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Stereoselective synthesis and applications of
spirocyclic oxindoles
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The development of novel synthetic strategies to form new chemical entities in a stereoselective manner

is an ongoing significant objective in organic and medicinal chemistry. This review analyses the develop-

ment of new stereoselective approaches to spirocyclic oxindoles with spiro-3- to 8-membered rings. It

highlights the importance of these structures for applications in medicinal chemistry, as intermediates or

final products in total synthesis and as model compounds for the development of enantioselective cata-

lytic methodologies.

Introduction

The application of spirocyclic structures in drug discovery has
seen a dramatic increase in attention in recent years, alongside
major developments in their synthetic chemistry.1 Defined as a
bicycle connected by a single fully-substituted carbon atom,
which is not connected by an adjacent atom, spirocycles are
inherently highly 3-dimensional structures. The shared tetra-
hedral sp3-carbon atom positions the planes of the 2 rings
orthogonally, despite the torsional strain this may impose on

the substituents of the rings.2 Spirocyclic compounds can
improve certain physicochemical properties such as lipophili-
city, aqueous solubility and metabolic stability, in comparison
to the respective monocyclic structure.3 Furthermore, they
access relatively underexplored chemical space and novel intel-
lectual property (IP) space. Saturated spirocycles provide a
dense, rigid scaffold, with the potential to append more substi-
tuents, and so occupy an increased number of defined vectors
compared to flat aromatic compounds.4 All of these factors have
contributed to a greater uptake in medicinal chemistry and
have demanded significant advances in organic synthesis to
provide spirocycles in a controlled and stereoselective manner.5

This review focuses specifically on spirocyclic oxindoles
(spirooxindoles or spiroindolones). These are a widespread
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motif within modern organic synthesis, drug discovery and
natural product chemistry. Stereoselective synthetic methods
towards this privileged class of spirocycles have seen enor-
mous development in recent years. This review aims to
combine the analysis of recent synthetic strategies with an
overview of the importance of these scaffolds for medicinal
chemistry and in natural product synthesis. Since 1950 there
have been 6896 publications containing spirooxindoles, 3283
of these publications have appeared since 2012.15 Oxindoles
are often used as rigid scaffolds for testing new asymmetric
synthetic methodology and due to the demand of discovery
chemistry for controlled and modular syntheses, and with the
plethora of publications in this area, we will focus on stereo-
selective processes. This review examines spirocyclic oxindoles
containing a spiro-(3 to 8)-membered ring, in turn, analysing
carbocyclic then monoheteroatom nitrogen-containing and
oxygen-containing spirocycles. The review will cover recent
developments from 2013, following major work by Singh and
Desta,6 until April 2020. Specific bioactivity and applications
of each ring system will be discussed at the start of the relevant
section and provide a reference work for the preparation of
different spirocyclic patterns. Within each section, the discus-
sion is split by the reaction type employed to construct the
spirocycle.

Fig. 1 shows a representative set of each ring system, which
will be covered in this review, as they feature in medicinal or
natural products.7 Notable biological activity is indicated,
including use as anti-cancer agents,8 and anti-viral agents.9

Some ring types are not represented in these bioactive com-
pounds, i.e. aziridines, likely due to their instability relative to
larger ring sizes, but will nonetheless be featured in the
review.

Given the importance of this structural class, spirocyclic
oxindoles have been featured in other reviews discussing their
synthesis,10 including asymmetric synthesis,11 use of isatin
starting materials12 or the synthesis of target product
scaffolds.13 General reviews on spirocyclic compounds (i.e.
spiroindolenes) also often contain spirocyclic oxindoles
without specifically focusing on these.14 We expect the analysis
presented in this review of the structural types, synthesis and
applications to lead to further studies, and aid in the identifi-
cation of future opportunities to expand the applications of
this fascinating class of compounds.

Frequency analysis of spirooxindoles

To quantify the importance of spiroindolones in the medicinal
chemistry and organic synthesis literature, we analysed publi-
cations which feature spiroindolones containing up to one
heteroatom in the spirocycle between 1970–2020 (Fig. 2).15 The
number of publications in which these structures feature has
grown significantly over the last 50 years and has consistently
reached numbers above 400 per year since 2013. Even account-
ing for the generalised increase in publications, this represents
an extensive level of attention. The number of publications on

5- and 6-membered rings (silver and gold in Fig. 2) dominates
the contribution to this total. However, in the last decade the
relative contribution of 3-, 4- and 7-membered spirocycles
(dark/light blues and orange) has increased.

We also analysed the frequency of the different types of
rings which feature in this review (Fig. 3). Considering 3-mem-
bered spirocycles, we can see that cyclopropane rings are
much more common than their aziridine or epoxide ana-
logues. Similarly, cyclobutanes far outnumber azetidines or
oxetanes. Notably the number of oxetanes is surprisingly low,
especially, when compared to azetidines. The position of the
heteroatom has a significant influence on the frequency of a
certain ring. This may generally correlate with ease of synthesis
or lower complexity, i.e. 3,4′-spirotetrahydropyran oxindoles far
outnumber the 3,2′- or 3,3′-analogues. 7-Membered rings are
generally underrepresented when bridged examples are dis-
counted (these will generally have been counted in the
numbers for other ring sizes as these are a less significant con-
tribution). There is only one example of a non-bridged mono-
heteroatom containing 8-membered spirooxindole in the lit-
erature (synthesised as an analogue of cipargamin).16

Although there will be a clear correlation between the
number of publications for each ring size, we have tried to
discuss each ring type on an equal basis, though inevitably the
5-membered nitrogen section is largest.

Three-membered rings
Spirocyclopropyl oxindoles

Three-membered ring containing spiroindolones feature in
pharmaceutical compounds as well as being used as reactive
intermediates, i.e. in ring opening reactions.17 These ring
opening reactions can often be coupled with ring closing reac-
tions to form spirocycles of larger ring size. There has recently
been an excellent review on the catalytic enantioselective syn-
thesis of polysubstituted spirocyclopropyl oxindoles by Cao
and Zhou,18 as well as a review of transition metal-free strat-
egies by Ashfeld.19

Applications. Spirocyclopropyl oxindoles are featured in a
wide variety of reports showing their bioactivity (see Fig. 1 for
examples). These bioactivities include examples of antitumour
agents,20 pain treatment,21 treatment of CNS disorders,22 anti-
virals,23 among others.24

Direct methylene cyclopropanation. Direct cyclopropanation
methodology with unprotected oxindoles has been a synthetic
challenge which has seen many recent advances (Scheme 1).
In 1987, a team at Lilly synthesised spirocycle 2 as a route to a
phosphorodiesterase inhibitor (Scheme 1A).25 Since this low
yielding and step-inefficient synthesis using strong base,
Marini reported cyclopropanation using a vinyl selenone
reagent in a domino Michael addition and cyclisation
sequence (Scheme 1B).26 When aryl-substituted vinyl selenone
reagents were used, high dr of the cyclopropane was observed
with the aromatic rings in a cis-relationship. In 2017, Qian
reported the use of a vinyl sulfonium salt in a zinc-mediated
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cyclopropanation (Scheme 1C).27 This reaction was notable for
its broad functional group tolerance and application to late-
stage functionalisation of complex scaffolds. Following Qian’s
report, Feng and Qu showed that a bromoethylsulfonium salt
could be used in a similar process without the need for the

Zn(OTf)2 additive (Scheme 1D).28 Recently, Hajra reported a
domino Corey–Chaykovsky reaction for obtaining the spirocyc-
lic oxindole from the corresponding isatin, spiroepoxide or
spiroaziridine (Scheme 1E).29 Initially using standard Corey–
Chaykovsky reaction conditions and generating the sulfur ylide

Fig. 1 Bioactive and naturally occurring spirooxindoles.

Review Organic Chemistry Frontiers
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from trimethyl sulfoxonium iodide, Hajra showed the ring
opening of the epoxide followed by elimination to form the
alkene and subsequent Corey–Chaykovsky reaction to the
cyclopropane. In a similar manner, aziridines could be used as
starting materials. Significantly the corresponding isatin could
be used as starting material by increasing the equivalents of
sulfoxonium iodide and sodium hydride. This works by gener-
ating the epoxide in situ followed by the optimised (ring
opening/elimination) cyclopropanation reaction. All of these
methods to access unprotected spirocyclic oxindoles also work
with standard protecting groups in place.

Cyclopropanation with diazo compounds. A similarly active
field is the direct cyclopropanation of 3-diazooxindoles.
Diastereoselective cyclopropanations have been independently
developed by Muthusamy, Subba Reddy and Padwa.30 The first
enantioselective versions were developed at similar times by
Arai (up to 74% ee using chiral Rh cat. 3),31 Zhou (up to 99%
ee using Hg(OTf)2 and a chiral phosphine ligand 4)32 and
Zhou with Ding (up to 95% ee using a Au catalyst with chiral
phosphine ligand 5) (Scheme 2).33 Since 2013, Qiu and Xu
used chiral Rh cat. 6 to achieve up to 99% ee in the enantio-
selective cyclopropanation reaction with high ee for allyl
alkene examples which performed poorly in previous
reports.34 Zhou and Ma have used the Au/5 system developed
previously by Zhou for the cyclopropanation with alkenes
bearing a difluoromethyl group.35 Iwasa used chiral Ru(II)
complex 7 to generate spirocyclopropyl oxindoles with high
ee.36 Ashfeld reported a cyclopropanation/ring expansion
cascade reaction between 3-diazooxindoles and vinyl isocya-
nate, in the case when the temperature was reduced from
50 °C to rt, the cyclopropane intermediate could be isolated as
one diastereomer.37

In 2014, Lu and Xiao showed a [3 + 2]-cycloaddition
between 3-ylideneoxindoles and in situ generated 2,2,2-trifluor-
odiazoethane could afford a pyrazoline which upon heating
under reflux in toluene would ring contract to afford 3,3′-cyclo-

Fig. 2 Incidence of 3-to 7-membered spirooxindoles in the literature up to April 2020. No. of heteroatoms in ring ≤1.15

Fig. 3 The spirocyclic rings covered in this review and the number of
hits for each heteroatom position.15 a Beta-lactams or derivatives
thereof. bNumbers in brackets indicates bridged examples.

Scheme 1 Summary of recent advances in direct cyclopropanation of
unprotected oxindoles.
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propyl spirooxindoles.38 Using chemistry first developed by
Carreira,39 sodium nitrite was used to oxidise 2,2,2-
trifluoroethylamine·HCl to generate 2,2,2-trifluorodiazoethane
which can undergo a [3 + 2]-cycloaddition with the electron
deficient alkene followed by heating to liberate N2 and form
the cyclopropane with high yield and dr (Scheme 3). Using a
similar cycloaddition and ring contraction strategy, Babu
demonstrated the synthesis of aryl substituted 3,3′-cyclopropyl
spirooxindoles while Han and Chen have reported the syn-
thesis of difluoromethyl substituted spirocyclic
cyclopropanes.40,41 A significant advance in this methodology
accesses enantioenriched spirocyclic cyclopropanes through a
1,3-dipolar cycloaddition between dimethyl (diazomethyl)
phosphonate and 3-ylideneoxindoles followed by ring contrac-
tion mediated by NCS or NBS (this also caused chlorination/
bromination by SEAr).

42 Peng used thiourea catalyst 8 derived
from a cinchona alkaloid to induce enantioselectivity in the
pyrazoline formation and this ee was retained in the 5- to
3-membered ring contraction (Scheme 3).

Cyclopropanation of 3-ylidene oxindoles. He developed a
phosphorus mediated reductive cyclopropanation of 3-ylide-
neoxindoles (Scheme 4).43 P(NMe2)3 in combination with

α-ketoesters formed a Kukhtin–Ramirez adduct which behaves
as a carbene surrogate and can undergo cyclopropanation via
a reported Michael addition and intramolecular SN2 reaction
liberating triphenylphosphine oxide and the cyclopropyl spir-
ooxindoles in high dr. Lu and Xu developed a related reaction
mediated by dialkyl phosphite to couple isatins and
α,β-unsaturated ketones.44 In 2017, Xu reported the formation
of Kukhtin–Ramirez adducts from isatins and their reactions
with dienes to form spirocyclopropanes (Scheme 4).45

Du developed a Michael addition/alkylation cascade reac-
tion between 3-chlorooxindoles and arylidenepyrazolones,
alkenyl thiazolones (also developed by Sheng and Feng) or,
more recently, 2,3-dioxopyrrolidines.46 In a quite distinct
method, a Ni-catalysed enantioselective cyclopropanation
developed by Feng utilised phenyliodonium ylides to generate
a free carbene which can react with 3-ylideneoxindoles to gene-
rate 3,3′-cyclopropyl spirooxindoles in high yield, dr and ee
(Scheme 5).47 More recently, Feng used a related system for the
Mg catalysed reaction of 3-ylidene oxindoles and sulfonium
ylides.48

Other approaches. In 2013 Charette described an intra-
molecular C–H arylation of cyclopropanes to access 3,3′-spiro-
cyclopropyl spirooxindoles (Scheme 6).49 Using Pd(OAc)2 with
PCy3 as a ligand in combination with K2CO3 and Ag3PO4 in

Scheme 2 Advances in enantioselective cyclopropanation of
3-diazooxindoles.

Scheme 3 1,3-Dipolar cycloaddition followed by ring contraction to
3,3’-cyclopropyl spirooxindoles.

Scheme 4 P(NMe2)3-mediated reductive cyclopropanation via
Kukhtin–Ramirez (K–R) adduct and K–R adduct reaction with diene
activated by PPh3.

Scheme 5 Ni-Catalysed enantioselective cyclopropanation with phe-
nyliodonium derived ylides.
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toluene at 130 °C afforded high yields of the spirooxindole.
When aryl substituted cyclopropanes were employed high dr
was observed.

Wang reported an enantioselective Satoh–Miura type reac-
tion using a RhIII catalyst 10 to perform a dual C–H activation
forming an axially chiral spirocycle in high enantioselectivity
(Scheme 7).50

Spiroaziridinyl oxindoles

Spiroaziridines don’t commonly feature in natural products or
medicines, but are utilised in synthesis, and protected versions
could be envisaged to be of use in biology.

From 3-bromooxindoles. Zhang and Peng employed 3-bro-
mooxindoles as nucleophiles in an enantioselective Mannich
reaction catalysed by cinchona alkaloid derived cat. 11
(Scheme 8).51 Cyclisation mediated by silver nitrate afforded
the aziridine in high yield and with retention of the ee
induced in the prior step.

From 3-ylidene oxindoles. Traditional, non-stereoselective
approaches to aziridination employ ethyl nosyloxycarbamate
and calcium oxide with 3-ylideneoxindoles.52 Xu and Wang,
and Chen independently reported an aziridination of 3-ylide-
neoxindoles using hydroxycarbamate derivatives to afford a
single diastereomer (Scheme 9).53

Aziridination of isatin ketimines. A team led by Marsini at
Boehringer Ingelheim reported a diastereoselective aziridina-
tion of N-tert-butanesulfinyl ketimino esters at the end of 2015

(Scheme 10).54 At a similar time Hajra reported the same reac-
tion with higher diastereoselectivity (up to >99 : 1 dr vs. 6.6 : 1
dr).55 Both reports use trimethylsulfoxonium iodide with
either NaH or tBuOK and Hajra found that using DMF as
solvent at lower temperature gave much higher diastereo-
selectivity. Hajra demonstrated one example of deprotection of
the sulfinimide converting a protected aziridine with >99 : 1 dr
to the free aziridine with 95% ee, which was subsequently
shown to be unstable.55

Peng developed an asymmetric Mannich reaction of
α-diazophosphonates as nucleophiles with isatin N-Boc keti-
mines catalysed by an asymmetric phosphoric acid
(Scheme 11).56 The product diazo functionality could be
reduced using tributylphosphine to afford the chiral hydra-
zone which could be cyclised to afford the enantiopure aziri-
dine, with undefined stereochemistry at the hydrazine/phos-
phonate chiral centre.

From azirines. In 2016, Xu and Yuan reported an asym-
metric Neber reaction catalysed by (DHQD)2PHAL
(Scheme 12).57 Good enantioselectivity was achieved in the
Neber reaction to form the azirine. Sodium borohydride was
used to reduce the azirine, although the er and dr of the result-
ing aziridine was not reported.

Spiroepoxy oxindoles

Applications. There are two recent examples of spiroepox-
ides in medicinal chemistry for antibacterial activity as well as

Scheme 7 Enantioselective synthesis of axially chiral oxindoles by Rh
catalysed dual C–H activation.

Scheme 8 Enantioselective Mannich reaction followed by cyclisation.

Scheme 6 Pd-Catalysed C–H arylation to form 3,3’-spirooxindoles.
Cy = cyclohexane.

Scheme 9 Aziridination of 3-ylideneoxindoles with carbamate pro-
tected amines. TMG = 1,1,3,3-tetramethylguanidine.

Scheme 10 Diastereoselective aziridination independently developed
by Marsini and Hajra.

Scheme 11 Synthesis of enantioenriched spiroaziridine.
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activity in Neuroblastoma cell lines (Fig. 1).58 Spiro-epoxyoxin-
doles are also attractive synthetic building blocks.59

Epoxidation of isatins and isatin derivatives. Though non-
stereoselective, notable advances in the synthesis of spiro-
epoxyoxindoles have been made recently by Wang and
Zhang,60 and Pace.61 Diastereoselective epoxidations have been
developed,62 notably the use of a trifluoroethylsulfonium salt
in a Corey–Chaykovsky reaction by Cheng and Zhai.63 Lin and
Jin recently developed a diastereoselective epoxidation
mediated by visible light.64 Bencivenni was able to form axially
enantioenriched 3-methylene oxindoles through a
Knoevenagel condensation and, upon epoxidation, the high
axially chiral enantioenrichment was maintained with a 5 : 1
dr.65

The first report of an enantioselective epoxidation to form a
spiro-epoxyoxindole was by Metzner and Briere in 2007,
though only one example with 30% ee was given.66 In 2011,
Gasperi developed a moderately stereoselective epoxidation of
3-ylideneoxindoles using tert-butyl hydroperoxide with a proli-
nol catalyst.67 More recently, Gasperi reported a full study of
this work and disclosed a highly enantioselective epoxidation
reaction of this type, when the oxindole protecting group was
Boc, though the diastereoselectivity was poor.68 In 2014, Xiao
reported the use of camphor-derived sulfonium salts in an
asymmetric epoxidation of isatins (Scheme 13).69 Substitution
on the oxindole did not significantly affect the high enantio-
selectivity, though changing the R group on the sulfonium salt
did reduce the enantioselectivity slightly. Feng described an
enantioselective Darzens reaction to synthesise spiro-epoxyox-
indoles using L-12 as a hydrogen bonding ligand to induce
enantioselectivity in an aldol reaction which is followed by

cyclisation to afford the three-membered ring (Scheme 13).70

Lower enantioselectivities were observed when the aryl group
of the acyl bromides or the fused oxindole ring were substi-
tuted (ee <85%).

Improved enantioselectivity was achieved by Wong in 2017 in
an asymmetric Darzens reaction using diazoacetamides
(Scheme 14).71 High yields and enantioselectivities (up to 99%
ee) were observed using a titanium/BINOL complex and this reac-
tion had a broad scope without reduction in enantioselectivity.

Other approaches. Recently, catalytic ring opening of spir-
oepoxides have been used to form enantioenriched products
in a kinetic resolution. Sun, Hong and Wang used Bn-pro-
tected indole and napthols in an asymmetric phosphoric acid
catalysed epoxide ring opening which resolved the racemic
substrate to give one enantiomer in up to 99% ee.72 Zhou and
Gao have developed a P(NMe2)3-mediated reductive epoxi-
dation via a Kukhtin–Ramirez adduct similar to Scheme 4.73

High diastereoselectivity could be achieved in this coupling of
isatins with aldehydes.

Four-membered rings
Spirocyclobutyl oxindoles

Applications. Spirocyclobutane oxindoles have shown bio-
logical activity against a wide variety of targets and disease
areas, including phosphodiesterase inhibition74 (for treatment
of Schizophrenia, Parkinson’s or Huntington’s), bromodomain
inhibition,75 progesterone receptor antagonists76 and antivir-
als (see Fig. 1 for example structures).77

Natural product synthesis. Welwitindolinone A (Fig. 1) has
inspired many approaches in total synthesis from the Baran78

and Wood laboratories.79

Advances in stereoselective spirocyclobutane oxindoles have
been mainly limited to achievements in C–H activation chem-
istry and [2 + 2]-cycloadditions.

Metal-catalysed C–H activation/coupling. Inspired by
Overman’s study of asymmetric Heck cyclisations to spirocyclic
oxindoles,80 Sunoj and Kundig developed a Pd-catalysed
enantioselective C–H arylation reaction to afford oxindole
spirocycles of varying ring size (Scheme 15).81 The spirocyclic
cyclobutane was formed in high yield, albeit with lower
enantioselectivity than other ring sizes.

Baudoin formed 3-cyclobutyl N-methyl-oxindole through
C–H activation when trying to develop an arylation/electrocyc-Scheme 13 Enantioselective epoxidations using Darzens reactions.

Scheme 12 Asymmetric Neber reaction followed by reduction to
spiroaziridine.

Scheme 14 Asymmetric Darzens reaction developed by Wong.
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lic cascade reaction.82,83 Xu could form the same unsubsti-
tuted cyclobutane, as well as 5- and 6-membered analogues, in
an intramolecular 1,5-HAT using aryl iodides by visible light
photoredox catalysis.84 Gouverneur recently developed a silyl
radical-mediated hydrosulfamoylation using sulfonyl chlorides
and could effect a cascade spirocyclisation (Giese-type addition
followed by aryl C–H transfer) from cyclobutene 15, albeit with
only poor diastereoselectivity (Scheme 16).85

[2 + 2]-Cycloaddition. A significant advance in spirocyclobu-
tyl oxindole synthesis was made by Wang and successively by
Jørgensen in 2014/2015 in the field of organocatalytic [2 + 2]-
cycloadditions of 3-ylideneoxindoles (Scheme 17). Wang
reported a [2 + 2]-cycloaddition of 3-ylideneoxindoles and
enals catalysed by α,α-diphenyl prolinol cat. 16.86 Jørgensen
further developed this type of reaction using a similar prolinol
cat. 17 to mediate a cyclopropane ring opening to form a pro-
posed dienamine which can undergo the [2 + 2]-
cycloaddition.87

Yan in 2016 and then Guan and He in 2017 have indepen-
dently published a photocatalysed [2 + 2]-cycloaddition of 3-yli-
deneoxindoles to form a bispirooxindole cyclobutane as a single

diastereomer (Scheme 18).88 Out of a possible 8 diastereomers,
one diastereomer was formed in the cycloaddition reaction.

Spiroazetidinyl oxindoles

There are very few examples of spirocyclic azetidinyl oxindoles.
Indeed, an analysis of all N-containing 4-membered 3,2′-spiro
oxindole structures shows that all of them are beta-lactams or
derivatives. Whereas for the corresponding 3,3′-spirocycles
only one out of 332 is a β-lactam or derivative thereof (yet
these are typically symmetrical and easily installed via tra-
ditional methods and do not feature heavily in this section).
β-Lactams dominate the nitrogen containing bioactive com-
pounds. This may reflect the lack of synthetic methods
towards the unsubstituted spiroazetidinyl oxindoles.

Applications. Spiroazetidine/spiro-β-lactam oxindoles have
shown activity as antivirals,89 antibacterials,90 antifungals91

and insecticides (Fig. 1).92

Natural product synthesis. In terms of total synthesis,
Weinreb explored the synthesis of chartelline A via the spiro-
β-lactam oxindole as a key intermediate (Fig. 4).93

‘Traditional’ non-stereoselective methods. Notable examples
of non-stereoselective β-lactam formation are [2 + 2] cycloaddi-
tions between diazo compounds and isatin derived ketimines
or reaction of bromoacetyl bromide or chloracetyl chloride
with isatin derived ketimines.94

Annulations using NHC catalysis. There have been signifi-
cant advances in the stereoselective synthesis of β-lactam con-
taining spirooxindoles by organocatalysed annulation of keti-
mine derived isatins. In 2014, Ye reported an asymmetric
Staudinger reaction of ketenes with isatin derived ketimines
catalysed by NHC 18 (Scheme 19A).95 In 2017, Xu and Ren
developed an NHC catalysed asymmetric Mannich reaction
between aldehydes and isatin derived ketimines using cat. 19
in combination with oxidant 20 (Scheme 19B).96 Both of these
reports demonstrated Boc deprotection of the β-lactam using
either silica gel in toluene under reflux or trifluoroacetic acid
in 1,2-dichloroethane, affording the unprotected β-lactam in
95% and 98% ee respectively. In 2019, Deng reported an iso-
thiourea (HBTM, 21) catalysed asymmetric Mannich reaction
between ketimines and carboxylic acids (Scheme 19C).97

Scheme 16 Visible light mediated cascade spirocyclisation.

Fig. 4 Structure of chartelline A.

Scheme 15 Pd-Catalysed enantioselective C–H arylation.

Scheme 17 Advances in organocatalytic [2 + 2]-cycloaddition of 3-yli-
deneoxindoles with α,β-unsaturated aldehydes, either directly or in situ
generated.

Scheme 18 [2 + 2]-Photocycloaddition of 3-ylideneoxindoles.
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Deng’s work does not use an NHC catalyst and uses a relatively
more stable starting material while yielding the products in
very high enantioselectivity.

Annulations using Cu/guanidinium catalysis. In 2014,
Shanmugam reported a copper-catalysed one-pot, three-com-
ponent diastereoselective synthesis of 3-spiroazetidinimine-2-
oxindoles as masked β-lactams (Scheme 20A).98 The spirocycle
was built with high anti-diastereoselectivity.99 In 2018, Liu
advanced this type of reaction in a highly diastereoselective
and enantioselective variant using a chiral guanidinium ligand
L22 (Scheme 20B).100

Azetidines from allene activation. The two main advances in
the synthesis of spiroazetidine oxindoles (non-2-azetidinone
structures) are from the Silvani lab in 2016 and 2017 involving
allene activation. In 2016, Silvani reported a DABCO catalysed
annulation of tert-butyl sulfinyl ketimines with allenes to form
spiroazetidinyl oxindoles in high dr (Scheme 21).101 This could
be followed by HCl mediated deprotection of the Ellman
auxiliary affording the spiroazetidine in 64% yield. In 2017,
Silvani published a follow up study using cinchona derived

organocatalyst 23 for the same reaction with a tBus protecting
group instead of the Ellman auxiliary and generating the spir-
oazetidine in up to 83 : 17 er (Scheme 21).102

By nucleophilic addition. Other recent advances involve
nucleophilic addition to isatin or isatin derived ketimines. In
2016, Xu developed an asymmetric Reformatsky reaction of
tert-butyl sulfinyl isatin ketimines and ethyl bromoacetate to
afford a disubstituted isatin in high yield with high diastereo-
selectivity (Scheme 22).103 Zhang developed an asymmetric
allylboration of isatin mediated by a chiral amino alcohol
(Scheme 22).104 Both Xu and Zhang showed how this diastereo-
selectivity could be converted to highly enantioenriched pro-
ducts in 4/5 steps. Noda and Shibasaki developed an asym-
metric Mannich reaction mediated by a cinchona alkaloid
dimer (Scheme 22).105 The enantioenriched product could be
converted to a spirocyclic β-lactam in 2 steps involving Zn
mediated N–O bond cleavage followed by lactamisation
mediated by HCTU.

Scheme 19 Organocatalysed beta-lactam formation from isatin
derived ketimines.

Scheme 20 Cu-Catalysed one-pot, three component synthesis of spir-
oazetidinimine oxindoles from isatin derived ketimines.

Scheme 21 Diastereoselective formal 2 + 2 annulation of
N-sulfinylketimines and allenes by Silvani. Development of an enantio-
selective reaction employing a quinine derived nucleophilic catalyst with
N-sulfonylketimines by the same authors.

Scheme 22 Examples of enantioselective addition to ketimines or
isatins followed by elaboration to β-lactam spirocycles.
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Spirooxetanyl oxindoles

Applications. Spirooxetanes have featured in only two recent
reports for bioactivity in a Merck patent for kinase inhibi-
tors,106 as well as in an SAR study (see below, ref. 109).

Non-stereoselective methods. As developments in stereo-
selective formation of spirooxetanes have been limited since
2012 (with the lowest number of hits out of any of the struc-
tures considered in this review), it is worthwhile mentioning
papers that form spirooxetanes without stereoselectivity.
Zhang formed spirocyclobutanes from a cascade spirooxetane/
cyclopropane ring opening reaction using BF3·Et2O.

83 The
oxetane starting materials were synthesised in a [2 + 2]-cyclo-
addition from the isatin and a tetrasubstituted alkene such as
1,1′-bi(cyclopropylidene).107 In 2019, Marini reported a
domino reaction of 3-hydroxyindoles and phenyl vinyl sele-
none.108 Using KOH in aqueous conditions Marini showed
that protected or unprotected isatins could be used to produce
a variety of 3,2′-spirooxetanes in 34–73% yield. Lindsley syn-
thesised 3,3′-spirooxetane 24 from the corresponding isatin in
3 steps in an SAR study to find a sub micromolar and selective
M5 (muscarinic acetylcholine receptor 5) positive allosteric
modulator for the treatment of a variety of neurological dis-
eases.109 Final treatment of the diol with triflic anhydride
afforded the oxetane in only 6% yield (Scheme 23).

Lewis acid catalysed cycloaddition. In 2014, Feng reported
the reaction of isatins with ketenes catalysed by an N,N′-
dioxide ligand and Sc Lewis acid to form spirooxetanones.110

In terms of optimisation, Feng reported that a N-Bn protecting
group gave a significant improvement in ee compared to Me
and molecular sieves increased the yield. The reaction was tol-
erant of a range of electronics on both aromatic rings giving
high yield, dr and ee (Scheme 24).

Five-membered rings
Spirocylopentyl oxindoles

Applications. Spirocyclopentyl oxindoles feature in many
natural products and active pharmaceuticals (see Fig. 1 and 5).
For example, neosurugatoxin is a specific antagonist of nic-
otinic acetylcholine receptors.111 This core scaffold has also
been developed for treatment of migraine, which is discussed
in the relevant section (ref. 139), as well as bromodomain
inhibitors.75

Natural product synthesis. Spirocyclopentane oxindoles have
been the focus of many total synthesis studies, with several of
these appearing since 2013. Martin reported the total synthesis
of (−)-citrinadin A, forming the spirocyclopentane oxindole in
an epoxidation/semi-pinacol rearrangement cascade using
Davis’ oxaziridine reagent (Scheme 25).112 Selective epoxi-
dation of the indole C2vC3 followed by stereoselective col-
lapse of the epoxide results in spirocyclopentane formation.
Sarpong, Simpkins, Sun and Li have reported total syntheses
of numerous natural products using a similar spirocyclisation
strategy employing various epoxidising reagents.113 A recent
study of the biosynthetic spirocyclisation of the paraherqui-
mides (related natural products) by Sherman and coworkers
showed that this semi-pinacol rearrangement was the biosyn-
thetic pathway to these spirooxindoles.114 Wood synthesised
(+)-Citrinadin B forming the spirocyclopentane in a Pd-cata-
lysed enyne cyclisation, initially developed by Trost.115 Trost
has developed an asymmetric [3 + 2] Pd-trimethylenemethane
(TMM) cycloaddition to form the spirocyclopentane core of
Marcfortine B and C (Scheme 25).116 Lewis developed an
efficient complexity generating spirocyclisation heating
phenylenediamine and 26 to form the spirocyclopentane, by
ring opening of the ester and ortho-alkylation by a Friedel–
Crafts reaction, in 64% yield and 3.7 : 1 dr as a precursor to
surugatoxin aglycone (Scheme 25, for structure of natural

Scheme 23 3-Step sequence to oxetane 24 in a SAR study towards a
selective M5 positive allosteric modulator.

Scheme 24 Enantioselective [2 + 2]-cycloaddition to form
spirooxetanones.

Fig. 5 Selected cyclopentane spiroindolones in nature.
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product see Fig. 5).117 Zhang and Jia recently described the
total synthesis of similisines A and B (Fig. 5), enantiomeric tri-
sindole structures containing a spirocyclopentane oxindole
core, through a key acid-mediated Friedel–Crafts cyclisation,
though this was low yielding and non-stereoselective.118

[3 + 2]-Cycloaddition. A significant route for construction of
cyclopentane spirooxindoles has been through [3 + 2] cyclo-
addition utilising Morita–Baylis–Hillman (MBH) carbonates,
either to react with or situated on the isatin core.119,120 Recent
highlights include Chen’s demonstration of a [3 + 2]-cyclo-
addition between isatin derived MBH carbonates and 3-ylidene
oxindoles to form bispirooxindole products in high diastereo-
and enantiocontrol (Scheme 26A).121 In 2019, Chen described
the [3 + 2] cycloaddition of isatin-derived MBH carbonates
with β,γ-unsaturated α-keto esters using asymmetric nucleo-
philic catalyst 27 derived from quinidine (Scheme 26B).122,123

Further advances in this field have been made using asym-
metric phosphorus catalysis to activate allenes, MBH carbon-
ates or alkynones to form spirooxindoles.124,125 In Lu and
Mei’s 2019 report threonine derived cat. 28 was found to give

the highest yield and enantioselectivity in Et2O for the [3 + 2]
annulation of isoindigos and allenes (Scheme 27).126 Lu and
Mei additionally showed unsymmetrical isoindigos in this
process with high regiocontrol, as well as the formal syntheses
of a number of complex natural products. Lu, with Ullah, then
reported the annulation of pyrazoloneyldiene oxindoles with
MBH carbonates using asymmetric phosphorus catalyst, SITCP
29 (Scheme 27).127 Both routes exploit the regioselective
addition of the activated electrophile (MBH carbonate or
allene) to the more electrophilic alkene carbon. Related reac-
tions have been developed using isocyanides to activate similar
electrophiles including allenes.128

Domino Michael addition/aldol (or alternative cyclisation)

In 2011, Barbas III designed a bifunctional thiourea catalyst 30
for the domino Michael addition/aldol reaction to form bispir-
ooxindoles from 3-substituted oxindoles and 3-methylene oxi-
ndoles (Scheme 28).129 Since, this Michael addition/cyclisation
strategy based upon hydrogen bonding catalysis has been
employed to access spirocyclopentane oxindoles on a large
number of occasions.130 Notable examples include Kanger’s
use of 3-ylidene oxindoles undergoing asymmetric thiourea
catalysed Michael addition alpha to the nitro group of a
γ-nitroketone and spontaneous stereoselective aldol formation
(determined by stereochemistry of the first step) to give the
five-membered ring (for a related reaction see Scheme 75).131

Johnston and Cordova used a prolinol aminocatalyst to
promote a Michael addition between an alkyne substituted oxi-
ndole and an α,β-unsaturated aldehyde followed by cyclisation

Scheme 25 Selected examples of spirocyclisation to cyclopentanes in
total synthesis.

Scheme 26 Selected isatin derived MBH carbonates in a cycloaddition
with 3-methyleneoxindoles and β,γ-unsaturated α-keto esters.

Scheme 27 Lu and coworkers’ achievements in asymmetric phosphine
catalysed activation of electrophiles to form spirocyclopentene
scaffolds.

Scheme 28 Barbas III’s seminal work on an enantioselective domino
Michael/aldol cyclisation.
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to form an enantioenriched spirocyclopentane with moderate
dr.132 Shi has utilised asymmetric phosphoric acid catalysts to
employ various vinyl indoles to react with 3-ylidene oxindoles,
formed in situ from 3-indolylmethanol, in a Michael/alkylation
cascade.133

NHC catalysis. In 2017, Wang reported a Michael addition/
intramolecular aldol/lactonization cascade of enals with
3-methylene oxindoles using an azolium NHC catalyst.134,135

Up to 99% ee and >99 : 1 dr was achieved using cat. 31 and
DIPEA for the spirooxindole products (Scheme 29A).
Subsequently, Enders published a related study where fused
β-lactam spirooxindoles could be formed (Scheme 29B).136

Enders also showed that using a different NHC catalyst (cat.
33), base and solvent, a different spirocyclopentane scaffold
could be formed in good yield and high dr and er
(Scheme 29C). This switchable reactivity occurs from the same
intermediate formed by Michael addition. This intermediate
can then undergo either (B) intramolecular Mannich reaction
then lactamisation or (C) aza-Dieckmann type cyclisation and
tautomerisation.

Phase transfer catalysis. Zhao and Shang reported a tandem
Michael/Michael addition sequence catalysed by an asym-
metric phase transfer catalyst.137 Employing phosphonium
phase transfer catalyst 34, deprotonation of the malonate
initiates Michael addition to the 3-ylidene oxindole followed
by subsequent Michael addition to the α,β-unsaturated ester
(Scheme 30). Significant reduction in enantioselectivity was
observed when attempting to form the six-membered ana-
logue. Zhao and Zou also reported an ammonium phase trans-
fer catalysed asymmetric vinylation of 3-phenyloxindoles
which were shown to undergo Pd-catalysed Heck cyclisation
and oxidative cleavage to give a spirocyclopentane oxindole
with retention of ee.138

Spirocyclopentanyl oxindoles feature in a number of lead
Calcitonin Gene-Related Peptide (CGRP) medicines developed

by Merck, and more recently Sosei Heptares, for treatment of
migraine (Fig. 6).139

Towards an efficient asymmetric synthesis of the spirocyclo-
pentane core of these compounds Merck developed an
enantioselective phase transfer catalysed spirocyclisation.140

Using a doubly quaternised cinchona alkaloid derived phase
transfer catalyst 35 up to 96% ee was achieved for the trans-
formation of substrates such as 36 to 37 in quantitative yield
which could conceivably be elaborated via the halogenated pyr-
idine (Scheme 31). Merck subsequently collaborated with
Houk to model how the novel phase transfer catalysts promote
the reaction and induce enantioselectivity (Scheme 31).141

Scheme 29 Work by Zhang and Enders using NHC catalysis to syn-
thesise diverse spirocylopentanyl oxindoles.

Scheme 30 Phase transfer catalysed enantioselective double Michael
addition chemistry to spirocyclopentanes.

Fig. 6 Selected developments in structures of CGRP inhibitors.

Scheme 31 Merck’s development of a phase transfer catalysed spiro-
cyclisation and model for the enantioselectivity developed in collabor-
ation with Houk.

Organic Chemistry Frontiers Review

This journal is © the Partner Organisations 2021 Org. Chem. Front., 2021, 8, 1026–1084 | 1037

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
1 

20
21

. D
ow

nl
oa

de
d 

on
 2

02
6-

01
-2

7 
 1

2:
45

:1
6.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0qo01085e


They proposed three key electrostatic interactions: (1) hydrogen
bonding between the hydroxyl of the catalyst and the oxindole
enolate; (2) a chloride–CH interaction activating the leaving
group; (3) a π–π interaction between the pyridine of the formed
cyclopentane and the quinicludine benzyl group. Merck also
recently published on the monitoring of the reaction kinetics
of these inherently complex, dual-phased reaction mixtures in
an automated fashion.142 These studies remain a significant
advance in asymmetric phase transfer catalysis, as well as in
the synthesis of enantioenriched spirooxindoles.

Metal/Lewis acid mediated approaches. Feng used a Mg/N,
N′-dioxide catalyst system in a Michael/Friedel–Crafts/Mannich
cascade of isocyanides to generate enantioenriched polycyclic
spirocyclopentanes resembling strychnos alkaloids.143 Franz
recently used an Sc/pybox system for the [3 + 2]-cycloaddition
of allenes with 3-ylidene oxindoles.144 In a distinct strategy, Su
and Yang developed a Pd-catalysed [3 + 2] annulation of spiro-
vinylcyclopropyl oxindoles with α,β-unsaturated nitroalkenes
(Scheme 32).145 Using Pd(OAc)2 and Xantphos in toluene the
spirovinylcyclopropyl is ring opened to form a amphoteric
π-allyl species which undergoes the [3 + 2] annulation in a
diastereoselective manner, invoking a π-stacking between the
aromatic ring of the oxindole and the aromatic substituent of
the nitroalkene. Rios had previously developed a similar strat-
egy showing one example with 76% ee using a prolinol catalyst
with α,β-unsaturated aldehydes.146

C–H activation/cross-coupling. Cross-coupling method-
ologies have been extensively utilised to access spirocyclopen-
tane oxindoles.147 Related to Trost’s development of Pd-cata-
lysed cyclisations towards the Marcfortines (see Scheme 25),
Córdova has developed an iminium catalysed asymmetric
Michael addition/Pd-catalysed intramolecular allylic alkyl-
ation.148 Trost has continued to innovate in this field, develop-
ing new Pd-catalysed [3 + 2]-cycloadditions from allene and
CF3-containing trimethylenemethane precursors with appli-
cation to enantioenriched spirocyclopentane oxindoles.149

Taylor et al. reported a Cu(II)-mediated double C–H/Ar–H
coupling of bis-anilides to form bispirooxindoles
(Scheme 33).150 This strategy was notable for the trans-
diastereoselectivity observed and the flexibility in increasing
the size of the central ring. Larhed and co-workers, in collabor-
ation with AstraZeneca, have built on their previous work on
the Heck–Mizoroki reaction to generate functionalised cyclo-
pentenes,151 to develop an intramolecular variant. Exploiting
the selectivity of the Heck–Mizoroki reaction to afford spiro-
cyclopentenes with high diastereocontrol (Scheme 33).152

García-López and others have reported C–H activation and
carbene insertion procedures to afford spirocyclopentanes.153

Related to these C–H activation approaches is the stereo-
selective oxidation of spirocyclopentane oxindole C–H bonds
using Ru or Mn catalysis.154 Initially developed by Bach in
2014, selective oxidation of one of the enantiotopic carbons of
the cyclopentane gave cyclopentanones in high er.

Other approaches. Taylor and Unsworth have a program of
work on the synthesis of diverse spirocycles. In 2016, they
described the controlled synthesis of two diastereomers of a
spirocyclopentanyl oxindole from the same intermediate.155

Treatment of a ketodiazo with Rh2(oct)4 in the presence of air
afforded the diketone which under either acidic or basic con-
ditions provided the opposite diastereomers of the spirocyclo-
pentanol (Scheme 34).

Spiropyrrolidinyl oxindoles

Applications. Spiropyrrolidine oxindoles are applied widely
in medicinal chemistry. Indeed, many of the natural products
featuring a 3,3′- or 3,2′-spiropyrrolidinyl motif display a wide
variety of bioactivities.156 One of the most significant pharm-
aceuticals is MI-888 (Fig. 7), a 3,3′-spiropyrrolidine containing
MDM2 inhibitor against tumour growth.157 The success of this
ligand has inspired many other derivatives,158 including pro-
teolysis targeting chimeras (PROTACs)159 and a molecular
glue.160 Other applications of spiropyrrolidines include anti-

Scheme 32 Pd-Catalysed [3 + 2] annulation of spirovinylcyclopropyl
oxindoles.

Scheme 33 Selected C–H activation and cross-coupling procedures to
access spirocyclopentane.

Scheme 34 Taylor and Unsworth’s approach using indole
nucleophilicity.

Review Organic Chemistry Frontiers
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cancer,161 treatment for Alzheimer’s,162 diabetes,163 HIV164

and tuberculosis.165

Natural product synthesis. Spiropyrrolidinyl oxindoles, par-
ticularly spiro-3,3′-pyrrolidinyl oxindoles, have been the target
and inspiration for many total syntheses.166 Horsifilene and
coerulescine (Fig. 7) are undoubtedly the simplest spiropyrroli-
dinyl oxindoles in nature and have been the focus of short,
elegant total syntheses.167 For more complex products, a
general approach is to synthesise the corresponding annulated
indole (termed a β-carboline, typically synthesised via a Pictet–
Spengler reaction) and perform an oxidative rearrangement
with tBuOCl. This reduces the problem down to the construc-
tion of the β-carboline (typically from tryptophan) and these
products have received significant synthetic attention.168 This
was the strategy used by Cook in his total syntheses of (iso)
affinisine oxindole and (iso)alstonisine,169 Xu in the nine-step
total synthesis of (−)-strychnofoline,170 Zhang in the synthesis
of multiple spirotryprostatins171 and more recently in She’s
total synthesis of (−)-gardmultimine A (for structures see
Fig. 7 and Scheme 35).172 Rhynchophylline and isorhyncho-
phylline have been synthesised formally by Amat and more
recently totally by Ip and Tong (Scheme 40).173

[3 + 2]-Cycloaddition

Dipolar cycloaddition. For the synthesis of spiropyrrolidinyl
oxindoles, particularly towards 3,3′-spiropyrrolidinyl oxindoles,
there is a plethora of reports of the use of [3 + 2]-cycloaddition
chemistry. To orientate the advances made in the recent
decade it is important to include here Gong’s seminal study
from 2009. Gong reported the first one-pot catalytic enantio-
selective [3 + 2]-cycloaddition of 3-ylidene oxindoles with
in situ generated azomethine ylides (Scheme 36).174,175 Gong
used asymmetric phosphoric acid cat. 38 to afford spiropyrroli-
dines in high yield, dr and ee.

The utility of this approach by Gong has been demonstrated
by the multitude of reports in this area since. These advances
include the combination of an isatin derived dipole reacting
with an external alkene dipolarophile,176 or other dipolara-
philes177 such as alkynes178 or allenes.179 Often these dipoles
are derived from aminooxindoles180 or they could be malo-
nitrile dipolarophiles,181 azomethine imines182 or pyridinium
ylides.183 There are also many applications of this method-
ology for the synthesis of bispirooxindoles.184 Advances have
also been made with related systems using copper catalysis.185

This azomethine ylide cycloaddition has been used by
Hoffman-La Roche to synthesise MDM2 antagonist MI-888
(Fig. 7, ref. 157), including >100 g scale synthesis of the final
enantiopure product by chiral resolution.186

For the construction of 3,2′-spiropyrrolidinyl oxindoles,
isatin derived ketimines can be used.187 N-2,2,2-
Trifluoroethylisatin ketimines are very popular as a starting
material because of the resultant inclusion of a CF3 group in
the final product. In 2015, Yan, K. Wang and R. Wang demon-
strated the first enantioselective [3 + 2]-cycloaddition of
N-2,2,2-trifluorethylisatin ketimines using prolinol cat. 17
(Scheme 37A).188 The same authors subsequently reported a
similar cycloaddition catalysed by a cinchona alkaloid derived
squaramide catalyst (Scheme 37B).189 These reports were fol-
lowed by many diastereoselective190 and enantioselective191

cycloadditions using N-2,2,2-trifluoroethylisatin ketimines as
1,3-dipole starting materials.

Zhao and Shang developed an asymmetric phase transfer
catalysed [3 + 2]-cycloaddition using a thiourea containing
ammonium salt 40 with K2CO3 as base to form polysubstituted
3,3′-spiropyrrolidinyl oxindoles in up to 99% ee
(Scheme 38).192

Scheme 35 Selected example from total synthesis of the application of
an oxidative rearrangement of a β-carboline to a spirocyclopentane.

Fig. 7 Selected examples of bioactive 3,3’-spiropyrrolidinyl oxindoles.

Scheme 36 Seminal report of catalytic enantioselective [3 + 2]-cyclo-
addition via azomethine ylides.

Scheme 37 Selected reports on the use of N-2,2,2-trifluoroethylisatin
ketimines in [3 + 2]-cycloadditions.
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Finally, Kürti demonstrated the utility of [3 + 2]-cyclo-
addition chemistry. Kürti demonstrated the total synthesis of
natural isatindigoindoline C in short sequence from isatin
through a diastereoselective [3 + 2]-cycloaddition followed by
base mediated epimerisation (Scheme 39).193 The natural
stereochemistry of isatindigoindoline C was thus confirmed as
anti by comparison of the 1H NMR spectra.

Ring expansion. A particularly important development in
the synthesis of 3,3′-spiropyrrolidinyl oxindoles was reported
by Carreira in 1999. Spirocyclopropyl oxindoles could be
reacted with imines in a [3 + 2]-cycloaddition affording spiro-
pyrrolidinyl oxindoles in good dr (up to 98 : 2) (Scheme 40).194

Carreira and others have used this ring expansion/cyclo-

addition strategy on multiple occasions to affect racemic and
stereoselective syntheses of natural products,195 as well as
being adapted.196 Recently, Ip and Tong employed Carreira’s
method as the key step in the first enantioselective total syn-
thesis of Rhynchophylline and Isoryhnchophylline using a
cyclic imine (Scheme 40).197

Budynina has performed a similar ring expansion in a
sequential azide anion ring opening followed by a Staudinger/
Wittig/Mannich reaction.198 Whereas Hajra has ring expanded
3-spiroaziridinyl oxindoles using malonitrile (Scheme 41).199

This type of ring expansion chemistry has also been carried
out in an inverse fashion, i.e. Lu reacted a 3-ylidene oxindole
with a vinyl aziridine (Scheme 41).200 In a related aziridine
ring expansion, Hajra used Cu(OTf)2 as catalyst to ring expand
an aziridine reacting with a 3-substituted isatin to form a 3,2′-
spiropyrrolidine.201

Budynina ring expanded a cyclopropane with an isatin
derived ketimine (Scheme 42).202 Chu, He and Liu have
recently reported an enantioselective cycloaddition of vinyl
cyclopropanes with isatin derived imines using ligand 42, to
form 3,2′-spiro-derivatives (Scheme 42).203

MBH carbonates. As seen throughout this review, the use of
isatin derived MBH carbonates is significant to form a 1,3-
dipole as a three carbon synthon.204 In 2017, Chen demon-
strated the use of isatin derived MBH carbonates in a [3 + 2]-
cycloaddition with isatin derived ketimines catalysed by
bifunctional DMAP/prolinol catalyst 43 in high yield and
enantioselectivity (Scheme 43).205 In 2018, Han and Cui

Scheme 39 Short synthesis of isatindigoindoline C using a key [3 + 2]-
cycloaddition of an isatin-derived azomethine ylide and a 3-ylidene
oxindole.

Scheme 41 3,3’-Spiropyrrolidine oxindoles synthesised by aziridine
ring expansion.

Scheme 38 Asymmetric phase-transfer catalysed [3 + 2]-
cycloaddition.

Scheme 40 Carreira’s seminal ring expansion strategy and Ip and
Tong’s application of this methodology in total synthesis.

Scheme 42 Selected examples of 3,2’-spiropyrrolidine synthesis by
cyclopropane ring expansion.
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reported the diastereoselective [3 + 2]-cycloaddition of isatin
derived MBH carbonates and electron-rich aldimines
(Scheme 43).206

NHC catalysis. In 2015, Lu and Du reported an NHC cata-
lysed [3 + 2] annulation of 2-bromoenals with 3-aminooxin-
doles (Scheme 44A).207 Using NHC cat. 44 Lu and Du achieved
high enantioselectivity of the spiropyrrolidinone product. This
report was followed by a similar reaction using NHC cat. 19 by
Sun and Ye (Scheme 44B).208 Also, Hui and co-workers
reported the [3 + 2] annulation of 3-bromoenals and isatin
N-Boc ketimines (Scheme 44).209 Using azolium cat. 45 with
DABCO in toluene afforded the spirocycles in good yield, high
enantioselectivity and good scope. More recently, Enders
reported an NHC catalysed Mannich reaction between isatin
derived ketimines and α,β-unsaturated aldehydes.210 When the
ketimine was protected with an ortho-phenol, which can bind
the acyl-azolium intermediate allowing cyclisation, overall an
enantioselective [3 + 2] cycloaddition was achieved.

Domino conjugate addition/cyclisation

Conjugate addition/cyclisation is a common tactic employed to
access spiropyrrolidinyl oxindole scaffolds stereoselectively,
and highlights the continuum between concerted [3 + 2]-annu-
lation chemistry and stepwise sequences. Stepwise but simul-
taneous addition/cyclisation sequences will be dealt with first
followed by discrete additions and sequential asynchronous
cyclisations. Domino Michael addition/cyclisation reactions
have been separated according to the isatin reactants: (A) 3-iso-

thiocyanato oxindoles or (B) oxindoles with a nucleophilic C3
substituent reacting with olefins and (C) 3-ylidene oxindoles.

(A) 3-Isothiocyanato oxindoles. The use of 3-isothiocyanato
oxindoles to synthesise 3,2′-spiropyrrolidine structures in
cascade Michael/cyclisation reactions has been extensively
studied by the groups of Wang and Yuan, among others
(Fig. 8).211 In 2013, Wang demonstrated the reaction of 3-iso-
thiocyanato oxindoles with electron deficient olefins catalysed
by cat. 44.212 Wang also showed cat. 45 could promote the reac-
tion between the same oxindoles and with unsaturated pyrazo-
lones.213 At a similar time, Yuan showed that quinine derived
thiocarbamate cat. 46 could promote the reaction of 3-isothio-
cyanato oxindole with alkylidine azlactones, and quinine could
promote the same reaction with 3-methyl-4-nitro-5-alkenyl iso-
xazoles.214 This spate of reports in 2013 was followed by the
application of a similar strategy with other electron deficient
olefins including notable further work by Yuan (Fig. 8).215

There has also been significant advances in using this chem-
istry for the synthesis of bispirooxindoles.216 Lindel has
recently used this approach to construct the 3,2′-spiropyrroli-
done core of cyanogramide.217

(B) Nucleophilic C3 substituent. The second significant
strategy to access 3,2′-spiropyrrolidines is through domino
Michael addition/cyclisation by a nucleophilic C3 substituent
on the oxindole reacting with an olefin. In 2014, Yuan reported
the reaction of acyl-protected 3-aminooxindoles with olefinic
azlactones in good yield and diastereoselectivity using DBU as
catalyst (Scheme 45).218 Yuan also showed a preliminary asym-
metric variant of this reaction using cat. 56 to obtain the
product in 61% ee. Xu and Yuan then further developed this
chemistry with α,β-unsaturated acyl phosphonates as coupling
partners, achieving high yield and enantioselectivity with cat.
57 (Scheme 45).219,220 With α,β-unsaturated aldehydes Wang
used prolinol catalyst 17 to promote high enantioselectivity in
the spirolactam product, albeit with moderate yields and
diastereoselectivity (Scheme 45).221 Recently, Hua and Wang
employed 3-aminooxindoles in a Michael/keto-imine/Friedel–
Crafts cascade to form bispirooxindoles in high dr and ee.222

Related to these methods is the use of an electrophilic substi-
tuent instead of nucleophilic substituent at C3 of the oxindole
i.e. Cl or Br. An example of this was Liu and Chen’s use of
3-bromooxindoles in an enantioselective [4 + 1] annulation
with azadienes using a cinchona alkaloid derived catalyst.223 As
this strategy relies on the nucleophilic displacement by or with
a component on the oxindole starting material it ultimately
results in 3,2′-spiropyrrolidine products.

(C) 3-Ylidene oxindoles. A third significant method of
accessing spiropyrrolidines in a cascade Michael addition/
cyclisation process is using 3-methylene oxindoles as starting
materials.224 In 2016, Zhang described an enantioselective
Michael addition catalysed by a thiourea-cinchona alkaloid
derived catalyst followed by one-pot Mannich/lactamisation to
afford 3,3′-spiro-(δ)-lactam oxindoles in high yield, ee and
dr.225 Wang developed an iodine promoted Michael addition
of 3-methylene oxindoles with enamino esters and concomi-
tant DABCO mediated cyclisation to form 3,2′-spiropyrrolinyl

Scheme 44 Selected examples of NHC catalysed [3 + 2]-
cycloadditions.

Scheme 43 Synthesis of 5-membered saturated nitrogen containing
spirocycles from MBH carbonates.
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oxindoles with good diastereoselectivity under ball-milling
conditions.226 Combining strategies B and C, Xiang and Yang
showed that the reaction of 3-aminooxindoles with 3-methyl-
ene oxindoles under basic conditions yielded a spirolactam
which upon treatment with TsOH in one-pot cyclised to spiro-
lactam 58 in high dr (Scheme 46).227 The C3 position of the
aminooxindole was sufficiently nucleophilic under these con-
ditions to undergo conjugate addition alpha to the ester,
whereupon the free amine ring opens the oxindole. Du com-
bined the use of acyl protected 3-aminooxindoles and
3-methylene oxindoles to form bispirooxindoles and Enders
showed a Mannich/deprotection/aza-Michael cascade between

isatin derived ketimines and 3-substituted oxindoles to
bispirooxindoles.228

A remarkable extension of strategies A and C with dipolar
cycloaddition has been developed by Du where compounds
containing a spiropyrrolidine oxindole and bispirooxindole
were formed by a dual Michael/Mannich and Michael/cyclisa-
tion sequence (Scheme 47).229 Using dimeric squaramide cat.
59 the reaction between N-2,2,2-trifluoroethylisatin ketimine
60 and 3-methyleneoxindole 61 could be promoted, followed
by the reaction between 3-isothiocyanato oxindole 62 and the
pendant α,β-unsaturated amide on 61. The bispirooxindole-
spirooxindole compounds with seven stereocentres were
afforded in high yield, dr and ee, including on gram scale.

Domino Michael/Michael additions. An excellent advance in
3,3′-spiropyrrolidine oxindole synthesis was made by Liu and
at a similar time by Xie. Both teams independently developed
a double Michael addition between oxindoles and alkynones
with either a chiral guanidinium catalyst or a chiral N,N′-
dioxide Sc(OTf)3 complex (Scheme 48).230

Fig. 8 Electrophiles and catalysts that have been developed for annulation of 3-isothiocyanato oxindoles.

Scheme 45 Selected examples of conjugate Michael addition/cyclisa-
tion of oxindoles with a nucleophilic C3 substituent. * Unspecified
stereochemistry/unknown absolute stereochemistry.

Scheme 46 Selected example of the combination of strategy B and C,
using a nucleophilic C3 oxindole substituent and 3-ylidene oxindole.
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Before this, Sasai had developed the same reaction using a
chiral phosphine catalyst but with maximum 84% ee.231 More
recently, Wu and Zhang used a chiral bisphosphine catalyst for
the same reaction.232 A clear demonstration of the utility of
these methods was given by Xie who showed the total syn-
thesis of some strychnos alkaloids (Scheme 48). A related reac-
tion has been developed by Miesch involving a copper cata-
lysed hydroamination process.233 In a related strategy, Peng
and Shao reported an asymmetric propargylation followed by
iodocyclisation to construct polycyclic spirooxindoles in one-
pot or as a discrete asymmetric coupling step followed by
cyclisation.234

Discrete coupling strategies

In this section strategies where a discrete coupling followed by
cyclisation will be discussed. A common strategy towards spir-
opyrrolidine oxindoles is an asymmetric Mannich reaction
using ketimines followed by cyclisation. In 2012, Lu and then
Li and Wang reported significant advances in enantioselective
Michael addition and allylic alkylation of nitroalkanes using
cinchona alkaloid derived catalysts.235 Reductive cyclisation of
the nitro group in the product then afforded spirolactams in
high ee. In 2015, Kobayashi developed a calcium/Pybox asym-
metric Mannich reaction, which could be cyclised upon de-
protection and basic cyclisation (Scheme 49).236,237 Using CaI2
with Pybox ligand 65 in CH2Cl2 at −78 °C afforded the

Mannich product in high dr (trans product favoured) and
excellent enantioselectivity. From acetal product 66, treatment
with HCl followed by NEt3 afforded 3,3′-spiropyrrolinyl oxi-
ndole 67 in 65% yield and 92% ee.

In 2016, Ooi used triazolium phase transfer catalyst 68 to
effect the C–H amination of a hydroxylamine derivative in high
ee for 5- and 6-membered saturated nitrogen heterocycles
(Scheme 50).238 More recently, Du and Chen developed an
asymmetric allylic alkylation from 3-phenyloxindoles using
phase transfer catalyst 69 and Pd(OAc)2 with Na2CO3 as base
(Scheme 50).239 This remarkable reaction afforded good yields
of the 3,2′-spiropyrrolidine oxindole products in high ee. The
products could be readily derivatised to numerous spirocycles
including spirocyclohexanes, piperidines and pyrrolidines.
Luo and Zhu developed a Heck/carbonylative cyclisation
sequence to 3,3′-spiropyrrolidone oxindoles from non-isatin

Scheme 48 Selected advances in Michael/Michael additions of
alkynones.

Scheme 47 Example of the use of strategies A and C for the stereo-
selective construction of seven stereocentres.

Scheme 49 Enantioselective Mannich reaction followed by de-
protection/cyclisation.

Scheme 50 Selected examples of phase transfer catalysed or metal-
catalysed cross-coupling strategies to spiropyrrolidines. PMB = para-
methoxybenzyl.
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derived starting materials (Scheme 50).240 They employed
chiral bidentate phosphine ligand L70 with Pd2(dba)3, K2CO3

and PivOH in toluene and a CO atmosphere to affect the Heck/
carbonylation cascade. Notably, the methodology was limited
to aryl protected lactams but high yields and enantioselectivi-
ties were observed when using the readily removable PMB
group. The authors showed the application of this method-
ology to the synthesis of a CRTH2 receptor antagonist241 in 6
steps in 35% overall yield and 98% ee (Scheme 50).

In a clearly distinct strategy Zhao and Xia developed a
cross-dehydrogenative coupling of pyridines with 3-substituted
oxindoles.242 The pyridinium salts afforded could be reduced
diastereoselectively with NaBH4 in order to access racemic cor-
ynoxine in a rapid fashion (Scheme 51). Although the pyridine
scope was limited to electron withdrawing groups at C3, the
reaction notably worked on unprotected oxindoles.

Addition to isatin derived ketimines is a common route to
spiropyrrolidines. Liu reported a one-pot Mannich/hydro-
amination approach using isatin ketimines.243 Zhou used a
triple catalysis cascade reaction to generate an isatin derived
ketimine in situ which could then undergo Brønsted base cata-
lysed 6π-electrocyclisation.244 Hajra developed an enantio-
selective tanden aza-Henry reaction-cyclisation of isatin-
derived ketimines and nitroalkane mesylates to 3,2-spiropyrro-
lidine oxindoles (Scheme 52).245 These conditions were also
applicable to piperidine derivatives with a chain extended
nitro mesylate substrate. Xu reported a Rh-catalysed arylation
of these ketimines, when using o-tolylboroxine, treatment of
the product with NBS and Boc deprotection allowed cyclisation
to product 72 (Scheme 52). More recently, Zhu and Zhang
reported an enantioselective para-C–H functionalisation of
N-monosubstituted anilines with isatin derived ketimines
using cat. 73.246 The enantioenriched 3-aminoooxindoles were
readily cyclised to spiropyrrolidines in good yield and high ee
(Scheme 52).

Other approaches. Van der Eycken has described a post-Ugi
reaction Pd-catalysed Buchwald–Hartwig/Michael reaction
sequence to very quickly couple four components into 3,2′-spir-
opyrrolidinyl oxindoles.247 Taylor and Unsworth at York used
their previously disclosed direct imine acylation method-
ology248 to furnish indoleninyl halide 74 which upon hydro-
lysis with aqueous HCl formed 3,3′-spiropyrrolidone oxindole
75 in high yield and dr (Scheme 53).249 Further recent

advances towards 3,2′-spiropyrrolidine oxindoles have been
made using diazo compounds as starting materials. In 2016,
Moody at Nottingham University developed a diastereoselective
NH insertion of diazooxindole 76 with β-aminoketones to
afford spiropyrrolidine 77 (Scheme 53).250 Very recently,
Anbarasan reported Pd-catalysed amination of 3-diazooxin-
doles with ortho-vinyl anilines.251

Photoredox. Zhao and Jiang have reported a photoredox
asymmetric phosphoric acid catalysed combination of α-amino
radicals and 3-aryloxindole radicals (Scheme 54).252 The
excited photoredox catalyst (dicyano-pyrazine (DPZ) derived)
affects the decarboxylation of the aryl protected amino acid,
generating an α-amino radical, which can combine with the
3-aryloxindole radical generated from 3-chlorooxindole with
chirality induced by cat. 78. The intermediate then spon-
taneously cyclised in the case of the five-membered ring.Scheme 51 Synthesis of spiropyrrolidine via pyridinium salts.

Scheme 52 Synthesis of 3,2’-spiropyrrolidine oxindoles following
enantioselective additions to isatin derived ketimines.

Scheme 53 Selected examples of diastereoselective synthesis of spiro-
pyrrolidines using spirindoleninyl halides and diazooxindoles.
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Spirotetrahydrofuranyl oxindoles253

Applications. There are numerous bioactive spiroTHF oxi-
ndoles (Fig. 9). Of note is XEN402 (Funapide), developed by
xenon and licensed by Teva (TV-45070) for treatment of pain
(synthesis discussed below).254 Other applications of
spiroTHFs include anti-tumour255 as well as antibacterial
activity.256 Spring reported an example in a diversity-oriented
synthesis of a library of drug-like macrocycles.257

Natural product synthesis. Garg demonstrated the impor-
tance of spirotetrahydrofuran oxindoles in the stereocontrolled
total synthesis of N-methylwelwitindolinone D isonitrile.258

Late-stage installation of the key spiroTHF ring proved trouble-
some and an attempt to cyclise 79 (X = Br) under aerobic con-
ditions afforded a spirocyclobutyl oxindole in high yield
(Scheme 55). However, Garg and co-workers were able to
develop two oxidative functionalisations of the oxindole C3 to
afford the spirobutyrolactone 80 which was 5 steps from the
natural product. The total synthesis of (±)-aspergilline A in 16
steps was developed by Wood and co-workers.259 More recently
Jia reported a ten-step total synthesis of the related natural
product Speradine C with a key oxidative spirocyclisation to
form the spiroTHF ring at a late stage.260 Treatment of 81 with
NCS formed a chloronium ion which was spontaneously
attacked by the methyl ester to form 82 in 35% yield, which
was one oxidative cyclisation step away from speradine C
(Scheme 55). This use of the nucleophilicity of an indole is
reminiscent of the strategy observed extensively for spiropyrro-
lidine synthesis (Scheme 35), indeed, Scheidt has synthesised
(−)-coixspirolactam C (Fig. 9) from indole fused THPs (formed

in an Oxa-Pictet–Spengler) by bromonium ion formation and
rearrangement.261 Dixon synthesised the spiroTHF oxindole
core of the tryptoquivalines using a stereoselective aldol cycli-
sation/acidic hydrolysis (for the THF ring) and a Cu-catalysed
Buchwald type C–N bond formation (for the oxindole).262

Cycloaddition

Iminium ion catalysis. In 2012, Melchiorre reported the reac-
tion of 3-hydroxyoxindoles with enals under iminium ion cata-
lysis for the synthesis of chiral butyrolactones and the prepa-
ration of maremycin A.263 In 2013, Melchiorre was able to
further develop this chemistry with dienals to favour 1,6-
addition in favour of 1,4-addition by using prolinol catalyst 17
with dienal 83, where the β-substituent constrains the dienal
in the S-cis conformation (Scheme 56).264

NHC catalysis. In seminal work, Ma reported an NHC cata-
lysed [3 + 2] annulation of 3-bromoenals and isatins for the syn-
thesis of spirotetrahydrofuranyl oxindoles (Scheme 57).265 Using
NHC cat. 84 Ma achieved high enantioselectivity of the spirobu-
tenolide oxindole products. This reaction occurred through
NHC activation of the aldehyde to form a Breslow intermediate.
This intermediate can then react through the carbon alpha to
the bromo substituent to afford the oxindole alcohol which
undergoes spirocyclisation. At a similar time, Glorius reported a
similar annulation between isatins and enals, providing spiro-
cycles with two contiguous quaternary stereocentres, which was
highly diastereoselective and enantioselective when cat. 85 was

Scheme 56 SpiroTHF synthesis using iminium ion catalysis by
Melchiorre.

Scheme 54 Photoredox approach to enantioenriched 3,3’-spiropyrroli-
dinyl oxindoles. * After recrystallisation, initial ee = 87%. PMP = para-
methoxyphenyl.

Fig. 9 Selected examples of bioactive spirotetrahydrofuran oxindoles.

Scheme 55 Selected examples of spiroTHF synthesis in total syntheses.
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used, importantly in conjunction with ortho-fluorobenzoic acid
(Scheme 57).266 In 2017, Du reported a diastereoselective [3 + 2]
annulation of oxindole derived aliphatic acids and isatins or
α,α,α-trifluoroacetophenone with good diastereoselectivity using
an NHC catalyst.267 Ye then developed a highly diastereo-
selective and moderately enantioselective [3 + 2]-annulation of
3-hydroxyoxindoles and enals, yielding similar products to the
work of Glorius, reportedly by a radical pathway.268 Very
recently, Hui showed the enantioselective oxidative annulation
of acyl chlorides with 3-hydroxyoxindoles (Scheme 57).269 There
have also been other significant advances in NHC catalysis
expanding the starting materials used in conjunction with
isatins.270

Cascade reactions. As seen for the synthesis of spiropyrroli-
dines, the use of cascade Michael/cyclisation procedures is
also common for spiroTHF oxindoles.271 Related to Yuan’s use
of phosphonates as leaving groups for the Michael addition/
cyclisation (ref. 219), Du used N-acylated succinimides as
leaving groups.272 There are a number of reports of coupling
of 3-hydroxyoxindoles and malonitriles,273 of note is Pan’s
highly enantioselective Michael/Pinner cascade reaction using
cat. 57 (Scheme 58).274 Deng reported an asymmetric Michael/
lactonization procedure between 3-hydroxyoxindoles and
3-methylene oxindoles which resulted in ring opening of the
oxindole coupling partner (Scheme 58).275,276 Similar to
ref. 227 (Scheme 46), Chen and Yang reported a Michael
addition/ring opening/ring closing cascade, however, the resul-
tant aniline formed cyclised with the ester of the 3-methylene
oxindole in the final step.277 In a distinct reaction but using a
similar catalyst, Mei and Shi reported an enantioselective
[4 + 1] annulation of 3-chlorooxindoles and ortho-quinone
methides (Scheme 58).278 Again in a somewhat distinct
cascade sequence, Quintavalla has developed an aldol/lactoni-
zation/elimination sequence catalysed by cat. 57
(Scheme 58).279 Other approaches include the use of quinone

monoimines and multicomponent reactions of isonitriles,
allenes and isatins.280

In 2016, Bisai reported an enantioselective aldol reaction of
dimeric oxindoles which resulted in ring opening of one of the
oxindoles, and in doing so developed a highly enantioselective
thiourea catalysed aldol reaction with formaldehyde.281 The
first process scale synthesis of TV-45070 (Fig. 9) employed a
phase-transfer catalysed asymmetric alkylation using a Lygo
phase transfer catalyst.282 Due to the requirement for multiple
protecting groups in the first process scale synthesis of
TV-45070, a new route was developed using a thiourea cata-
lysed aldol reaction similar to the one developed by Bisai
(Scheme 59). Only moderate enantioselectivity was observed
using cat. 89 (up to 73% ee), but this could be improved by
recrystallisation, followed by further two steps to afford the
final API.

MBH carbonates. A common precursor to these types of
spirocycles is an MBH carbonate. In 2013, Xu and Wang
reported a [3 + 2] annulation of 3-hydroxyoxindoles with MBH
carbonates catalysed by quinidine affording spirolactone oxi-
ndoles in high yields and dr and ee (Scheme 60).283 In a one-pot
reaction Zhou performed a MBH reaction/bromination/[3 + 2]-
annulation sequence to access bispirooxindoles in exceptional
ee.284 In 2014, Kesavan reported a one-pot alkylation/cyclisa-
tion of 3-OBoc-oxindoles with MBH carbonates with high
enantiocontrol using cat. 27 (Scheme 60).285 Related to this,
Shi reported an asymmetric phosphine catalysed [4 + 1] annu-
lation of MBH carbonates (Scheme 60).286,287 Chen used EBX
reagents to promote an alkynylation of MBH carbonates which

Scheme 57 Selected advances in NHC catalysed [3 + 2] annulations to
spirolactones.

Scheme 58 Selected advances in annulations catalysed by bifunctional
hydrogen bonding catalysts.
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could be cyclised to 5- or 6-membered oxygenated
spirocycles.288

Metal/Lewis acid catalysis. Yoda described an indium cata-
lysed asymmetric allylation which depending on the substrate
could spontaneously form spirocycle 92 or the alcohol product
could be treated with acid to afford the cyclised product with
retention of ee (Scheme 61).289,290 Feng has reported a Ni cata-
lysed addition of vinyl hydrazones to isatins which upon acidic
removal of the hydrazone and oxidative cleavage forms the
antineoplastic agent 93 in high ee (Scheme 61).291 Trost first
used Zinc catalysis to synthesise spiroTHF oxindoles in
2012.292 In 2019, Chang and Wang used a related Zn based
system to promote a Michael/hemiketalisation/Friedel–Crafts
cascade reaction to form bispiroTHF oxindoles.293 More
recently, Hua and Wang reported a related reaction using
α-hydroxyacetophenone (Scheme 61).294

Yin has developed a Pd-catalysed cascade reaction involving
dearomatisation of furans to form the THF core of the spiro-
cycle.295 Other metal-mediated approaches include the use of
Cu-,296 Ti-,297 Ru-298 or Ni-catalysed299 spirocyclisations. Trost
has also applied his development of Pd-allyl complexes pre-
viously discussed in the spiropyrrolidine section to the syn-
thesis of spiroTHFs.300 Similar to Moody’s use of diazo com-
pounds to synthesise spiropyrrolidines, OH insertion/cyclisa-
tion could be used to synthesise spiroTHFs301 and there have
been many other approaches using Rh- or Cu-catalysed
decomposition of diazo compounds.302

Ring expansion of small-rings. Using the ring strain of cyclo-
propanes or epoxides for [3 + 2] cycloadditions is a common
strategy for the synthesis of five-membered oxygen hetero-
cycles. In an interesting strategy, Shi and co-workers used
vinylcyclopropanes with Pd2(dba)3 to form a Pd-allyl complex
which reacted with isatin to form a spiroTHF oxindole with
excellent dr and ee when using ligand 95 (Scheme 62).303 In
2019, Su incorporated the vinyl cyclopropane into the oxindole
unit and reacted this with an isatin using Pd(OAc)2/XantPhos
to afford bispirooxindole THFs diastereoselectively.304

Hajra and Kumar have independently developed Lewis acid-
mediated ring expansion of spiroepoxides with allylsilanes to
afford spiroTHF oxindoles with moderate to good dr
(Scheme 63).305 In 2016, Hajra had used spiroepoxy oxindoles
in a regioselective Friedel–Crafts alkylation, the alcohol
product could then undergo an Appel reaction and spon-
taneous cyclisation through the phenol to afford 2H-spiroben-
zofuran oxindoles.306

Scheme 59 Plant scale synthesis of TV-45070.

Scheme 60 Selected advances in the use of MBH carbonates to form
spirolactone and spiroTHF oxindoles.

Scheme 61 Recent advances in metal-mediated spirocyclisation
methods to spiroTHF oxindoles.

Scheme 62 Use of vinyl cyclopropanes to construct spiroTHFs.

Scheme 63 Use of spiroepoxy oxindoles in a ring opening/closure
cascade.
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Use of hypervalent iodine reagents. A clearly distinct strategy
to access this type of spirocycle is the use of hypervalent iodine
reagents.307 Building on the work of Gong for the synthesis of
bispirooxindoles,308 Du developed an enantioselective spiro-
cyclisation using catalytic chiral hypervalent iodine reagent 96
with mCPBA as oxidant (Scheme 64).309

Six-membered rings
Spirocylohexanyl oxindoles

Applications. Satavaptan (Fig. 1) is a potent, selective
Vasopressin V2 receptor antagonist for treatment of hyponatre-
mia.310 Spirocyclohexane oxindoles also feature in a number of
patents as anti-cancer,311 hepatitis C inhibitors312 and pro-
gesterone receptor modulators.313

Natural product synthesis. Although not showing any
notable bioactivity, gelsemine has proven to be an inspira-
tional target within total synthesis (Fig. 10).314 Since 2013,
there have been a couple of approaches to gelsemine, includ-
ing an attempt by Vanderwal from a Zincke aldehyde and a
Diels–Alder approach taken by Zhai and Qiu.315 Mehta
described an approach to spindomycin B (Fig. 10) through a
Michael addition/SNAr sequence.

316

[4 + 2]-Cycloaddition. By far the most significant route to
spirocyclohexane oxindoles is [4 + 2]-cycloaddition. In 2013,
Marinetti reported a PPh3 catalysed diastereoselective [4 + 2]
cycloaddition of 3-methylene oxindoles and allenes.317 Chen
has developed a similar but enantioselective reaction.318 Also
in 2013, Ramachary reported the enantioselective [4 + 2] cyclo-
addition of alkynones and malonitrile oxindoles using cat. 97
(Scheme 65).319 Notably, under these conditions an aminoe-
nyne was formed between the primary amine of the epi-
quinine derived cat. 97 due to protonation of the more Lewis
basic quinicludine nitrogen. There have been numerous
related reports using malonitrile precursors320 and these reac-
tions are also used to test new asymmetric ligands.321 There

have been a number of reports of combining chromane
scaffolds with spirocyclohexane oxindoles.322 Of note is Liu
and Wang’s use of 3-methylene oxindoles with a phenol substi-
tuent undergoing an Michael/aldol/oxa-Michael cascade under
iminium catalysis (Scheme 65).323 There have been many other
developments of this type of annulation involving Michael/
aldol324 or more elaborate325 cascade reactions employing
various catalysis modes. An interesting Michael/aldol example
was recently reported by Peng and Han with diastereodiver-
gency observed depending on the oxindole N-protecting group
(Scheme 65).326

In 2011, Melchiorre and Barbas III reported asymmetric
Diels–Alder reactions between 3-vinyl indoles and electron
poor olefins using iminium ion catalysis and hydrogen
bonding catalysis.327 These works laid the foundations for a
body of work which provide tetrahydrocarbazoles fused with
spirooxindoles.328 Notably, in 2014, Feng reported the asym-
metric Diels–Alder reaction between 3-vinyl indoles and
3-methylene oxindoles using Ni catalysis (Scheme 66).329 Also,
in 2015 Shi developed a similar reaction using 2-vinyl indoles
using chiral phosphoric acid catalysis (Scheme 66).330

Oxygenated analogues of these tetrahydrocarbazoles, which

Scheme 64 Chiral hypervalent iodine mediated asymmetric
spirocyclisation.

Fig. 10 Selected naturally occurring spirocyclohexane oxindole.

Scheme 65 Selected [4 + 2] annulations. * Indicates stereochemical
relationship between OTMS and ester group on cyclohexane ring.

Scheme 66 Selected enantioselective [4 + 2] cycloadditions.
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could be produced by an Oxa-Pictet–Spengler reaction can
undergo a Claisen rearrangement to spirocyclohexanes (which
as we have seen can also form spiroTHF products).331

Antilla described the use of chiral Mg-phosphate catalysis
for an asymmetric Diels–Alder reaction.332 For a related Diels–
Alder reaction, Lin and Feng used Zn(OTf)2 complexed with
L100 in up to 99% ee (Scheme 67).333,334 In 2019, Kesavan
described an asymmetric Diels–Alder reaction between 2,4-
dienals and 3-methylene oxindoles catalysed by prolinol cat.
101 (Scheme 67).335 Feng has recently reported Au-catalysed
cycloisomerisation followed by Ni-catalysed Diels–Alder cyclo-
addition to enantioenriched spirocyclohexanes (Scheme 67).336

Feng and Dong have also disclosed a Dy(OTf)3-mediated ring-
opening/[4 + 2]-cycloaddition of cyclobutenones and 3-methyl-
ene oxindoles.337

In terms of other cascade rearrangements, Kim has devel-
oped a diastereoselective 6π-electrocyclisation from MBH pre-
cursors.338 Kim further developed this to a one-pot PPh3

mediated coupling of MBH carbonates and enals where favour-
able disrotatory ring closure from the E,Z,E-isomer proceeds to
the major diastereomer (Scheme 68).339 In a distinct complex-
ity-generating reaction, Tanaka could form racemic intermedi-
ate 102 in a [4 + 1] annulation of 3-methylene oxindole and di-

ketone 103 by treatment with TfOH (Scheme 68).340 In a
Michael–Henry cascade reaction 102 could react with an elec-
tron-poor olefin (such as a nitroalkene) and form polycyclic
spirocyclohexane oxindole containing product 104 with excel-
lent enantioselectivity. The yields for these products were low
due to only one enantiomer of 102 reacting, therefore, the reac-
tion could also serve to furnish highly enantioenriched 102 in
a kinetic resolution.

Metal-mediated C–H activation approaches. In 2015, Kim
reported a Pd-catalysed Heck/C–H activation approach to spiro-
cyclohexene oxindoles with moderate diastereoselectivity.341

More recently Lautens has developed a significant body of
work using intercepted Pd-mediated spirocyclisations and in
2016 reported benzyne insertion to an alkylPdII intermediate
formed by C–H activation (Scheme 69).342 This was followed by
insertion of alkynes with high regioselectivity.343 These works
were followed by Liang and Yang’s report on the synthesis of
109 in a triple C–H activation approach where the alkylPdII

intermediate is intercepted by 2 further equivalents of aryl
iodide (Scheme 69).344 Another approach is Pd-catalysed
migratory insertion of diazo compounds and Michael
addition.345

Chiral hypervalent iodine mediated. In the sole example of
the application of asymmetric hypervalent iodine mediated
dearomative spirocyclisation, Gong synthesised spirooxcyclo-
hexene oxindoles in moderate yields but high enantio-
selectivity (Scheme 70).346 Generally, electron-rich oxindoles
were used i.e. phenylfused oxindoles, however, the enantio-
selectivity was highest for the synthesis of oxindole 110 using
cat. 111.

Spiropiperidinyl oxindoles

Applications. In the last decade spiropiperidinyl oxindoles
have been synthesised for medicinal chemistry applications
against cancer,347 CNS disorders,348 renal failure,349 treatment
of Dengue virus infection350 as well as other applications.351

Surugatoxin related to neosurugatoxin is also a potent human
toxin (Fig. 1).352 Most prominently cipargamin (NITD609 or

Scheme 69 Selected metal-mediated C–H activation approaches via
alkyl-PdII intermediates.

Scheme 67 Selected enantioselective Diels–Alder reactions to make
spirooxindoles.

Scheme 68 Selected cycloadditions developed towards spirocyclo-
hexane oxindoles.
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KAE609) has been developed as an anti-malarial agent.353

Shibasaki used a key asymmetric alkynylation of an isatin keti-
mine to synthesise cipargamin.354 Liu and Feng synthesised
cipargamin in an aza-Diels–Alder process employing 3-vinyl
indoles and Ni catalysis (Scheme 71).355

Similar to other ring sizes we have considered, there have
been a number of efforts made towards the synthesis of rings
with more than one heteroatom, here we only consider the syn-
thesis of piperidines or δ-lactam scaffolds.356 Wei and Shi
developed a [4 + 2]-cycloaddition of vinyl ketones and
α,β-unsaturated imines derived from isatins catalysed by a
bifunctional asymmetric phosphorus-thiourea catalyst
(Scheme 72, R = 2,4,6-triisopropyl phenyl).357 In metal-
mediated approaches, gold catalysed spirocyclisation of in situ
generated indoles and isatins was reported by Subba Reddy.358

Related to Liu and Feng’s reaction (ref. 355), Kumar developed
an enantioselective aza-Diels Alder reaction catalysed by Dy
(OTf)3 and a ligand similar to 112 where Ar = 2,6-iPr2C6H4.

359

Feng, Li and Xiao have independently developed 1,5-hydride
transfer reactions to spiropiperidines.360 More recently, Shi

developed a Pd-catalysed decarboxylative [4 + 2] cycloaddition
strategy using vinyl benzoxazinanones and 3-methylene oxi-
ndoles (Scheme 72).361

NHC catalysis. In 2013, Chi reported the NHC catalysed
[3 + 3] annulation of α-aryl esters and isatin derived
α,β-unsaturated ketimines to afford spirocyclic-δ-lactams in
moderate diastereoselectivity in up to 62% ee with an asym-
metric NHC.362 Yang, Zeng and Zhong used asymmetric cat.
115 to make 3,4′-spiropiperidine oxindoles from isatin derived
α,β-unsaturated aldehydes and imines (Scheme 73).363 This
reaction proceeds through imine conversion to the corres-
ponding enamine to avoid unwanted [3 + 2] cycloaddition with
the enal. Ye reported a [4 + 2] cycloaddition of α,β-unsaturated
carboxylic acids (via the dienolate) and isatin ketimines to
form 3,2′-spiro-δ-lactam oxindoles using NHC cat. 116
(Scheme 73).364 Xu generated ortho-quinodimethanes to
undergo [4 + 2] annulation with isatin ketimines using cat. 19
producing β-carboline spirooxindoles (Scheme 73).365 More
recently, Xu and Ren reported a [4 + 2] annulation of aliphatic
aldehydes and oxindole derived α,β-unsaturated ketimines cat-
alysed by an NHC catalyst.366 Enders also recently reported
related [3 + 3] annulations of isatin derived enals and cyclic
N-sulfonyl ketimines.367

Cascade reactions. Shi and Tu reported an enantioselective
Povarov reaction using asymmetric phosphoric acid cat. 117
affording 3,2′-spiropiperidine scaffolds in up to 97% ee.368,369

Initial formation of a ketimine between the aniline and isatin
is followed by an acid catalysed vinylogous Mannich reaction
and Friedel–Crafts alkylation closes the ring (Scheme 74). This
report was followed by a related reaction by Zhou and Shi
using 3-vinyl indoles in place of the ortho-vinyl phenol.370 Zhu
employed ortho-vinyl phenols and 3-methylene oxindoles to
react in a Michael addition/Friedel–Crafts cascade catalysed by
(DHQD)2PHAL to form 3,3′-spiropiperidine oxindoles
(Scheme 74).371 In a related Michael addition/Friedel–Crafts
sequence, Yuan utilised electron rich pyrroles to react with an
iminium formed from an α,β-unsaturated aldehyde to form
pyrrole-fused 3,2′-spiropiperidine oxindoles.372 Related reac-
tions include aza-Michael/Michael addition, Michael/Mannich
reaction, Michael addition/Pictet–Spengler, Michael/aldol,

Scheme 71 Concise synthesis of anti-malarial cipargamin.

Scheme 73 NHC catalysed cycloadditions to spiro-δ-lactams.

Scheme 70 Chiral iodine mediated spirocyclohexene oxindole
formation.

Scheme 72 Selected enantioselective [4 + 2]-cycloadditions.
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Mannich/hemi-aminalisation cascade reactions.373 He and
Han developed a [2 + 2 + 2] annulation via a Michael/aza-
Henry cascade reaction and evaluated the products ability to
inhibit proliferation of cancer cell lines.374 Due to the impor-
tance of cipargamin, synthesis of similar β-carboline spirooxin-
doles is very popular.375 Also, due to the number of bioactive
compounds containing the spirodihydropyridine oxindole
scaffold, there has been a significant amount of work aimed at
racemic synthesis,376 of note is Shi’s enantioselective [3 + 3]
annulation.377 Very recent advances include a copper catalysed
aza-Henry reaction by Wang and Zhou378 and HFIP mediated
C(sp3)–H functionalisation by hydride transfer.379

Stepwise strategies. There are also a number of related
works where an asymmetric reaction is followed by consequent
deprotection/cyclisation steps. For example, Pedro developed
an aza-Henry reaction between isatin ketimines and 4-nitrobu-
tyrate catalysed by a Cu(II)-Box system, which could be depro-
tected to undergo spontaneous cyclisation to the 3,2′-spiropi-
peridine oxindole (Scheme 75).380 Hajra described an organo-
catalytic addition of a nitroalkyl goup followed by intra-
molecular alkylation (Scheme 52).245 Meng and Li, and more
recently Nakamura, reported enantioselective vinylogous
Mannich reactions to generate intermediates which could be

deprotected and cyclised to spirolactam products
(Scheme 75).381 Han has also developed an enantioselective
Mannich reaction which upon deprotection of the generated
Boc-protected amine undergoes lactamisation to the six-mem-
bered spirocycle.382

Spirotetrahydropyranyl oxindoles

Applications. SpiroTHP oxindoles have found application in
induction of apoptosis,383 as anti-malarials,384 among others.385

Natural product synthesis. Trost cyclised 120 to give cyclolac-
tone 121 in 92% yield as one diastereomer as an intermediate
for the total synthesis of communesin F and perophoramide
(Scheme 76).386 Gong reported the first total synthesis of
(+)-trigolutes B utilising an enantioselective substitution reac-
tion to form 122 which in 7 steps could be transformed to the
natural product (Scheme 76).387,388

Cycloaddition/cascade. Liang and Xu employed thiourea cat.
123 in a double Michael addition cascade between N-methyl
oxindole and 124 (Scheme 77).389 Using thiourea cat. 125
Enders developed an oxa-Michael/1,6-addition reaction to
form 3,3′-spiroTHP oxindoles in high yield an enantio-
selectivity (Scheme 77).390 Zeng and Zhong reported an
enantioselective Michael/aldol/hemiacetalisation process
using iminium catalysis.391 Han has developed an enantio-
selective vinylogous aldol/cyclisation/ring-opening cascade of
3-methylene oxindoles and isatins.392 Wu reported an enantio-
selective Michael/cyclisation reaction between dimedone and
isatylidene malonitriles with high yields and enantioselectivi-
ties, the trityl protecting group on the isatin was
important.393,394 More recent examples include a Michael/
aldol/cyclisation cascade to form 5- or 6-membered oxygenated
spirocycles by Zhang and a vinylogous aldol reaction/transes-
terification by Yuan, both using thiourea catalysts
(Scheme 77).395 Some of these Michael/cyclisation procedures
can be deemed formal hetero-Diels–Alder reactions.396

Scheme 76 Selected examples of spiroTHP oxindole synthesis in total
synthesis.

Scheme 74 Selected examples of phosphoric acid catalysed cascade
reactions.

Scheme 75 Selected advances in asymmetric Mannich reactions fol-
lowed by elaboration to six-membered spirocycles.
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Recently, Xiao has used ortho-quinone methides derived in situ
from oxindole ortho-hydrooxybenzyl alcohols by acid in [4 + 2]
annulations with 2,5-dialkylfurans or 1,3-diketones as dieno-
philes.397 These starting materials can also be used in a bis-
electrophile coupling in a [4 + 2] annulation (as well as [4 + 1]
annulation if a pyridinium salt is used instead of a bromide
leaving group).398 THP fused indoles have been synthesised by
enantioselective aldol/chloroetherification/aromatisation, as
well as C–O coupling.399 MBH carbonates have also been used
for [4 + 2]-annulations.400

NHC catalysis. Yao developed the [4 + 2] annulation of
isatins with the HOBt ester of α,β-unsaturated carboxylic acids,
achieving good enantioselectivity with cat. 19 (Scheme 78).401

Lu and Du reported the NHC catalysed [3 + 3] annulation of
isatin derived α,β-unsaturated acids and α-ketoesters with up
to 74% ee.402 In a similar reaction, Xu reported the annulation
of 3-ylidene oxindoles with 1,3-dicarbonyls (Scheme 78).403 In
an excellent application of dual NHC and Cu-catalysis, Song
and Gong used ethylethylene carbonates in a [3 + 3]-annula-
tion of 3-ylidene oxindoles (Scheme 78).404

Stepwise approaches. Feng has employed a Mg/chiral N,N′-
dioxide catalyst system for a hetero Diels–Alder reaction.405 Li
has recently reported a Bi/chiral phosphoric acid 77 catalysed

allylation of isatins which could be further elaborated to
spiroTHP products (Scheme 79).406 Arai has employed a Ts-
PyBidine-Ni complex to catalyse the asymmetric addition of
indole to 3-ylidene oxindoles and a highly diastereoselective
iodocyclisation to 6-membered products was developed using
cat. 77 (Scheme 79).407

In other approaches, Subba Reddy has developed a
BF3·OEt2 mediated Prins cascade cyclisation between alde-
hydes and butanamides to furnish spiroTHP oxindoles in high
yield and good dr.408 Hu used Rh-carbenes generated from
3-diazooxindoles to undergo C–H insertion/aldol condensation
to afford spiroTHP oxindoles in high yield and diastereo-
selectivity.409 Another example of C–H activation has been
shown by Messaoudi with glycosides.410 The intramolecular
Co-catalysed Pauson–Khand cyclisation of 1,7-enynes gener-
ated 3,2′-spiroTHPs with high diastereoselectivity.411

Seven-membered rings
Applications

Natural products containing seven-membered spirocyclic oxi-
ndoles are predominantly bridged carbocyclic examples of gel-
semium alkaloids.412 There are not many examples of these
rings in medicinal chemistry, though nitrogen containing
examples do feature in some patents.413 A spiroazepane oxi-
ndole was synthesised as a cipargamin analogue with antima-
larial activity,16 and an example with activity against a prostate
cancer target (Fig. 1).414 While natural products tend to favour
bridged carbocyclic seven-membered rings (Fig. 11) and there
are some methodologies to synthesise bridged seven-mem-
bered rings, this section will focus on non-bridged

Scheme 77 Selected cascade reactions catalysed by thiourea catalysts.

Scheme 78 Selected NHC catalysed cycloadditions.

Scheme 79 Selected examples of stepwise synthesis of spiroTHP oxi-
ndoles by nucleophilic addition.
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examples.415 Additionally, we have grouped the methodologies
in terms of similarity rather than into C/N/O-containing rings
due to the small number of publications, the vast majority of
which are aimed at spiroazepane synthesis.

Natural product synthesis

Total synthesis efforts centre around the synthesis of gelse-
mium alkaloids. Carreira has described elegant approaches to
gelsemoxonine (see Fig. 11 for structure).416 Ferreira con-
structed the oxindole of gelsenicine with an oxidative cyclisa-
tion of a Weinreb amide with an aromatic ring.417 Fukuyama
and Ma have independently described divergent syntheses to
many gelsedine type alkaloids.418 Takayama recently described
an asymmetric synthesis of (−)-14-hydroxygelsenicine and six
other gelsemium alkaloids.419 The spirooxindole was con-
structed in a diastereoselective Heck cyclisation (Scheme 80).

NHC catalysis

In 2016, Enders pioneered the use of NHCs for the [3 + 4]-
cycloaddition of isatin derived enals with aza-o-quinone
methides or azoalkenes to form spiro-benzazepinones or spiro-
diazepinones (Scheme 81).420 Using cat. 128 with Cs2CO3 to
form the aza-o-quinone methide in situ from the N-(o-chloro-
methyl)aryl amide in EtOAc gave high enantioselectivity and
atroposelectivity. Switching starting material in order to make
diazepinones was highly stereoselective using cat. 129.

Li developed an NHC catalysed enantioselective synthesis
of spirobenzoxepinones in a [4 + 3] cycloaddition of isatin
derived enals and quinone methides (Scheme 82).421 High
enantioselectivity (up to >99% ee and >20 : 1 dr) was achieved
using triazolium cat. 130 in combination with NaOAc in 1,2-
dichloroethane. Enders published a similar reaction a month
after Li’s study, which employed cat. 131 to achieve up to 95 : 5

er and good dr.422 This was followed by work by Yan Li and Ye
on a related [4 + 3]-cycloaddition of isatin derived enals and
aurone-derived azadienes.423 Using a similar NHC catalyst
interesting spiroazepinones were formed with high enantio-
selectivity and diastereoselectivity. The compounds exhibited
moderate cytotoxicity against cancer cell lines.

More recent advances include Fu and Huang’s NHC cata-
lysed [4 + 3]-annulation of α,β-unsaturated aldehydes and
amine substituted oxindoles (oxotryptamines, Scheme 83).424

Song and Gong’s previously discussed excellent Cu/NHC dual
catalysis could be used with ethynyl benzoxazinanones to con-
struct chiral azepines.404

MBH carbonates

Chen and coworkers reported a [4 + 3] cycloaddition of a
bromo-substituted MBH derivative and an aza-o-quinone
methide precursor (Scheme 84).425 Chen used tri-(4-fluoro)
phenyl phosphine as a Lewis base to form an allylic ylide from
the MBH precursor and Cs2CO3 as base to generate the aza-o-
quinone methide. Xu published a related reaction at a similar
time,426 using tributyl phosphine as Lewis base catalysis with
a related MBH precursor and a Boc protected aza-o-quinone

Fig. 11 Selected bioactive seven-membered rings.

Scheme 80 Pd-Catalysed Heck reaction as key step in the total syn-
thesis of (−)-14-hydroxygelsedilam.

Scheme 81 [4 + 3]-Cycloadditions with 3-ylidene oxindoles for
7-membered ring synthesis.

Scheme 82 Isatin-derived enals in [4 + 3] cycloaddition reactions.

Scheme 83 Selected [4 + 3]-annulation reaction of oxotryptamines.
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methide precursor to generate seven-membered spirocycles in
good yields, including on gram-scale. In a similar fashion, Du
recently employed ortho-quinone methides in combination
with an isatin derived MBH precursor to affect a [4 + 3]-cyclo-
addition.427 Using DABCO as Lewis base catalyst in MeCN,
high diastereoselectivity with electron-rich ortho-quinone
methides was observed (Scheme 84).

Du and Chen have collaboratively reported an asymmetric
Ir catalysed [4 + 3]-cycloaddition between an MBH carbonate
and π-allyl precursor (Scheme 85).428 The π-allyl precursor
includes a vinylogous leaving group i.e. vinyl-OBoc, ethylene
oxazinanones or vinyl aziridines (for six-membered rings)
which forms an asymmetric Ir-allyl complex to react with the
DABCO activated MBH carbonate.

Other approaches to spiroazepanes include a desymmetris-
ing Cu-catalysed C–N bond formation in high ee
(Scheme 86).429 Budynina has used azide anion ring opening
of spirocyclopropyl oxindoles (ref. 198) in a Staudinger,
domino Michael/aza-Wittig and reduction sequence.430 Yang
developed a Pd-NHC catalysed allylic alkylation, the products
of which could readily elaborated to a spiroazepinone.431

Eight-membered rings

As with seven-membered spiro-oxindoles there are very few
examples of syntheses capable of accessing the eight-mem-
bered analogues. Shi and Zhao independently published the
Pd-catalysed [5 + 3]-cycloaddition of N-2,2,2-trifluoromethyl-
isatin ketimines and vinylethylene carbonates (Scheme 87).432

Shi employed (Pd2dba3)·CHCl3 and Xantphos as a ligand for
the decarboxylative allylic substitution and a racemic phospho-
ric acid catalyst to effect the cyclisation. Meanwhile, Zhao used
Pd(PPh3)4 in combination with PPh3 as ligand and pyridine as
base for the cyclisation. Both procedures afford the anti-
product as the major product in high yields and dr. Shi
demonstrated a preliminary result for the enantioselective ally-
lation using tBu-RuPhos as ligand affording the eight-mem-
bered spirocycle in 63% ee. Furthermore, Shi showed that
epoxidation of the endogenous double bond with mCPBA
would lead to spontaneous epoxide ring opening to form spir-
opyrrolidine 134 (Scheme 87A).

Summary and conclusions

We have reviewed the developments in state-of-the-art stereo-
selective spiroindolone synthesis between 2013 and 2020. The
progress of synthetic methodology for each ring size (3- to 8-)
has been discussed. The importance of these advances should
not be understated, with reference to the significant potential
of many of these structures in medicinal chemistry, which we
have highlighted with numerous examples. The trends we have
observed within this review can be summarised as follows:

1. Spirooxindoles represent a very important class of struc-
tures within medicinal chemistry, featuring in approved medi-
cines with a large variety of biological activity, as well as acting
as the structural core in a significant number of natural pro-
ducts (eg Fig. 1). Where possible we have highlighted how the
synthetic methodologies discussed in this review have influ-
enced the process scale synthesis of these pharmaceuticals, for
example in Scheme 59.

2. Spirooxindoles serve as a benchmark in asymmetric syn-
thesis. Many of the methods reviewed here have made substan-
tial advances in asymmetric catalysis. This may be due to the
fused backbone of the indolone providing a flat and rigid plat-

Scheme 85 Reaction of MBH carbonates with π-allyl precursors.

Scheme 84 Selected [4 + 3]-cycloadditions to 7-membered spiro-
cycles using MBH carbonates or MBH precursors.

Scheme 86 Cu-Catalysed desymmetrising cross-coupling reaction.

Scheme 87 [5 + 3]-Cycloaddition towards 8-membered
spiroindolones.

Review Organic Chemistry Frontiers

1054 | Org. Chem. Front., 2021, 8, 1026–1084 This journal is © the Partner Organisations 2021

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
1 

20
21

. D
ow

nl
oa

de
d 

on
 2

02
6-

01
-2

7 
 1

2:
45

:1
6.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0qo01085e


form for construction of 3D spirocycles. These advances are
doubly valuable because they fulfill the object of advancing
asymmetric methodology while making biologically relevant
scaffolds for screening against biologically relevant targets.

3. The advances that have been observed in spirooxindole
synthesis generally reflect the advance of organic synthesis
since 2013. While there has been a significant rise in the
number of publications on this topic, there are a growing
number of excellent and innovative reports targeting these
scaffolds (Fig. 2). This review has covered advances in stereo-
selective NHC catalysis, chiral acid catalysis, aminocatalysis,
metal catalysis including cross-coupling, hydrogen bonding
catalysis and phase transfer catalysis. We have also highlighted
total syntheses of natural products containing these core
structures.

There will likely be sustained interest in these scaffolds
because of the trends observed in recent years coupled with
the success of many of the pharmaceutical agents. We envi-
sage that future developments may be targeted to the following
objectives:

1. More general methods to access multiple ring sizes.
Currently, there are few methodologies that can access mul-
tiple ring sizes with simple changes i.e. to starting material
structure. For example, ring expansion strategies making use
of small rings are useful to access more than one ring size.
Ideal methods could also access more than one heteroatom
pattern on the spirocyclic ring and be able to control ring
substitution.

2. A wider variety of synthetic targets through asymmetric
synthesis. Unsubstituted rings can often be synthesised as
racemates using traditional methods. Yet, asymmetric syn-
thesis of unsubstituted rings is a challenge and though there
are examples within this review there is still a requirement to
access the unsubstituted scaffold.

3. Small and larger ring spirocycles. As could be seen from
the analysis of the publication numbers (Fig. 2) and reflected
in the number of strategies discussed in this review, there is a
plethora of methods for 5- and 6-membered rings. Future
endeavours in this area should seek to synthesise small or
larger rings, eg azetidines and oxetanes are increasingly useful
for medicinal chemistry and have not received the same level
of attention. Furthermore, 7- and 8-membered rings have not
received significant attention due to the difficulty in accessing
these structures and we envisage that synthetic advances seen
in this review will likely be applied to larger ring synthesis.
8-Membered ring spirocycles, as the first member of the
medium rings, may require significant new method develop-
ment. Higher medium ring homologues were not within the
scope of this review, but could pose interesting targets for
medicinal chemistry. New syntheses of these smaller and
larger ring spirocycles will lead to improved access to this valu-
able and underexplored chemical space.

We hope that this review will serve as a reference for medic-
inal and synthetic chemists aiming to synthesise this type of
ring structure and inspire future advances in the synthesis of
spirooxindoles.
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pyrrole]-2,5′-diones via Post-Ugi Domino Buchwald-
Hartwig/Michael Reaction, Org. Lett., 2014, 16, 3884.
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W. P. Unsworth, Preparation and Reactions of Indoleninyl
Halides: Scaffolds for the Synthesis of Spirocyclic Indole
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with β-Aminoketone Derivatives, Angew. Chem., Int. Ed.,
2016, 55, 3749.
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Bioorg. Med. Chem. Lett., 2014, 24, 3690.

255 (a) A. K. Franz, P. D. Dreyfuss and S. L. Schreiber,
Synthesis and Cellular Profiling of Diverse Organosilicon
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(b) R. T. Moon, T. L. Biechele, S. Haggarty and D. Fass,
Molecular Inhibitors of the WNT/Beta-Catenin Pathway,
PCT Int. Appl WO2010075282A1, 2010; (c) S. Rana,
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and D. R. Spring, Diversity-Oriented Synthesis of Drug-
Like Macrocyclic Scaffolds Using an Orthogonal Organo-
and Metal Catalysis Strategy, Angew. Chem., Int. Ed., 2014,
53, 13093.

258 E. D. Styduhar, A. D. Huters, N. A. Weires and N. K. Garg,
Enantiospecific Total Synthesis of
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Ed., 2013, 52, 12422.

259 (a) M. C. Nakhla and J. L. Wood, Total Synthesis of
(±)-Aspergilline A, J. Am. Chem. Soc., 2017, 139, 18504. For
an asymmetric synthesis of a related core structure see:
(b) L. Caruana, M. Fochi, M. C. Franchini, S. Ranieri,
A. Mazzanti and L. Bernardi, Asymmetric synthesis of 3,4-
annulated indoles through an organocatalytic cascade
approach, Chem. Commun., 2014, 50, 445.

260 H. Liu, L. Chen, K. Yuan and Y. Jia, A Ten-Step Total
Synthesis of Speradine C, Angew. Chem., Int. Ed., 2019, 58,
6362.

261 M. A. Maskeri, M. J. O’Connor, A. A. Jaworski, A. V. Davies
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Brønsted Acid System for the Enantioselective Synthesis
of Tetrahydropyrans, Angew. Chem., Int. Ed., 2018, 57,
17225.

262 T. Wei and D. J. Dixon, Catalytic stereoselective total syn-
thesis of a spiro-oxindole alkaloid and the pentacyclic
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263 G. Bergonzini and P. Melchiorre, Dioxindole in
Asymmetric Catalytic Synthesis: Routes to
Enantioenriched 3-Substituted 3-Hydroxyoxindoles and
the Preparation of Maremycin A, Angew. Chem., Int. Ed.,
2012, 51, 971.

264 (a) M. Silvi, I. Chatterjee, Y. Liu and P. Melchiorre,
Controlling the Molecular Topology of Vinylogous
Iminium Ions by Logical Substrate Design: Highly Regio-
and Stereoselective Aminocatalytic 1,6-Addition to Linear
2,4-Dienals, Angew. Chem., Int. Ed., 2013, 52, 10780. For a
related reaction for cyclopentane synthesis see: (b) X. Tian
and P. Melchiorre, Control of Remote Stereochemistry in the
Synthesis of Spirocyclic Oxindoles: Vinylogous Organocascade
Catalysis, Angew. Chem., Int. Ed., 2013, 52, 5360.

265 C. Zheng, W. Yao, Y. Zhang and C. Ma, Chiral
Spirooxindole-Butenolide Synthesis through Asymmetric
N-Heterocyclic Carbene-Catalyzed Formal (3 + 2)
Annulation of 3-Bromoenals and Isatins, Org. Lett., 2014,
16, 5028.

266 J. L. Li, B. Sahoo, C. G. Daniliuc and F. Glorius, Conjugate
Umpolung of β,β-Disubstituted Enals by Dual Catalysis
with an N-Heterocyclic Carbene and a Brønsted Acid:
Facile Construction of Contiguous Quaternary
Stereocenters, Angew. Chem., Int. Ed., 2014, 53, 10515.
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267 J. Cao, S. Dong, D. Jiang, P. Zhu, H. Zhang, R. Li, Z. Li,
X. Wang, W. Tang and D. Du, β-Functionalization of
Indolin-2-one-Derived Aliphatic Acids for the Divergent
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268 (a) X. Y. Chen, K. Q. Chen, D. Q. Sun and S. Ye,
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K. Q. Chen, X. Y. Chen and S. Ye, Diastereo- and
Enantioselective Synthesis of Spirooxindoles with
Contiguous Tetrasubstituted Stereocenters via Catalytic
Coupling of Two Tertiary Radicals, J. Org. Chem., 2018, 83,
2966; (c) For a related report at a similar time see:
S. Mukherjee, S. Joseph, A. Bhunia, R. G. Gonnade,
S. R. Yetra and A. T. Biju, Enantioselective synthesis of
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3-hydroxy oxindoles, Org. Biomol. Chem., 2017, 15, 2013.
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(b) J. Xu, S. Yuan, M. Miao and Z. Chen, 1-
Hydroxybenzotriazole-Assisted, N-Heterocyclic Carbene
Catalyzed β-Functionalization of Saturated Carboxylic
Esters: Access to Spirooxindole Lactones, J. Org. Chem.,
2016, 81, 11454; (c) Y. Gao, Y. Ma, C. Xu, L. Li, T. Yang,
G. Sima, Z. Fu and W. Huang, Potassium 2-oxo-3-enoates
as Effective and Versatile Surrogates for α, β-Unsaturated
Aldehydes in NHC-Catalyzed Asymmetric Reactions, Adv.
Synth. Catal., 2018, 360, 479; (d) B. Liu, G. Luo, H. Wang,
L. Hao, S. Yang, Z. Jin and Y. R. Chi, Carbene-Catalyzed
Direct Functionalization of the β-sp3-Carbon Atoms of
α-Chloroaldehydes, Chem. – Eur. J., 2019, 25, 12719.

271 Indeed for many of the previously discussed papers,
where protected 3-aminooxindoles were used, this can be
replaced with 3-hydroxyoxindole to produce the analogous
oxygenated product. See ref. 218, 219 and 230.

272 S. Ming, B. L. Zhao and D. M. Du, Chiral squaramide-cata-
lysed enantioselective Michael/cyclization cascade reac-
tion of 3-hydroxyoxindoles with α,β-unsaturated
N-acylated succinimides, Org. Biomol. Chem., 2017, 15,
6205.

273 (a) X. Q. Zhu, J. S. Wu and J. W. Xie, Stereoselective con-
struction of Bi-spirooxindole frameworks via a Michael
addition/cyclization and an unexpected redox/oxidative
coupling/cyclization, Tetrahedron, 2016, 72, 8327;
(b) Y. S. Zhu, W. B. Wang, B. B. Yuan, Y. N. Li, Q. L. Wang
and Z. W. Bu, A DBU-catalyzed Michael-Pinner-isomeriza-
tion cascade reaction of 3-hydroxyoxindoles with isatyli-
dene malononitriles: access to highly functionalized bis-

pirooxindoles containing a fully substituted dihydrofuran
motif, Org. Biomol. Chem., 2017, 15, 984; (c) N. Gupta,
G. Bhojani, R. Tak, A. Jakhar, N. ul H. Khan, S. Chatterjee
and R. I. Kureshy, Highly Diastereoselective Syntheses of
Spiro-Oxindole Dihydrofuran Derivatives in Aqueous
Media and Their Antibacterial Activity, ChemistrySelect,
2017, 2, 10902.

274 M. Balha, B. Mondal and S. C. Pan, Organocatalytic asym-
metric synthesis of dihydrofuran-spirooxindoles from
benzylidene malononitriles and dioxindoles, Org. Biomol.
Chem., 2019, 17, 6557.

275 Z. T. Yang, J. Zhao, W. L. Yang and W. P. Deng,
Enantioselective Construction of CF3-Containing
Spirooxindole γ-Lactones via Organocatalytic Asymmetric
Michael/Lactonization, Org. Lett., 2019, 21, 1015.

276 For an alternative Michael addition/Cyclisation see:
C. K. Tang, Z. Y. Zhou, A. B. Xia, L. Bai, J. Liu, D. Q. Xu
and Z. Y. Xu, Combining Organocatalysis and Iodine
Catalysis: One-Pot Sequential Catalytic Synthesis of Chiral
Spirodihydrobenzofuran Pyrazolones and
Spirodihydrobenzofuran Oxindoles, Org. Lett., 2018, 20,
5840.

277 (a) J. W. Ren, L. Zheng, Z. P. Ye, Z. X. Deng, Z. Z. Xie,
J. A. Xiao, F. W. Zhu, H. Y. Xiang, X. Q. Chen and H. Yang,
Organocatalytic, Enantioselective, Polarity-Matched Ring-
Reorganization Domino Sequence Based on the
3-Oxindole Scaffold, Org. Lett., 2019, 21, 2166. For a
related cascade reaction. (b) B. L. Zhao and D. M. Du,
Squaramide-Catalyzed Enantioselective Cascade Approach
to Bispirooxindoles with Multiple Stereocenters, Adv.
Synth. Catal., 2016, 358, 3992.

278 X. L. Jiang, S. J. Liu, Y. Q. Gu, G. J. Mei and F. Shi,
Catalytic Asymmetric [4 + 1] Cyclization of ortho-Quinone
Methides with 3-Chlorooxindoles, Adv. Synth. Catal., 2017,
359, 3341.

279 (a) L. Cerisoli, M. Lombardo, C. Trombini and
A. Quintavalla, The First Enantioselective Organocatalytic
Synthesis of 3-Spiro-α-Alkylidene-γ-Butyrolactone
Oxindoles, Chem. – Eur. J., 2016, 22, 3865. For another
enantioselective aldol/cyclisation see: (b) W. Guo,
X. Wang, B. Zhang, S. Shen, X. Zhou, P. Wang, Y. Liu and
C. Li, Facile Synthesis of Chiral Spirooxindole-Based
Isoelectronic Acids and 5–1H-Pyrrol-2-ones through
Cascade Reactions with Bifunctional Organocatalysts,
Chem. – Eur. J., 2014, 20, 8545. For aldol/Michael see:
(c) D. Trubitsõn, S. Žari, S. Kaabel, M. Kudrjashova,
K. Kriis, I. Järving, T. Pehk and T. Kanger, Asymmetric
Organocatalytic Cascade Synthesis of Tetrahydro-furanyl
Spirooxindoles, Synthesis, 2018, 50, 314.

280 (a) H. Chen, H. Liu, S. H. Zhao, S. B. Cheng, X. Y. Xu,
W. C. Yuan and X. M. Zhang, Enantioselective Arylation of
3-Carboxamide Oxindoles with Quinone Monoimines and
Synthesis of Chiral Spirooxindole-benzofuranones,
Synlett, 2019, 30, 1067; (b) J. Li, Y. Liu, C. Li and X. Jia,
Syntheses of Spirocyclic Oxindole-Butenolides by Using
Three-Component Cycloadditions of Isocyanides,
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Allenoates, and Isatins, Chem. – Eur. J., 2011, 17, 7409;
(c) Z. Tang, Z. Liu, Y. An, R. Jiang, X. Zhang, C. Li, X. Jia
and J. Li, Isocyanide-Based Multicomponent Bicyclization
with Substituted Allenoate and Isatin: Synthesis of
Unusual Spirooxindole Containing [5.5]-Fused
Heterocycle, J. Org. Chem., 2016, 81, 9158; (d) K. Zhang,
H. Han, L. Wang, Z. Zhang, Q. Wang, W. Zhang and Z. Bu,
An unexpected cascade reaction of 3-hydroxyoxindoles
with coumarin-3-carboxylates to construct 2,3-dihydroben-
zofuran spirooxindoles, Chem. Commun., 2019, 55, 13681;
(e) H. Bin Yang, Y. Z. Zhao, R. Sang, Y. Wei and M. Shi,
Asymmetric Synthesis of Bioxindole-Substituted
Hexahydrofuro[2,3-b]furans via Hydroquinine
Anthraquinone-1,4-diyl Diether-Catalyzed Domino
Annulation of Acylidenoxindoles/Isatins,
Acylidenoxindoles and Allenoates, Adv. Synth. Catal.,
2014, 356, 3799.

281 S. De, M. K. Das, A. Roy and A. Bisai, Synthesis of
2-Oxindoles Sharing Vicinal All-Carbon Quaternary
Stereocenters via Organocatalytic Aldol Reaction, J. Org.
Chem., 2016, 81, 12258.

282 J. A. Sclafani, J. Chen, D. V. Levy, H. Reese, M. Dimitri,
P. Mudipalli, M. Christie, C. J. Neville, M. Olsen and
R. P. Bakale, The First Asymmetric Pilot-Scale Synthesis of
TV-45070, Org. Process Res. Dev., 2017, 21, 1616.

283 Q. L. Wang, L. Peng, F. Y. Wang, M. L. Zhang, L. N. Jia,
F. Tian, X. Y. Xu and L. X. Wang, An organocatalytic asym-
metric sequential allylic alkylation-cyclization of Morita-
Baylis-Hillman carbonates and 3-hydroxyoxindoles, Chem.
Commun., 2013, 49, 9422.

284 (a) Y. L. Liu, X. Wang, Y. L. Zhao, F. Zhu, X. P. Zeng,
L. Chen, C. H. Wang, X. L. Zhao and J. Zhou, One-Pot
Tandem Approach to Spirocyclic Oxindoles Featuring
Adjacent Spiro-Stereocenters, Angew. Chem., Int. Ed., 2013,
52, 13735; (b) P. K. Warghude, A. S. Sabale and R. G. Bhat,
Access to highly enantioselective and diastereoselective
spirooxindole dihydrofuran fused pyrazolones, Org.
Biomol. Chem., 2020, 18, 1794.

285 S. Jayakumar, S. Muthusamy, M. Prakash and V. Kesavan,
Enantioselective Synthesis of Spirooxindole α-exo-
Methylene-γ-butyrolactones from 3-OBoc-Oxindoles,
Eur. J. Org. Chem., 2014, 1893.

286 (a) F. Le Hu, Y. Wei and M. Shi, Phosphine-catalyzed
asymmetric [4 + 1] annulation of activated α,β-unsaturated
ketones with Morita-Baylis-Hillman carbonates: enantio-
selective synthesis of spirooxindoles containing two adja-
cent quaternary stereocenters, Chem. Commun., 2014, 50,
8912. For a related diastereoselective reaction see:
(b) R. Zhou, K. Zhang, Y. Chen, Q. Meng, Y. Liu, R. Li and
Z. He, P(NMe2)3-mediated reductive [1 + 4] annulation of
isatins with enones: a facile synthesis of spirooxindole-
dihydrofurans, Chem. Commun., 2015, 51, 14663.

287 For a related enantioselective transformation see:
(a) N. J. Zhong, F. Wei, Q. Q. Xuan, L. Liu, D. Wang and
Y. J. Chen, Highly diastereo- and enantioselective [3 + 2]
annulation of isatin-derived Morita-Baylis-Hillman car-

bonates with trifluoropyruvate catalyzed by tertiary
amines, Chem. Commun., 2013, 49, 11071.

288 Z. C. Chen, P. Chen, Z. Chen, Q. Ouyang, H. P. Liang,
W. Du and Y. C. Chen, Organocatalytic Enantioselective
1,3-Difunctionalizations of Morita-Baylis-Hillman
Carbonates, Org. Lett., 2018, 20, 6279.

289 (a) Y. Murata, M. Takahashi, F. Yagishita, M. Sakamoto,
T. Sengoku and H. Yoda, Construction of Spiro-Fused
2-Oxindole/α-Methylene-γ-Butyrolactone Systems with
Extremely High Enantioselectivity via Indium-Catalyzed
Amide Allylation of N-Methyl Isatin, Org. Lett., 2013, 15,
6182. Also see: (b) M. Takahashi, Y. Murata, F. Yagishita,
M. Sakamoto, T. Sengoku and H. Yoda, Catalytic
Enantioselective Amide Allylation of Isatins and Its
Application in the Synthesis of 2-Oxindole Derivatives
Spiro-Fused to the α-Methylene-γ-Butyrolactone
Functionality, Chem. – Eur. J., 2014, 20, 11091.

290 For a related Pd-catalysed allylation see: S. Jayakumar,
N. Kumarswamyreddy, M. Prakash and V. Kesavan,
Palladium Catalyzed Asymmetric Allylation of 3-OBoc-
Oxindoles: An Efficient Synthesis of 3-Allyl-3-hydroxyoxin-
doles, Org. Lett., 2015, 17, 1066.

291 H. Zhang, Q. Yao, W. Cao, S. Ge, J. Xu, X. Liu and X. Feng,
Catalytic enantioselective ene-type reactions of vinylogous
hydrazone: construction of α-methylene-γ-butyrolactone
derivatives, Chem. Commun., 2018, 54, 12511.

292 B. M. Trost and K. Hirano, Dinuclear Zinc Catalyzed
Asymmetric Spirannulation Reaction: An Umpolung
Strategy for Formation of α-Alkylated-α-Hydroxyoxindoles,
Org. Lett., 2012, 14, 2446.

293 (a) M. M. Liu, X. C. Yang, Y. Z. Hua, J. B. Chang and
M. C. Wang, Synthesis of Chiral Bispirotetrahydrofuran
Oxindoles by Cooperative Bimetallic-Catalyzed
Asymmetric Cascade Reaction, Org. Lett., 2019, 21, 2111.
Also see: (b) Y. H. Miao, Y. Z. Hua and M. C. Wang,
Dinuclear zinc cooperative catalytic three-component reac-
tions for highly enantioselective synthesis of 3,3′-dihydro-
furan spirooxindoles, Org. Biomol. Chem., 2019, 17, 7172.

294 Y.-J. Guo, X. Guo, D.-Z. Kong, H. Lu, L. Liu, Y.-Z. Hua and
M.-C. Wang, Catalytic Asymmetric Synthesis of
Tetrahydrofuran Spirooxindoles via a Dinuclear Zinc
Catalyst, J. Org. Chem., 2020, 85, 4195.

295 (a) J. Liu, X. Xu, J. Li, B. Liu, H. Jiang and B. Yin,
Palladium-catalyzed dearomatizing 2,5-alkoxyarylation of
furan rings: diastereospecific access to spirooxindoles,
Chem. Commun., 2016, 52, 9550; (b) J. Liu, H. Peng, L. Lu,
X. Xu, H. Jiang and B. Yin, Diastereospecific and
Enantioselective Access to Dispirooxindoles from
Furfurylcyclobutanols by Means of a Pd-Catalyzed
Arylative Dearomatization/Ring Expansion Cascade, Org.
Lett., 2016, 18, 6440.

296 D. F. Li, Y. Gu, J. R. Zhang, K. Liu and L. M. Zhao,
Diastereoselective Construction of Spiro-furo[3,2-c]benzo-
pyranoxindoles through a Cu(OTf)2/AcOH Cooperative
Promoted Bicyclization Reaction, J. Org. Chem., 2019, 84,
879.
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297 J. L. Nallasivam and T. K. Chakraborty, Titanocene(III)-
Mediated 5-exo-trig Radical Cyclization: En Route to
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(f ) N. P. Massaro, J. C. Stevens, A. Chatterji and I. Sharma,
Stereoselective Synthesis of Diverse Lactones through a
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Org. Lett., 2018, 20, 7585; (g) G. Xu, S. Tang, Y. Shao and
J. Sun, B(C6F5)3-Catalyzed formal (4 + 1)-annulation of
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sis see: (b) H. Mei, L. Lin, B. Shen, X. Liu and X. Feng,
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2018, 5, 2505. For reaction of related malonitrile oxindoles
with allenes: (c) R. Chen, X. Fan, Z. Xu and Z. He, Facile
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thesis of functionalized six-membered spirocyclic indane-
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Chem. Soc., 2011, 133, 15212; (b) B. Tan, G. Hernández-
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Pot Domino Reaction for Diastereoselective Synthesis of
Polysubstituted Tetrahydrospiro[carbazole-1,3′-indoline]s,
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and Oxindole Moieties, Org. Lett., 2018, 20, 6682. Cu
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