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Silica gel-induced aryne generation from
o-triazenylarylboronic acids as stable solid
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We report the development of o-triazenylarylboronic acids as new aniline-based aryne precursors. The
readily available and shelf-stable solid precursors generate (hetero)arynes under remarkably mild con-
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Introduction

Arynes and heteroarynes are highly reactive synthetically
useful reaction intermediates that enable the simultaneous
creation of two bonds, including C-C, C-H, and C-X (X =
heteroatom) bonds, on adjacent aromatic carbons via reac-
tions with a range of arynophiles." Because unstable arynes
are typically generated in situ, a judicious choice of precursors
that generate arynes under conditions compatible with the
selected arynophiles is crucial for achieving the desired trans-
formations. Over the last few decades, the use of 2-trimethyl-
silylphenyl triflates® in combination with fluoride ions has
significantly contributed to the advancement of aryne chem-
istry, including the expansion of the arynophile scope, elegant
reaction design, and syntheses of functional and biologically
active compounds (Scheme 1a). These achievements are attrib-
uted to the stability and accessibility of the precursors,
obtained from ubiquitous phenols, as well as the use of mild
reaction conditions. In addition to phenol derivatives, aniline
derivatives, represented by benzenediazonium 2-carboxylates,
have been used as aryne precursors since the 1960s.
However, despite their latent synthetic utility associated with
the ubiquity of anilines, being comparable to that of phenols,
their use is presently limited owing to their explosive charac-
ter.® In this context, we envisioned that the development of a
methodology for aryne generation from readily available and
stable aniline derivatives under mild conditions would con-
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ditions using silica gel as the sole reagent, which subsequently undergo reactions with a range of aryno-
philes. Furthermore, solid-state aryne reactions under solvent-free conditions were accomplished. Aryne
generation proceeded via a dual activation mechanism, as rationalized using Jaffé’s plot analysis based on

tribute to further advancements of aryne chemistry, which
would be distinct from that achieved hitherto with phenol-
based precursors.”
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We recently reported the development of a new method-
ology for aryne generation from o-aminophenylboronates via
the in situ preparation of a new aryne precursor, namely,
N-tosyldiazene A (Scheme 1b).® However, under the conditions
implemented for the in situ preparation of unstable A, includ-
ing the generation of reactive Rh(u)-nitrene species from Rh(u)
catalyst and iminoiodinane (TsN = IMes), the only applicable
arynophiles were found to be azides and furans. These results
prompted us to design a more stable precursor based on A,
not requiring in situ preparation. After some consideration, we
newly designed o-triazenylarylboronic acids 1 by replacing the
diazene moiety of A with a triazenyl group, which is well-
known as a masked diazonio group.®“® Herein, we describe
the unexpected discovery of (hetero)aryne generation from
o-triazenylarylboronic acids 1 under remarkably mild reaction
conditions using neutral silica gel as the sole reagent
(Scheme 1c).

Results and discussion

Following a literature procedure,"® o-triazenylarylboronic acids
1 were synthesized from o-iodoarylamines 2 in 32-72% yields
over two steps, including triazene formation via diazotization
followed by borylation via halogen-lithium exchange
(Scheme 2). Notably, synthesized 1 were obtained as solids
after purification by filtration and were shelf-stable at ambient
temperature in air for over three months.

Initially, we examined the reaction of 1a with 2,5-dimethyl-
furan (3a) in CH,Cl, without the use of additives (Table 1,
entry 1). Interestingly, TLC analysis indicated the formation of
cycloadduct 4aa, whereas the '"H NMR spectrum of the crude
product suggested that the reaction had not occured. Indeed,
4aa was obtained in 36% isolated yield after column chromato-
graphy on silica gel (neutral, spherical, 40-50 pm). Inspired by
these results, we examined the reaction of 1d (0.2 mmol) in
the presence of silica gel."" The yield of 4aa increased with
increasing amounts of silica gel, and a maximum yield of 88%
was observed with 200 mg of silica gel (entries 2-4)."?
Regarding alkyl substituents on the triazenyl group, isopropyl
groups were proven to be optimal, and quantitative "H NMR
yield was obtained with the use of 1d (entries 4-7). Notably,
when 1d was used on 5 mmol scale, 4aa was isolated in 92%
yield (entry 7). Silica gel displayed virtually no loss of activity
when it was used without dryness (entry 8). Although the

1) 'BUONO, BF5°Et,0
THF, -20 °C
then R',NH, THF-Py (9:1)
—-20°Ctort

2) "BuLi, THF, -78 °C
then B(OMe);
-78°Ctort
hydrolytic work-up

32-72% (2 steps)

2

Ns .NR',
RS
B(OH),
1

purified by filtration
shelf-stable at rt in air
for over 3 months

Scheme 2 Syntheses of o-triazenylarylboronic acids 1.
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Table 1 Silica gel-induced reaction of o-triazenylphenylboronic acids 1
and 2,5-dimethylfuran (3a)®

silica gel
< neutral, spherical> Me
40-50 pm

Ns .NR,
N
L el e

B(OH), CH,Cl, (1 mL)
1 3a it, 16 h e
(0.2 mmol) (0.1 mmol) aa

: B(OH)2

structures of 1a-1d:

<j[B(OH
@Nc .NEt,
B(OH)2

Silica gel? Variation from

Entry Triazene (mg) standard conditions Yield® (%)
1 1a 0 None ND (36)¢
2 la 40 None 33

3 la 120 None 75

4 la 200 None 88

5 1b 200 None 71

6 1c 200 None 93

7 1d 200 None Quant. (92)%*
8 1d 200 Silica gel (undried) 95

9 1d 200 1d:3a=1.5:1 98

10 1d 200 1d:3a=1:2 59

11 1d 200 MeCN instead of CH,Cl, 54

12 1d 200 THF/ instead of CH,Cl, ~ NR

13 1d 200 Toluene instead of CH,Cl, 98

14 1d 200 Hexane instead of CH,Cl, 97

“Reaction conditions: 1 (0.200 mmol), 3a (0.100 mmol), silica gel in
CH,Cl, (1 0 mL). ”silica gel was used after heating under vacuum to
dryness. Determined by 'H NMR spectroscopy using 1,1,2,2-tetra-
chloroethane as an internal standard. “Yields in parentheses refer to
the yields of the isolated products. “In 5 mmol scale (1d: 10.0 mmol,
3a: 5.00 mmol).” Stabilizer-free.

amount of 1d could be reduced to 1.5 equiv. without signifi-
cant loss of yield (entry 9), using 1d as the limiting reagent
(1d:3a = 1:2) decreased the yield to 59% (entry 10). Solvent
screening revealed that polar solvents, such as MeCN and
THF, were markedly less effective than CH,Cl, (entries 11 and
12). In particular, virtually no conversion of 1d was observed
in THF. In contrast, the use of toluene provided a yield com-
parable to that obtained in CH,Cl, (entry 13). Interestingly, a
high product yield was also obtained using hexane, even
though 1d was hardly soluble (entry 14).

With the optimized conditions in hand, we next examined
the performance of functionalized aryne precursors le-j and
heteroaryne precursors 1k-m (Table 2). Precursors le-i
bearing electron-donating or electron-withdrawing groups at
the 4-, 5-, and 6-position provided 4ea-ia in 68-98% yields
(entries 1-7). The results obtained with chlorine-substituted
(1f, 1f) and methoxy-substituted precursors (1g, 1g) demon-
strated that the position of the substituent had little impact on

This journal is © the Partner Organisations 2021
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Table 2 Scope

of aryne precursors 1

. Me
Ne NPr 3_a‘ (1 equiv)
= SN° 2 silica gel (200 mg/mL)
)
B(OH), CH,Cl (0.1 M)
1e-m (2 equiv) ,16h Me
4ea—-ma
Entry Triazene Product; yield*
1 N\\N,N"Prz Me
3 eom, CIR)
Me
le Me Me
4ea; 84%
R4 Ny~ NPr2
Me
R?’5 B(OH), R
9c)
Me
(R=R'orR?
4fa—ia
2 R'=H, R* = Cl (1f) R = Cl (4fa); 98%
3 R'=Cl, R*=H (1f) R = Cl (4fa); 95%
4 R'=H, R* = OMe (1g) R = OMe (4ga); 98%
5 =OMe, R* = H (1g') R = OMe (4ga); 86%
6 R'=H, R* = CF; (1h) R = CF; (4ha); 68%
7 R'=H, R*=CN (1i) R = CN (4ia); 96%
a0, 99y
1
) Me
4ja; 93%
N e
X" B(0OH), « |
1k
Me
4ka
16% (1k:3a =2:1)
13% (1k:3a = 1:2)
62% (1k:3a = 1:5)
10 N"Pr2 Me
I8
P> N
I = Me
4la
28% (11:3a = 2:1)
63% (11:3a = 1:2)
11 Nsy _NPr, Me
EIB«MZ CIR)
TsN
— Me
4ma
96% (1m:3a = 2:1)
83% (1m:3a =1:2)
“Isolated yields.
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the product yield (entries 2-5). In addition to benzynes, the
present protocol was applicable to the reaction of 2,3-naphtha-
lyne (entry 8) and heteroarynes (entries 9-11).> Under the stan-
dard conditions, 3,4-pyridyne precursor 1k resulted in the for-
mation of 4ka in only 16% yield (entry 9). However, we found
that the use of an excess amount of arynophile 3a significantly
improved the yield to 62%. Similar results were obtained with
5,6-quinolyne precursor 11, whereby only 2 equiv. of 3a was
sufficient to give 4la in 63% yield (entry 10). In contrast to 1k
and 1l, 4,5-indolyne precursor 1m afforded 4ma in excellent
yields in both cases using 1m and 3a as the limiting reagent
(entry 11).

Next, we investigated the reaction of 1d with a range of ary-
nophiles (Scheme 3). The precursor was applicable to [4 + 2]
and [3 + 2] cycloadditions with various arynophiles, including
furan 3b, pyrrole 3¢, azides 3d-f, and nitrone 3g.
Unfortunately, p-ketoester 3h failed to produce the desired
product 4ah. Instead, using enamine 3h' provided 4ah in 51%
yield.”® The reaction with methyl N-methylanthranilate (3i)
gave N-phenylated product 4ai in 75% yield along with 22% of
N-methylacridone (4ai’)."* Surprisingly, the reactions also pro-
ceeded in the absence of solvent by mixing 1d, 3, and silica gel

New N'Pr, conditions X,
+ arynophile @~ —m> )
B(OH), 3ai(0.1mmoy 16N Y’
1d (0.2 mmol) 4aa-ai
conditions

in solution?: silica gel (200 mg), CH,Cl, (1 mL)
solid-state®: silica gel (200 mg), stirring with magnetic stirrer

R N,
D OB M
R

[

4ac R = 4-MeO,CCgH, (4ad)
R = R' = Me (4aa)

82%, 26% 68%, 70%
R = EtO,CCH, (4ae)

92%,° 71%
; 81%, 56%
oA e o,
o (]
; 75%, 48%
o
coMe
t
N'B
u COzEt @[ N O
4 4ah Me
ag al o
) 4a| 4ai
96%, 63% (with 3h) ND o 1o e,

(with 3h") 51%, ND

arynophile: /@\ [\ 4-MeOCCeH,Ns (3d, solid)
R™™” 7R E EtO,CCH,-Nj3 (3e)
R=R' = Me (3a) °C  Bn-Nj (3f)

R=Ac,R'=H(3b) 3¢

0 NEt, @COQMG
Pho_ CO,Et CO,Et
Nig, Ph)j\/ 2 )\/ z NHMe
3g (solid) 3h 3’ 3i

Scheme 3 Reactions of 1d with arynophiles 3a—i.  Isolated yields. ® *H
NMR vyields using 1,1,2,2-tetrachloroethane as an internal standard.
€5 mmol scale.
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using a magnetic stirrer."” The formation of 4 under these
solvent-free conditions indicated that the aryne had formed
via the contact of 1d and silica gel at the solid-solid interface.
Furthermore, the generated aryne reacted effectively even with
solid arynophiles 3d and 3g. Notably, compared with the
outcome of reactions conducted in solution, no significant
loss of yield was observed, except in the cases of 3c and 3h/,
despite a lower diffusion rate in the solid-state than in solu-
tion. The results suggested that the lifetime of aryne was
sufficiently long to encounter the arynophile through diffusion
on the silica gel surface. Although a growing number of
studies on solid-state reactions have emerged in recent
years,""»®1®17 our results represent a pioneering example of
solid-state intermolecular reactions occuring via short-lived
reactive species.®?

Along with the feasibility of solid-state operation, excel-
lent functional group tolerance is a salient feature of the
present method. In particular, the fluoride-free conditions
allowed for the use of arynophiles bearing silyl functional-
ities (Scheme 4). The reaction of 1d and O-tert-butyldi-
methylsilyl (TBS)-protected zidovudine 3j provided 4aj in a
significantly higher yield than that obtained in a previous
study, with the added advantage of inexpensive and environ-
mentally benign conditions (Scheme 4a).® 2-Siloxy-1,3-diene
3k, which is sensitive to various conditions, was also appli-
cable as an arynophile to provide [2 + 2] cycloadduct 4ak in
58% yield, while no evidence of [4 + 2] cycloaddition was
observed.

To gain insight into the reaction mechanism, we performed
a time-course study (Fig. 1). To a series of reaction vessels con-
taining 3a (0.1 mmol), silica gel, and CH,Cl, was added 1d
(0.2 mmol), and each mixture was filtered after stirring for the
indicated time to remove silica gel. '"H NMR analysis of the
crude mixture after stirring for 5 min indicated that only
~0.05 mmol of 1d (~25% of initial amount) was contained in
the mixture. The amount of 1d slowly decreased over 4 h.
Meanwhile, the formation of 4aa proceeded in >90% yield
within 4 h according to the rate of N, gas evolution.'® This

1d (2 equiv) Kk/é
Sy sso ()~
= 0o silica gel o o
(200 mg/mL) N—N
TBSOAQ‘ NH
77/ CH,Cl (0.1 M)
N3 16 h 4aj; 87%
3j (1 equiv) < previous work®: 58% >
See also Scheme 1b.
Eh silica gel Z Ph
N (200 mg/mL) OTBS
1d + —_— -
(2 equiv) OTBS %H12C'\;/||2 OTBS
ak(1equ) O 4ak; 58% 4ak’; ND

Scheme 4 Utilization of arynophiles bearing silyl functionalities.
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silica gel (200 mg)

1d + 3a 4aa
(0.2mmol) (0.1 mmol)  CH,CI, (1 mL), 25 °C, time (min)
then elution of the whole reaction
mixture with CH,Cl,
0.2 100
018 —_N, 90
0.16 ® adaa 80
o, 014 A 1ud 70
s 2
2 s
£ ow o £
s
oo ° e 3
] 5] [
o 0.08 40 @
L ® =
0.06 ® 30
A B
0.04 A 20
A
0.02 10
A A A
0 0
0 30 60 90 120 150 180 210 240
time (min)
Fig. 1 Time course studies of the reaction of 1d and 3a. ? Determined

by *H NMR spectroscopy using 1,1,2,2-tetrachloroethane as an internal
standard. ® Based on 1d (0.8 mmol).

result indicated that 1d was strongly adsorbed on the silica gel
surface preceding aryne generation.

Next, we performed competition experiments between
parent precursor 1d and substituted precursors 1f-h or
1f', g', and analyzed the relative rate of the reaction (kg/kgy)
using Hammett constants based on the triazenyl group (oy)
and those based on the borono group (os) (Fig. 2a)."® As a
result, the plots according to Jaffé’s eqn (2) and (3),>°
derived from the Hammett eqn (1), exhibited linearity with
good R” values, as shown in Fig. 2b and c, respectively (see
ESI for detailst).

log(kr/ku) = pnon + pyos (1)
log(kr/ku)/on = px + pu(os/onN) (2)
log(kr/ku)/o8 = px(on/os) + ps (3)

The obtained negative py and positive pg values suggest
simultaneous build-up of positive and negative charges on the
nitrogen atom and the boron atom, respectively, in the rate-
determining step (see ESI for details{). Combining the results
in Fig. 1 and 2, we propose a plausible reaction mechanism, as
illustrated in Scheme 5. Precursor 1 is adsorbed onto the silica
gel surface via the boronate moiety, followed by the formation
of zwitterionic intermediate B.>! In other words, triazenyl and
borono groups were activated as diazonio and boronate
groups, respectively. Upon this dual activation, highly stable
precursor 1 is capable of generating an aryne under remark-
ably mild conditions without heating, photo-irradiation, or the
use of acids or bases.” The role of silica gel remains unclear.*?
While the use of excess acetic acid instead of silica gel induced
aryne generation from 1d, the yield of 4aa was only 47%
(Scheme 6a). Thus, weak acidity of silica gel seems to be
insufficient to activate 1. On the other hand, (+)-camphorsulfo-
nic acid [(+)-CSA] led to a formation of 4aa in 97% yield
(Scheme 6b). Thus, both heterogeneous conditions using silica

This journal is © the Partner Organisations 2021
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(a)

3a

@ 1d ) (1 equiv) 4aa substituent oy op krlky®
equiv, -
f silica gel . 5-Cl (1f) 023 037 1.30
. N 16h Me 4-CI(1f) 037 023 0.153
R_iI R 5-O0Me (1g) —0.27 0.12 12.7
N Oa 4-OMe (1¢") 0.12 -0.27 0.170
1f-h or 1f, g' ve CFa(1h) 053 049 0.180
(2 equiv) 4fa-ha  [a] Determined by 'H NMR.
(b) 1
= [ ]
0 |~y=1.73x-2.88 il
g -1 R? = 0.969
=2 | p,=-288
X 3 pp=1.73
e
= ®5-0Me
o 5
4-OMe
-6 e
7
-8
3 =) 1 0 1 7)
G5/Cy
(c) 10
8 |-5-OMe
o 6
)
= 0
~ 4-0Me
2 2 [y=-322x+186
w0 R?=0.995
T 2| py=-3.22 4-ch
4 | p,=1.86
6
%! -2 wff 0 1 2
6,/05
Fig. 2 (a) Competition experiments between 1d and 1f-h, or 1f', g". (b)

Jaffé’s plot based on eqgn (2). (c) Jaffé’s plot based on eqn (3).

iy i
= N¢N,NPr2 = N\\N,NPrz
R =Rl o
B(OH), B

| Si activation of triazenyl
1 lo) and borono groups
Si
N2
+ r,,N
= N = 3 = X,
R— | R | [—rE 1
X -0 S A .
/B Si Y
Nu” /! 4
i Nu._.O
B Si ? Si
(Nu = N'Pr,, OSi etc.) O.
Si

Scheme 5 Plausible dual activation mechanism for aryne generation
from 1.

(@) 1d + 3a 4aa
(2 equiv) (1 equiv) CH,Cl,—AcOH (2:1) 47%
rt,6 h
(+)-CSA (2 equiv)
(b) 1d + 3a 4aa
2 equiv, 1 equiv CH,Cl, 97%
(2 equiv) (1 equiv) 4 h o

Scheme 6 Reactions of 1d with 3a using Brensted acid.
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gel and homogeneous conditions using Brgnsted acid were
applicable to aryne generation from 1.

Conclusions

We have developed new aniline-based aryne precursors 1,
which generate arynes under remarkably mild conditions
through the use of silica gel as the activating agent. The proto-
col was applicable to a wide range of (hetero)arynes and
various arynophiles reacting in solution and in the solid-state.
The reaction proceeded via a dual activation mechanism to
generate arynes, as rationalized through Jaffé’s plot analysis
based on Hammett constants. Investigation of further syn-
thetic applications of the protocol as well as mechanistic
studies on the role of silica gel are currently in progress.
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