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To improve access to a key synthetic intermediate we targeted a

direct hydrobromination-Negishi route. Unsurprisingly, the anti-

Markovnikov addition of HBr to estragole in the presence of AIBN

proved successful. However, even in the absence of an added

initiator, anti-Markovnikov addition was observed. Re-examination

of early reports revealed that selective Markovnikov addition, often

simply termed “normal” addition, is not always observed with HBr

unless air is excluded, leading to the rediscovery of a reproducible

and scalable initiator-free protocol.

Terminal alkenes are readily converted into valuable synthetic
intermediates for metal-mediated cross-coupling reactions by
hydro-metallation to give organo-boron1 and other organo-
metallics.2 These reactions typically proceed under steric
control to give the primary organometallic, often designated as
the “anti-Markovnikov” product, a term that refers back to
seminal work done over 140 years ago by Victor Markovnikov
on the analogous addition of HI to alkenes.3,4

We recently applied such a hydrometallation-Suzuki
approach to the synthesis of bromopyridine 2,5a a key inter-
mediate in the synthesis of mechanically chiral rotaxanes,
stabilised reactive organometallic species and interlocked cata-
lysts;5 hydroboration of commodity chemical estragole (1a)
with 9-BBN-H followed by an in situ cross coupling with 2,6-
dibromopyridine yielded 2 in a concise manner (Scheme 1).
However, on scale up we encountered problems with purifi-
cation due to the borinic acid by-product, which, in addition
to the high cost of 9-BBN-H, led us to explore other routes to 2.
Accordingly, we explored a Negishi approach employing an
organozinc species produced in situ from bromide 3a,6 itself
accessed in three steps from cheap and readily available hydro-
xyphenyl propionic acid 4.7 However, although the Negishi

coupling step is efficient and scalable, the three-step synthesis
of bromide 3a once again proved cumbersome on scale up.

These issues led us to consider the direct anti-Markovnikov
hydrobromination of estragole to produce 3a in order to
combine the key advantages of both syntheses. This approach
proved extremely successful giving rapid access to 3a and thus
2 in multi-gram quantities. More importantly, as a result of
these studies we made an initially surprising observation: even
in the absence of added initiators the hydrobromination of 1a
proceeds in reasonable selectivity to give the anti-Markovnikov
product.

Here we report how this observation led to the rediscovery
of simple scalable conditions for synthesis of primary bro-
mides under “initiator free” conditions from alkyl and aryl
alkenes. Our results increase the availability of primary bro-
mides directly from feedstock alkene substrates.

The hydrobromination of olefins is generally held to
proceed through two competing pathways:8 polar pathway I via
the most stable carbocation typically resulting in the
branched, Markovnikov product, and radical pathway II via the
most stable radical, resulting in the linear, anti-Markovnikov
product (Fig. 1). To favour pathway II, reactions are carried out
in apolar solvents in the presence of radical initiators (the
“peroxide effect”)9 or under irradiation.10 The Markovnikov
and anti-Markovnikov products are also often simply called
the “normal” and “abnormal” products respectively.11

Surprisingly, direct synthesis of primary bromides from
monosubstituted alkenes by reaction with HBr appears to be a

Scheme 1 Reported5a,7 and proposed routes to bromopyridine 2.
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relatively under-used reaction;12 a simple search gave only 330
examples compared with the >48 000 such bromides
reported.13 We were also surprised to be unable to find any-
thing recognisable as an organic methodological study in
which a variety of substrates are screened under the same con-
ditions, presumably because most work on the peroxide effect
was carried out in the first half of the 20th century with each
paper reporting only a few examples.11 Thus, most recent
reports of this transformation are confined to isolated
examples as part of a larger synthetic campaign.

A brief screen of conditions14,15 identified the use of HBr in
PhMe in the presence of AIBN as appropriate, giving 3a in
excellent 97 : 3 selectivity (Scheme 2).16 A minor drawback of
this procedure on larger scales is the relatively high loading
(13 mol%) of AIBN required. Unfortunately, attempts to reduce
this led to erratic results (see below). However, the excess AIBN
could be removed readily simply by filtering the reaction
mixture through silica prior to evaporation and applying this
procedure allowed us to reliably produce 3a across a range of
scales (1–200 mmol) in excellent yield (98%).

Moreover, these conditions proved general for representa-
tive monosubstituted aliphatic alkenes (1b–f ). The slightly
reduced selectivity in the case of allyl ether 1e may be due to
anchimeric assistance by the proximal O atom favouring the
linear product. To our knowledge there are no previous reports
of the direct addition of HBr to aromatic alkenes to give the
primary bromide product in high selectivity,17,18 presumably
because the aromatic substituent can stabilise the cation
formed in the Markovnikov pathway. In keeping with this,
poor selectivity was observed in the case of styrene (1g) and
this was reduced further in the case of a weakly electron donat-
ing p-fluoro substituent (1h). Conversely, a weakly electron-
withdrawing p-chloro substituent (1i) led to higher selectivity
and strongly electron-withdrawing substituents (1k, 1l) gave
excellent selectivity for the linear product.17

Based on these results the reaction of HBr in toluene with
AIBN appears general for aliphatic alkenes but only applicable
to electron styrenes bearing strongly electron withdrawing sub-
stituents. However, during our attempts to reduce the AIBN
loading we made an unexpected observation: on small scales
(1 mmol), even when no external initiator was added a signifi-
cant selectivity for primary bromide 3a was still observed,
albeit with poor reproducibility. Based on the received wisdom
of undergraduate chemistry this result is superficially surpris-
ing as, in the absence of added initiators or irradiation, the
Markovnikov product is predicted in systems that lack signifi-
cant electronic bias.19

In order to understand this observation we returned to the
early publications in the field, in particular an excellent con-
temporary review from Walling.11 This revealed a number of
interesting points often omitted in recent discussions. Firstly,
many of the early investigations of the addition of HBr to
alkenes were conducted using the neat alkene, rather than
under dilute conditions where the polar pathway is dramati-
cally retarded. Secondly, in order to observe the Markovnikov
product, great care was always taken to use extremely pure
alkene substrates and exclude oxygen and other adventitious
oxidants because, although Markovnikov addition is the rule
for HCl and HI, the case of HBr is far more nuanced; even in
the presence of vanishingly small quantities of oxidants, anti-
Markovikov addition can compete and even dominate in the
case of alkenes that are not activated to Markivnikov addition.

Thus our surprise observation was in fact common knowl-
edge when the peroxide effect was first discovered. Perhaps
unhelpfully, although Markovnikov’s rule is often discussed in
the context of hydrobromination, HBr is the only hydrohalous
acid in which this outcome is sometimes hard to observe
experimentally as anti-Markovnikov addition often competes
due to the presence of adventitious oxidants. Indeed, the
terms “normal” and “abnormal” addition actually seem to
have originally referred to the reactions of HI and HCl in
which no peroxide effect is observed and thus the abnormal
addition actually refers to the contrast with these products,
rather than with that observed in the case of HBr “normally”.

During our literature search, one of the early examples of
initiator-free hydrobromination caught our attention. Sherrill
and co-workers reported in 1934 that HBr added as a solution
in AcOH gave reliable anti-Markovnikov addition to pent-1-ene
and hept-1-ene in hexane.20 Sherrill’s conditions have been
applied only twice in synthesis and the origin of the unusual
reaction outcome was not commented upon.21,19a,b These con-
ditions are particularly attractive as the use of a commercially
available solution of HBr in AcOH is operationally simpler
than using HBr gas to produce an HBr solution.

Under Sherrill’s original conditions, aliphatic alkenes 1a–f,
with the exception of allyl ether 1e, were hydrobrominated in
excellent selectivity, comparable to that observed in toluene in
the presence of AIBN. Furthermore, these conditions deliver
improved selectivity (>80%) for the primary bromide product
in the case of styrene itself (1g) and p-fluoro-styrene (1h). Fur-
thermore, even weakly (1i, 1l) electron withdrawing para sub-

Fig. 1 Polar and radical pathways in the hydrobromination of alkenes.

Scheme 2 Addition of HBr in PhMe to alkenes. Figures in parentheses
refer to the selectivity 3 : 5. Reagents and conditions: HBr in PhMe (sat.),
AIBN (13 mol%), 0 °C, 2 h.
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stituents led to excellent (>95%) selectivity for the primary
bromide. Surprisingly, the reaction of p-NO2 styrene (1k) failed to
reach completion and gave poor selectivity for reasons that are
currently unclear. Styrenes bearing a p-electron donating substi-
tuent (1m, 1n) led unsurprisingly predominantly to Markovnikov
addition. The reaction is not limited to para-substituted styrenes;
meta- (1o–1q) and ortho-halo styrenes (1r–1t) were hydrobromi-
nated in good to excellent selectivity (Scheme 3).

The anti-Markovnikov hydrobromination reaction in hexane
under Sherril’s conditions is operationally far simpler than
those commonly employed in synthesis; the substrate is
simply dissolved and the HBr added directly as a commercially
available solution in AcOH, removing the need to saturate the
reaction solvent with HBr gas or the addition of supplementary
initiators, the bi-products of which must be removed after the
reaction. The only requirement for the reaction to be repro-
duced reliably across a range of scales was for air to be passed
through a solution of the alkene in hexane prior to the
addition of AcOH–HBr. It is worth noting that the observation
of spontaneous anti-Markovnikov addition in apolar solvents
has previously led to Mahrouz and co-workers22 and Sergeev
et al.23 to independently propose alternative mechanisms to
the standard Markovnikov and anti-Markovnikov models
(Fig. 1). Our results clearly support the peroxide effect ortho-
doxy; on larger scales, reactions in hexane–AcOH are enhanced
when air is introduced intentionally, suggesting that O2

initiates the process by oxidising HBr to produce Br radicals.
Finally, to demonstrate the advantage of the initiator-free

hydrobromination process we returned to our original
problem, the simple, rapid and concise synthesis of bromopyr-
idine 2 (Scheme 4). Hydrobromination of 1a gave 23 g (90%) of
3a. Importantly no purification was required beyond simple
aqueous workup. Subsequent formation of the primary orga-
nozinc of 3a under Huo’s conditions6 and cross-coupling with
2,6-dibromopyridine yielded 14 g of key intermediate 2 (60%

yield; 43% based on estragole over two steps), demonstrating
that this approach to primary bromides from feedstock alkene
substrates produces material in suitable purity for direct appli-
cation in cross-coupling reactions.

Conclusions

In conclusion, we have developed simple, scalable and high
yielding conditions for the selective direct anti-Markovnikov
hydrobromination of monosubstituted terminal aliphatic and,
for the first time, aromatic alkenes. The omission of initiators
such as AIBN or benzoylperoxide removes the need for purifi-
cation of the products, allowing them to be taken forward
directly in further synthetic manipulations. To be clear, we
achieved this not by discovering new conditions but by investi-
gating and generalising a previously reported but largely for-
gotten procedure from Sherrill and co-workers. That this
procedure has remained largely ignored for so long is surpris-
ing given its synthetic utility and may be in part due to the
counterintuitive nature of the conditions, in that no obvious
initiator is added, combined with the lack of previous metho-
dological investigations. The results presented here should
increase the synthetic availability of primary bromides as syn-
thetic intermediates derived from feedstock monosubstituted
terminal alkenes.
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