy for fractional number of electrons.'® The linearity
condition is true for the exact functional, or for a functional
without delocalization error for general systems. For infinite bulk
systems, however, the linearity condition holds true for any
functional approximation.'® (3) The chemical potentials were
proved to be the derivatives of the energy with respect to the
orbital occupation numbers of HOMO and LUMO in a Kohn-
Sham calculation, when the exchange-correlation energy used is
a functional of the density. With the use of the Janak theorem,
this then establishes that the Kohn-Sham HOMO and LUMO
energies are the chemical potentials of the system for the given
DFA>' Similarly, when the exchange-correlation energy is a
functional of the noninteracting one-electron density matrix,
the chemical potentials were proved to be the derivatives of the
energy with respect to the orbital occupation numbers of HOMO
and LUMO in a generalized Kohn-Sham calculation.** Therefore,
the HOMO and LUMO orbital energies are the DFA prediction of
the negative of the first IP and the first EA. This interpretation of
the HOMO and LUMO energies holds true for molecular and
bulk systems, for any given DFA.

Indeed, DFAs with minimal delocalization error**>* have
excellent predictions of IPs and EAs from the HOMO and LUMO
of generalized Kohn-Sham calculations, comparable to the
accuracy of GW approaches.®® In addition, the orbital energies
above the LUMO and below the HOMO approximate the corres-
ponding quasi-particle energies, with similar accuracy as the
HOMO/LUMO for the IP/EA. This has been explored to describe
accurately the excitation energies and conical intersections of
molecular systems in the quasi-energy DFT approach based on
ground-state generalized Kohn-Sham calculations.®*%°

2.2.16 Baerends. In relation to contributions (2.2.15) and
(2.2.11), it should be stressed that it is very important to
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distinguish between the properties of, on the one hand, the exact
(original) Kohn-Sham model of noninteracting electrons in a local
potential such that the exact density is reproduced and, on the
other hand, the currently popular DFAs - in particular, those of the
generalized Kohn-Sham family with nonlocal potentials. The local
Kohn-Sham potential is unique by application of the Hohenberg-
Kohn theorem to the noninteracting electron system, and so are
the orbitals and orbital energies.

The attractive properties of the exact Kohn-Sham orbitals
and orbital energies have been expounded in some contributions;
see contributions (2.4.9), (2.2.4), (2.2.13), and (2.2.11). A salient
feature of the exact Kohn-Sham model is that the LUMO is not at
—A (given that the HOMO is at —I) but much lower: the HOMO-
LUMO gap is approximately equal to the first excitation
energy.”>”*% It should be made clear that contribution (2.2.15)
does not contradict these properties of the exact Kohn-Sham
model. It refers to a different family of Kohn-Sham models,
usually called the generalized Kohn-Sham models. These gen-
eralized models make it possible to include, for instance, part of
the exchange operator (a nonlocal potential) of the Hartree-Fock
model and adjust the local part of the potential so that the
density remains exact and adjust the exchange-correlation func-
tional so that the energy also remains exact.®” In such a scheme,
the orbital energies are different from those generated by the
exact local Kohn-Sham potential. In such a generalized Kohn-
Sham model, one may strive to obtain that the HOMO is again at
—I and that the LUMO is now at —A, as is also done in the
Koopmans-compliant functionals.”>*> The LUMO then becomes
more diffuse and one loses the simple representation of excita-
tions in TDDFT with just one or a few orbital transitions.”

2.2.17 Yang. In relation to the discussion in contributions
(2.2.15) and (2.2.11) on the physical meaning of the HOMO and
LUMO in DFT, it is important to separate the two types of one-
electron Kohn-Sham Hamiltonians. The first one is from the
ground-state calculation with a given DFA Ex®, which yields
the density, orbitals and orbital energies of the noninteracting
reference system, as developed in the original Kohn-Sham
paper.®® This is called the direct approach.’® The second one
is from an inverse calculation, generating the local potential
vg(r) that reproduces a given ground-state electron density,
which can be the exact density or an accurate density from
high-level calculations. We called this the inverse Kohn-Sham
or inverse OEP approach,® the potential so obtained is also
called the “exact Kohn-Sham” potential by Baerends in con-
tribution (2.2.16).

In an inverse approach, the local potential is determined up
to an arbitrary constant. Thus, in principle, the absolute values
of the orbital energies are not defined. However, if the correct
asymptotic condition on the potential is satisfied, which also
sets the constant, then &y = —I is obtained, where I is
the experimental ionization energy, if an exact density is given
(row 1 Table 1). Similarly, a good approximation to the experi-
mental —I is expected if a good approximation to the density is
given from a DFA calculation (row 1 in Table 1). However, the
corresponding LUMO energy has not been shown to relate to
the ionization energy and is not a good approximation to the
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Table 1 Properties of the electron density pZ(r) and HOMO and LUMO orbital energies, ¢y and ¢, of the noninteracting reference systems in exact DFT
(EPFT) and various DFA models. The DFA models include all continuous functionals of the density EL *[pZ(r)], continuous functionals of the non-
interacting density matrix £X “[pZ(r’,r)], and continuous functionals of the noninteracting orbitals and the external potential EXDCFA[{%G},veX‘(r)]. Computa-
tional approaches for pZ(r), ey and ¢ include inverse calculations from a given (accurate) electron density and direct calculation methods based on the
original Kohn—Sham approach (KS), the optimized effective potential (OEP), the generalized Kohn—-Sham (GKS) and the generalized optimized effective
potential (GOEP, which has been shown to be equivalent to orbital optimization (OO); see Jin et al.>%). Three properties of each quantity are considered
for each computational approach: (1) agreement of pZ(r), the density of the noninteracting reference system, with p?(r), the density of the physical system

consistent with the exact DFT, or the density of the DFA as defined by the linear response p°(r) = EEBFA/Svgxt(r); see Chen et al.,°® Voora et al;*° (2)
ext
agreement of the HOMO orbital energy ¢, with (aszFlA/E)N)

4

the chemical potential of electron removal for the functional employed; (3) agreement

Vext

the chemical potential of electron addition for the functional employed. No entry indicates that it is

Vext

of the LUMO orbital energy & with ((‘)EE;A /aN)

impossible or not yet known how to conduct the corresponding calculation. (Table provided by Yang, extended from ref. 93)

Noninteracting system Type EPFT Ext™p3(r)] Et™p3(r',1)] B {dpots Vext(D)]
Inverse KS/inverse OEP vg(r) Inverse ps(x) Yes Yes Yes Yes
oo a b b b
&, No No No No
KS vZ(r) Direct ps(r) Yes
& Yes
&y, Yes
OEP v{(r) Direct pe(r) Yes Yes/no® No
ey Yes d
&y, Yes No
GKS vg(r,r') Direct pe(r) Yes Yes
3% Yes Yes
&, Yes Yes
GOEP/O0 v{(r,1") Direct ps(x) Yes Yes No
Fo. Yes® Yes® !
L Yes® Yes® f

“In an inverse calculation, the potential is determined up to an arbitrary constant and the absolute values of the orbital energies are therefore
undefined. However, if the correct asymptotic condition on the potential is imposed, which also sets the constant, then &y = —1, is obtained, where /
is the experimental ionization energy.®® ? If the correct asymptotic condition on the potential is imposed, and if a good electron density is obtained
from the DFA, then the inverse OEP calculation will leads to ¢ that is a good approximation to the experimental —I. ¢ The agreement between pg(r)
with SEEEA /3vexi (1) is only true at the complete basis set limit for the basis set expansion of vZ(r), and not so for any finite basis set.”® ¢ Similar to
(b), if the correct asymptotic condition on the potential is imposed, then the direct OEP calculation will lead to ¢y that is a good approximation to
the experimental —1. * For explicit functionals of the density, or the density matrix, GOEP/OO gives the same total energies and density matrix as in
regular SCF. But the orbitals obtained in general are no longer the canonical orbitals and thus have no orbital energies directly. However, a unitary
rotation can bring them to the canonical orbitals with proper orbital energies in agreement with the corresponding chemical potentials./ In GOEP

or OO calculations, the Hamiltonian for the noninteracting system is not available, so neither are the noninteracting orbital energies.

experimental —J, as discussed in contribution (2.2.16). In atomic
calculations, the unoccupied-orbital energies, {¢.}, obtained from
inverse Kohn-Sham calculations, have been shown to represent
electronic excitations, with ¢, — &g describing excitation energies
of the system with the same number of electrons. Using ¢, — &g to
approximate excitation energies for molecules is less successful.

In a direct calculation with a DFA - that is, when the energy
is minimized with respect to its variables, as discussed in
contribution (2.2.15) - the HOMO energy of the noninteracting
reference system has been shown to be equal to the chemical
potential for electron removal

Y
H ON ’
Vext

and LUMO energy of the noninteracting reference system has
been established as being equal to the chemical potential for

electron addition
HEDFA +
Vext
& = B ——
. ON
Vext
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(13)

(14)

for a Kohn-Sham calculation with Ex: *[pg(r)] and also for a
generalized Kohn-Sham calculation with Exr “[pS(r’,r)] in the
work of Cohen, Moris-Sanchez and Yang”' (rows 2 and 4 in
Table 1). Note that these identifications are based on the
assumption that Ex [pI(r)] and Ex *[pI(r',r)] have an explicit
and continuous dependence on its variables pg(r) and pg(r',r).
But no locality is assumed. With these identifications, the use
of HOMO/LUMO energy to approximate —I/—A was then
established,”" building on the PPLB condition for fractional
number of electrons and its results for chemical potentials.*®
The quality of the approximation of ey to —/ and/or ¢, to —A just
reflects the quality of the DFAs used, where the delocalization
error of the DFA plays a key role;"® see contribution (2.2.15).

There are other approaches to direct calculation, using as
the basic computational variable either a local potential v5(r) in
an OEP approach or a nonlocal potential v{(r,r') in the direct
generalized OEP (GOEP) approach.®® The meaning of HOMO
and LUMO energies in direct OEP calculations was established
in ref. 21; see also Row 3 in Table 1.

In Table 1, we also list the results on the agreement of the
electron density of the noninteracting reference system with the
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density of the physical system as defined by the linear
response.”?

2.2.18 Trickey. The pervasive emphasis on the Kohn-Sham
orbitals to this point in the discussion is striking and, from the
perspective of my interest in orbital-free DFT, a bit overbalanced.
From that perspective, the Kohn-Sham orbitals and eigenvalues
are not the crucial insight provided by the Kohn-Sham decom-
position - that crucial insight is the existence (assuming v-
representable densities) of a noninteracting system with the
same density as the many-body system. With that assumption,
existence is provable by application of Levy°-Lieb® for the
ground-state and Runge-Gross®’ (as updated by Ruggenthaler
et al.’®*°) for the time-dependent case and Mermin®® for the
temperature-dependent case. The orbitals (and eigenvalues) are
a valuable, exploitable by-product.

Particularizing to the ground state, Kohn-Sham DFT is, at
base, the decomposition of the Levy-Lieb functional (putting
aside to a separate discussion the issues associated with the
original Hohenberg-Kohn and later Levy-Lieb functionals) into
physically recognizable, interpretable, and computable parts.
Orbital-free DFT (better called one-orbital DFT) exploits only
the decomposition, while conventional Kohn-Sham DFT also
uses the Kohn-Sham orbitals explicitly. Both variants (to use a
currently prominent word) are fundamentally Kohn-Sham
theory. Both have the same definitions of kinetic energy,
Hartree energy, exchange energy, and correlation energy. All
those definitions depend upon the Kohn-Sham determinant.

The distinction between those two variants is operational —
namely, what is done to exploit the Kohn-Sham decomposition
computationally. This is crucial because of the many state-
ments that one sees to the effect that orbital-free DFT is an
“alternative formulation of DFT” that avoids the problems of
Kohn-Sham theory, etc. That completely ignores the underlying
Kohn-Sham logic. That logic is in fact crucial to constraints on
approximate kinetic-energy density functionals (KEDFs).

2.2.19 Gritsenko. The unique feature of the exchange-
correlation part of the local Kohn-Sham potential is the richness
of the physical information on the local effects of electron
correlation, as reflected in the shape of the potential. This can
be favourably compared with the nonlocal Hartree-Fock and self-
energy potentials of the wave-function theory produced from the
corresponding kernels. The shape of the latter potentials is
“ruined” with singularities related to the orbital nodes. Contrary
to this, the steps of the Kohn-Sham exchange-correlation
potential meaningfully distinguish the local correlation effects
in adjacent atomic and molecular shells with the corresponding
“gauges” (see contribution (2.2.3)), while its integer discontinu-
ity “jumps” signal occupation of (previously virtual) Kohn-
Sham orbitals.

Then, instead of complaining about ““the idiosyncratic beha-
viour” of the Kohn-Sham exchange-correlation potential, one
should fruitfully explore and employ this meaningful information
- see, for example, contributions (3.1.12) and (3.8.6). Moreover, one
should not attempt to “wash away” this precious true information
by constructing artificially too smooth Kohn-Sham exchange-
correlation potentials by “reverse engineering” techniques.
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As to the generalized Kohn-Sham scheme, the term ‘Kohn-
Sham’ seems to be misused in this case. Indeed, out of desire to
get electron affinities as the energies of virtual orbitals, the
original Kohn-Sham theory is forcefully “crashed” in some (out
of infinitely many) variants of the generalized Kohn-Sham
“landscape” by mixing different theories both globally and
with range-separation techniques.

2.2.20 Gorling and Kronik. With respect to the term ‘gen-
eralized Kohn-Sham’, we feel that it is appropriate. The gen-
eralized Kohn-Sham approach®” relies on the basic idea of the
original Kohn-Sham formalism by exploiting the Hohenberg-
Kohn theorem to introduce a model system with the same
ground-state density, in order to have access to quantities that
help in the description of the electronic system. Such quantities
can be energies, typically the ‘noninteracting’ kinetic energy or
the exchange energy, but can also be orbital eigenvalues. The
generalized Kohn-Sham approach generalizes the Kohn-Sham
one in the sense that it extends the range of possible model
systems. Like all proper generalizations, it contains the original
Kohn-Sham approach as a special case. As also discussed in
contribution (2.4.8), the generalized Kohn-Sham approach pro-
vides more flexibility and establishes a firm formal foundation
for frequently used methods that do not calculate the exchange-
correlation potential as a functional derivative with respect to the
electron density, notably hybrid functional methods. And, as also
discussed in contribution (4.1.5), a specific generalized-Kohn-
Sham map need not be “crashed”, but rather can be judiciously
chosen, nonempirically, based on physical constraints.

2.2.21 Gorling. It is instructive to define which electronic-
structure approaches are Kohn-Sham methods. Such a definition
reveals the key characteristics of the Kohn-Sham formalism and
shows the scope and perspective that the Kohn-Sham formalism
provides. By a quite wide definition, those methods are Kohn-
Sham methods that rely on a model system of noninteracting
‘electrons’ with the same ground-state electron density as the true
physical electronic system and with a local multiplicative
potential. The noninteracting ‘electrons’ are particles that are
identical to electrons - in particular, they have the spin of
electrons - but do not interact among themselves. Given that
the particles of the Kohn-Sham system are noninteracting, the
Kohn-Sham equation for the Kohn-Sham orbitals and their
eigenvalues in eqn (8) emerges immediately.

Traditionally, the Kohn-Sham orbitals are used only to
evaluate the kinetic energy of the Kohn-Sham model system,
which represents the bulk of the full kinetic energy, taking into
account the fermionic nature of electrons. The Kohn-Sham
orbitals, however, contain much more information than their
kinetic energy. The occupied Kohn-Sham orbitals, for example,
enable an exact calculation of the exchange energy. This means
that all parts of the total energy except the correlation energy can
be easily calculated exactly, technically by evaluating the Hartree-
Fock energy with Kohn-Sham orbitals. Indeed, approximating only
the remaining small part of the energy, the correlation energy, is a
natural and systematic approach. For individually approximating
the correlation energy, orbital-dependent functionals*® can be
constructed that use occupied as well as unoccupied Kohn-Sham
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orbitals and their orbital energies, in this way exploiting much
more of the information contained in the Kohn-Sham model
system.

Historically, this route was not pursued for three reasons:

(1) to avoid the high cost of evaluating the exact exchange
energy, which nowadays is not really a problem for molecules
up to a size of several hundred atoms. For larger systems or
when very many electronic-structure calculations are required,
in ab initio dynamics simulations, for example, the cost of exact
exchange remains an issue.

(2) to benefit from error cancellation between exchange and
correlation contributions. While this is a valid reason, the
cancellation is not complete, limiting the accuracy that can
be reached by traditional Kohn-Sham methods.

(3) to avoid the problem that the exchange potential is not
directly accessible in terms of the Kohn-Sham orbitals. With
the OEP method, functional derivatives of orbital-dependent
energy expressions, including - for example, the Kohn-Sham
exchange potential - are accessible.*™*¢

While basis-set OEP methods were numerically problematic
in the past, robust, numerically stable basis-set OEP methods
are now available.*® Moreover, orbital-dependent functionals
can be evaluated in a post-self-consistent-field (post-SCF)
manner, avoiding the need to take functional derivatives of
orbital-dependent functionals with respect to the electron
density. Alternatively, functional derivatives can be taken with
respect to orbitals instead of the electron density, leading to
generalized Kohn-Sham methods.

Meta-GGA and hybrid functionals are established functionals
that depend on the occupied orbitals. Correlation functionals
based on the adiabatic connection fluctuation-dissipation
(ACFD) theorem'*>'°' depend on unoccupied as well as occu-
pied orbitals and their eigenvalues. The simplest example of
such a functional is the correlation energy within the random-
phase approximation (RPA).****°* All these methods are Kohn-
Sham methods or, depending on the way the exchange—correla-
tion potential is obtained, generalized Kohn-Sham methods.

2.2.22 Trickey. The remark by Gorling about the computa-
tional cost of exact exchange deserves emphasis. He observes
that the cost “nowadays is not really a problem for molecules
up to a size of several hundred atoms. For larger systems or
when very many electronic-structure calculations are required,
in ab initio dynamics simulations, for example, the cost of exact
exchange remains an issue.”

This is a crucial distinction between gas-phase chemistry
and materials physics and chemistry. For those with access to
significant computing resources, exact exchange is not prohi-
bitive for the comparatively small number of calculations
needed to study an isolated molecule of up to a few hundred
atoms. But that is manifestly not true for ab initio molecular
dynamics (AIMD) of several thousand molecular-dynamics
(MD) steps used to screen tens of different but kindred
condensed-phase systems, for each of which the constituents
are molecules with 300 or more non-hydrogen atoms. This
distinction illustrates the compelling importance of continued
effort to improve lower-rung DFAs. It also is but one example
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that there is more than gas-phase chemistry at stake in the
development of DFT methodology and algorithms.

2.2.23 Jones. I agree with Trickey in contribution (2.2.22)
and Gorling in contribution (2.2.21). The computational effort
required in many “real-world” applications is often underesti-
mated - see also Trickey in contribution (3.2.12), concerning
other problems of extended systems. A single MD simulation of
nanoseconds with a time step of femtoseconds can mean mil-
lions () of self-consistent DFT calculations of a system with
hundreds of atoms."% A factor of ten (or even of two) in computer
time per time step can mean the difference between completing
the calculation and abandoning it.

2.2.24 Savin. The Hohenberg-Kohn theorem is valid for
many Hamiltonians, including those with no interaction
between particles. The latter case shows already the difficulty
of constructing closed-form approximations to an energy den-
sity functional. Kohn and Sham decided to alleviate the treat-
ment of electronic systems by treating accurately a (model)
noninteracting system and by using density-functional correc-
tions only for the difference between the energy of this system
and the system of interest, with interacting electrons. Note that
this idea is easily extended to other model Hamiltonians,
making it possible to go beyond the use of a single Slater-
determinant reference within DFT - see, for example, ref. 106.

2.2.25 Tozer. A feature of regular Kohn-Sham calculations
using common exchange-correlation functionals is that the elec-
tronic energy does not in general equal the sum of the occupied
orbital energies. Recently, Levy and Zahariev'®” proposed the direct
energy Kohn-Sham (DEKS) scheme, whereby the Hartree-
exchange-correlation potential is shifted by a constant, in order
to make the electronic energy equal to the sum of the orbital
energies. This shifted potential has attractive theoretical char-
acteristics and so it is desirable to try to model it directly for use
in DEKS calculations. The use of density-scaling homogeneity
considerations is one possible way forward.'%®

2.2.26 Arbuznikov. The remarks of Schwerdtfeger in con-
tribution (2.1.31) have prompted me to add a few words on
relativistic exchange-correlation functionals.

Despite the lack of a rigorous theory that would allow one
to construct them in a systematic way, a potentially useful
pragmatic solution within the Dirac-Coulomb-Breit framework
has been known for a long time. Since relativistic effects
become important at high densities - that is, in exchange-
dominated core regions - one could, in a first approximation,
restrict oneself to an appropriate treatment of the exchange
energy. For the exchange energy of the relativistic homo-
geneous electron gas (RHEG),””**'°° a multiplicative correction
(a kind of “enhancement factor’’) has been derived as a simple
analytic function &(f), where f = (3n%p)"*/c (in atomic units).
This function satisfies () > 1 and tends to one at the
low-density limit; it is a sum of both Coulomb (longitudinal)
and Breit (transverse) contributions. This scheme has been
implemented and tested for atoms at the LDA level''® and
subsequently extended to the GGA level'™
response of the RHEG to a weak perturbing potential.>” Data for
several small diatomics are available as well.'*?

via data on the linear
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While valence-shell related properties turned out not to be
sensitive with respect to these corrections,"'* a high sensitivity
of core one-electron energies of heavy atoms has been clearly
demonstrated.’*! For heavy atoms, these corrections seem to be
of the same order of magnitude as atomic (nonrelativistic)
correlation energies."'® So far, it appears that these corrections
have not yet been implemented into a molecular or solid-state
code. Obviously, studies of the impact on core-related properties
will be of interest. Recently, short-range LDA and GGA exchange
functionals have been developed and implemented in a similar
way,"">"!* but again only for atoms and ions so far.

A very recent development of a potentially useful relativistic
local hybrid functional'*® within an X2C code should be mentioned
as well.

2.3 What can be described with DFT?

2.3.1 Helgaker. Pure (non-Kohn-Sham) DFT provides the
ground-state density and the ground-state energy. We can then
(in principle) obtain rigorously all properties that can be
expressed as functions of the density and the energy - for
example, derivatives of the energy with respect to nuclear
displacements or nuclear magnetic moments (provided DFT
has been extended to deal with magnetism as discussed in
contribution (4.3.1)). We can in principle also calculate excita-
tion energies, from equiensembles.

In practice, we do Kohn-Sham DFT, which in addition to the
density and the ground-state energy (in principle, both exact)
also gives us the Kohn-Sham noninteracting wave function,
from which many more properties of the system can be
obtained, but only approximately, given that the Kohn-Sham
wave function is a noninteracting approximation to the exact
many-body wave function.

We are of course free to use the Kohn-Sham wave function
as a zero-order starting point for a many-body treatment - but
we are then leaving the domain of DFT.

2.3.2 Gorling. The ground-state electron density yields the
electron number and the Hohenberg-Kohn theorem tells us
that it determines furthermore the external potential and thus
the Hamiltonian operator which determines all properties of an
electronic system. Therefore the ground-state electron density
determines the energy and the properties of the ground state
and of all excited states. In practice, we typically use DFT to get
information on ground-state properties and for excited states
we switch to TDDFT in the linear response regime. However, it
might be worthwhile to devote more effort to explore how
excited-state energies and properties can be obtained in DFT
without invoking TDDFT.

2.3.3 Kirylov. I would like to see some thoughts of how to
approach the problem of extracting properties that cannot be
formally expressed in terms of the electron density or one-
particle density matrix. The value of S is such a property.

2.3.4 Reining. I agree, in principle, that we should get from
the density all properties that are determined by the external
potential and the number of electrons. Why do we then feel that
we have so little diversity in the observables that are tradition-
ally dealt with in DFT? First, this statement is actually not true,
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if we consider the Kohn-Sham observables as approximations to
the true density functional of, for example, spectra - there are
many such calculations around. The Kohn-Sham expressions are
of course not explicit functionals of the density, but implicit ones,
via the orbitals. But why is it so difficult to go beyond the Kohn-
Sham approximation and find better ones for these observables?

Again, this is actually not completely the case. Take the
polarizability - we do go beyond the Kohn-Sham independent
particle polarizability, by adding Hartree (i.e., the bare Cou-
lomb interaction in the integral kernel of the Dyson equation)
effects in the RPA, and even exchange-correlation effects
through the exchange-correlation kernel, which is also a density
functional. Like Gorling in contribution (2.3.2), you might
object that this is TDDFT, but I would say it is linear response
in the ground state, so we are talking about functionals of the
ground-state density. Simply, we have derived this ground-state
density functional using TDDFT, but who cares how we derived
it once we have it? We could of course dream of finding simpler
functionals for the polarizability, maybe even explicit func-
tionals of the ground-state density, but since even the kinetic
energy is so difficult, I wouldn’t bet on this in the near future.

2.3.5 Yang. An exact DFT calculation for the ground state
of an N electron system provides directly the ground state total
energy E,(N) and electron density. It also provides the ground
state energies for the corresponding (N — 1) and (N + 1) electron
systems directly through the chemical potentials of the N
electron system. The extension of a similar connection to the
excited states of the corresponding (N — 1) and (N + 1) electron
systems has recently been made.*®*%®'1” However, since the
exact functional is not available in an explicit form, neither is
the method for the associated chemical potential calculations.
We now focus on the discussion on explicit functional forms
that include most existing DFAs.

For an N-electron system, a Kohn-Sham calculation with
an exchange-correlation functional that is an explicit and
continuous functional of the electron density leads directly to
E(N — 1) and E/(N + 1), the ground-state energies of the
corresponding (N — 1) and (N + 1) electron systems. Similar
connections follow for a generalized Kohn-Sham calculation
with an exchange-correlation functional that is an explicit and
continuous functional of the noninteracting reference density
matrix. This is true because of the following: (1) it has been
proved that the HOMO/LUMO energy is the chemical potential
for electron removal/addition,*" (see Table 1) (2) the PPLB
condition shows that the chemical potential of the N-electron
system is —I and —A."® Thus the band gap can be predicted from
the HOMO-LUMO gap, in either Kohn-Sham calculations with
an explicit functional of the electron density or generalized
Kohn-Sham calculations with an explicit functional of the non-
interacting reference density matrix. This connection is indepen-
dent of the functional approximation. However, the accuracy of
the prediction depends on the quality of the functional used.*
For functionals with minimal delocalization error, the prediction
is comparable to, or better than, that of GW approaches.”>*%%°

Similarly to the access to the ground state information of the
corresponding (N — 1) and (N + 1) electron systems, it has been
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argued recently that ¢(N), the orbital energies of orbitals above
LUMO and below HOMO also approximate the corresponding
quasiparticle energies ™" (N) as follows: e,(N) & ®, (N) =
En(N +1) — Eo(N), and ,(N) & w, (N) = Eo(N) — E,(N — 1). This
then links directly to the excited-state energies of the corres-
ponding (N + 1) and (N — 1) systems.®®3>''®!17 gxtensive
numerical evidence supports this claim.?®#»"%'"” Thus, the
excited-state energies of N electron systems can be obtained
from ground-state calculations on the (N — 1) or (N + 1) electron
Systems.88,89,116,117

2.4 What concepts are useful for the development and
understanding of DFT?

2.4.1 Perdew. An open subsystem of fluctuating (and thus
on average noninteger) electron number is a surprisingly useful
concept. Real atoms have integer electron numbers, but local and
semilocal approximations to the DFA for the exchange-correla-
tion energy spuriously predict the transfer (delocalization) of a
fraction of an electron between two different well-separated open-
shell atoms (or between two open subsystems of a combined
system). Nature’s integer preference is explained by invoking an
ensemble description of each separated open quantum subsys-
tem that is equivalent to making a wave-function description of
the combined system.'® When the electron number in the open
quantum subsystem is varied between two adjacent integers, its
exact total energy and electron density vary linearly with the
electron number (piecewise linearity), so the exact energy mini-
mizes at an integer electron number.

This has important practical consequences. In particular,
local and semilocal approximations predict incorrect energies
and densities for a diatomic molecule AB in the dissociation
limit. In fact, these approximations are much more accurate for
integer than for fractional electron numbers. This problem still
plagues density functional approximations. A non-self-consistent
cure is to evaluate the approximate functionals on Hartree-Fock
densities, which localize an integer charge around each separated
nucleus."*® Doing that also cures some related problems, such as
spurious charge transfers at smaller internuclear separations.

2.4.2 Perdew and Savin. In many cases, the energy and
wave function of the interacting system can be connected
smoothly to those of the Kohn-Sham noninteracting system of
the same electron density. Then the exact exchange-correlation
energy for that density becomes an integral over the strength of
the electron-electron interaction, which subsumes both the
potential energy of exchange and correlation and the kinetic
energy of electron correlation. The AC and the idea of modelling
the pair density associated with it'**'****! gerved as the key
inspiration not only for passing from LDA to GGAs,"**'** but
also for making the step to hybrid functionals.'** Note that it is
not necessary to use the pair density in the adiabatic coupling;
one can use the first-order density matrix as well — see, for
example, ref. 125.

2.4.3 Sun. Related to the concepts mentioned above - that
is, the AC and fractional charges - the concept of the exchange-
correlation hole has been useful for the development and
understanding of DFT. For example, the sum rules for the

This journal is © the Owner Societies 2022

View Article Online

PCCP

exchange and correlation holes have been used to explain the
successes of LDA, while the successful PW91 GGA functional
was constructed by enforcing the sum rules for the exchange
and correlation holes on the gradient expansion approximation
of slowly varying densities. The construction of the SCAN meta-
GGA was guided by the understanding of the exchange and
correlation holes. In particular, prototypical systems with very
localized exchange correlation holes can be used as appropriate
norms, whose exchange-correlation energies can be exactly or
nearly exactly predicted by a semilocal density-functional approxi-
mation. Semilocal approximations, whose underlying exchange-
correlation-hole models are necessarily semilocal, must fail to
describe systems with delocalized exchange correlation holes —
for example, systems characterized by fractional charges.

2.4.4 Xu. The AC path mentioned in contribution (2.4.2),
which bridges the fictitious noninteracting Kohn-Sham system
to the fully interacting real system, is one of the most important
concepts in the development and understanding of DFT.'**!
The coupling-constant integration along the AC path defines
the Kohn-Sham exchange-correlation functional, which also
accounts for the kinetic energy of correlation.'”® The more we
know about the AC path, the better DFAs we can construct.

The first widely recognized hybrid DFA is Becke’s half-and-
half functional.’** It was derived based on a linear model for
the AC path, which was then empirically extended, leading
eventually to the widely used B3LYP functional."**™"*° More
sophisticated AC models have been used to develop and
rationalize the popular “nonempirical” PBEO functional,"° as
well as some other hybrid functionals."**

The AC formalism has provided an important playground for
the development of the advanced DFAs that involve the unoccu-
pied Kohn-Sham orbitals. The random-phase approximation
(RPA) was introduced to the DFT community via the ACFD
formalism."°***> Gorling-Levy (GL) perturbation theory** shows
that the initial slope of the AC path is twice the second-order GL
perturbation energy (GL2). For systems with a linear AC path, the
exact exchange-correlation functional is therefore nothing but
the exact exchange plus GL2 correlation energy.’** The AC
formalism has motivated the initial developments of several
successful double-hybrid approximations by further mixing the
second-order perturbation (PT2) energy with the already success-
ful hybrid functionals."* ™"’

2.4.5 Gori-Giorgi. The AC can be mathematically extended
outside the usual range between the Kohn-Sham and the physi-
cal systems - for example, to negative coupling strengths (attrac-
tive electrons)'®® or, more interestingly, to very large positive
coupling strengths (electrons repelling each other infinitely
strongly, or, equivalently, the Levy-Lieb functional in the 7 — 0
limit"****%), This latter case defines the limit of strictly correlated
electrons (SCE),**''** which yields the functional complemen-
tary to the Kohn-Sham kinetic energy - that is, the minimum
possible electron-electron interaction of a system with given one-
electron density p(r); see eqn (76) in contribution (4.5.8). The SCE
functional also yields the exact low-density limit of the exchange-
correlation functional of Kohn-Sham DFT. Although chemical
systems are usually very far from this limiting situation, the SCE
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functional sheds light on the nonlocal nature of the exact
exchange-correlation functional and can inspire the construction
of new approximations to handle strong correlation.'*>*”

Another way to use the SCE limit in chemistry is to build
interpolation models of the AC between the Kohn-Sham limit
(which may include exact exchange and second-order perturbation
theory) and the expansion at strong coupling strength,'*>*871>!
The interpolation strategy based on global quantities (integrated
over all space, a strategy that can be viewed as creating nonlinear
hybrids and double hybrids) was abandoned for some time
because of its lack of size consistency. However, more recently, it
has been shown that size consistency can be easily restored for
these functionals at no extra computational cost.*°

2.4.6 Teale and Helgaker. The AC is certainly a powerful
tool for understanding the universal density functional. Using
the Lieb variation principle (see contribution (2.1.13)), the AC
can be calculated to high accuracy using many-body wave-
function techniques."”* > As well as the usual linear AC path,
generalized AC paths, such as those based on the error func-
tion, can be calculated and are relevant for range-separated
hybrid functionals.'**>%*%7

Such calculations can also be used to extract the coupling-
constant-dependent one- and two-particle density matrices. The
one-particle density matrices may be used to define an AC
focusing on the kinetic component of the DFT correlation energy
- see, for example, ref. 125 and 158, as alluded to in contribution
(2.4.8) and calculated in ref. 159. The two-particle density
matrices can be used to give direct access to the exchange-
correlation hole and its coupling-constant average.'**' All these
quantities can be determined using high-level ab initio methods,
giving valuable insight into the near exact behaviour of F[p]. The
challenge is to parameterize simple models to construct useful
DFAs - work that is still an active area of research.

All of the AC pathways mentioned above focus on the
density-fixed case, relevant to Kohn-Sham DFT. However, if
one notes the conjugate relationship between F[p] and E[v], a
natural alternative is a potential-fixed AC, a possibility that has
also been explored numerically.">*'®! Since the density is no
longer fixed, the calculations of the AC pathway are in the
potential-fixed case much simpler to perform, but the non-
interacting reference system (the bare nucleus system) is
farther from a realistic electronic system than its Kohn-Sham
counterpart. Recently, other ACs have been developed that do
not insist on a fixed density along the AC pathway - see, for
example, ref. 162 for an AC that recovers the Mgller-Plesset
series as its low coupling-strength expansion. The utility of the
AC as a concept for understanding new theories based on these
alternative pathways and their relative pros and cons compared
with the Kohn-Sham approach underlines its importance as a
concept in electronic-structure method development.

2.4.7 Kaupp and Arbuznikov. The AC, which has already
been invoked in contributions (2.4.2)-(2.4.6) as an important
principle for the development of DFAs, is usually applied to the
energy functional, where its existence is well established."®****

Increasingly, however, interpolations along local ACs have
been used, meanin